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Rio de Janeiro, Brasil

1. Introduction

Let M and N be C∞ manifolds(1) and let Cr(M,N), r∈N∪{∞}, be the space of Cr

maps from M to N , endowed with the Whitney topology. It is a well-known fact that C∞

maps are dense in Cr(M,N). Such a result is very useful in differentiable topology and
in dynamical systems (as we will discuss in more detail). On the other hand, in closely
related contexts, it is the non-existence of a regularization theorem that turns out to be
remarkable: if homeomorphisms could always be approximated by diffeomorphisms then
the whole theory of exotic structures would not exist.

Palis and Pugh [20] seem to have been the first to ask about the corresponding reg-
ularization results in the case of conservative and symplectic maps. Here one fixes C∞

volume forms(2) (in the conservative case) or symplectic structures (symplectic case),
and asks whether smoother maps in the corresponding class are dense with respect to
the induced Whitney topology. The first result in this direction was due to Zehnder [28],
who provided regularization theorems for symplectic maps, based on the use of gener-
ating functions. He also provided a regularization theorem for conservative maps, but
only when r>1 (he did manage to treat also non-integer r). The case r=1 however has
remained open since then (due in large part to intrinsic difficulties relating to the par-
tial differential equations (PDEs) involved in Zehnder’s approach, which we will discuss
below), except in dimension 2, where it is equivalent to the symplectic case. This is the
problem we address in this paper. Let Cr

vol(M,N)⊂Cr(M,N) be the subset of maps
that preserve the fixed smooth volume forms.

(1) All manifolds will be assumed to be Hausdorff, paracompact and without boundary, but pos-
sibly not compact.

(2) For non-orientable manifolds, a volume form should be understood up to sign.
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Theorem 1. C∞ maps are dense in C1
vol(M,N).

Let us point out that the corresponding regularization theorem for conservative flows
was obtained much earlier by Zuppa [29] in 1979. In fact, in a more recent approach
of Arbieto–Matheus [1], it is shown that a result of Dacorogna–Moser [13] allows one to
reduce to a local situation where the regularization of vector fields which are divergence
free can be treated by convolutions. However, attempts to reduce the case of maps to
the case of flows through a suspension construction have not been successful.

Let us discuss a bit an approach to this problem which is successful in higher reg-
ularity, and the difficulties that appear when considering C1-conservative maps. Let us
assume for simplicity that M and N are compact, as all difficulties are already present
in this case. Let f∈Cr

vol(M,N), and let ωM and ωN be the smooth volume forms. Ap-
proximate f by a smooth non-conservative map f̃ . Then f̃∗ωN is Cr−1 close to ωM . If
we can solve the equation h∗f̃∗ωN =ωM , where h is Cr close to the identity, then the
desired approximation could be obtained by taking f̃ �h. Looking at the local problem
one must solve to get h, it is natural to turn our attention to the Cr solutions of the
equation detDh=φ, where φ: Rn!R is smooth and close to 1.

Unfortunately, though φ is smooth, we only know a priori that the Cr−1 norm of φ
is small. This turns out to be quite sufficient to get control on h if r>2, according to the
Dacorogna–Moser technique. But when r=1, the analysis of the equation is different,
as was shown by Burago–Kleiner [11] and McMullen [18]. This is well expressed in
the following result, Theorem 1.2 of [11]: Given c>0 there exists a continuous function
φ: [0, 1]2![1, 1+c] such that there is no bi-Lipschitz map h: [0, 1]2!R2 with detDh=φ.

This implies that continuous volume forms on a C∞ manifold need not be C1 equiv-
alent to smooth volume forms. This is in contrast with the fact that all smooth volume
forms are C∞ equivalent up to scaling [19], and the differential topology fact that all C1

structures on a C∞ manifold are C1 equivalent.

Remark 2. One can define a Cr
vol structure on a manifold as a maximal atlas

whose chart transitions are Cr maps preserving the usual volume of Rn (see [26, Ex-
ample 3.1.12]). Then Theorem 1 (and its equivalent result for higher differentiability
[28]) can be used to conclude that any Cr

vol structure is compatible with a C∞vol structure
(unique up to C∞vol diffeomorphisms by [19]), by following the proof of the corresponding
statement for Cr structures (see [17, Theorem 2.9]). For r>2, a Cr

vol structure is the
same as a Cr structure together with a Cr−1 volume form by [13], but not all continuous
volume forms on a C∞ manifold arise from a C1

vol structure, by [11, Theorem 1.2] quoted
above.
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We notice also the following amusing consequence of [11, Theorem 1.2], which we
leave as an exercise: A generic continuous volume form on a C1 surface has no non-trivial
symmetries, that is, the identity is the only diffeomorphism of the surface preserving the
volume form. This highlights that the correct framework to do C1-conservative dynamics
is the C1

vol category (and not C1 plus continuous volume form category).

The equation detDh=φ has been studied also in other regularity classes (such as
Sobolev classes) by Ye [27] and Rivière–Ye [22], but this has not helped with the regu-
larization theorem in the C1 case.

The approach taken in this paper is very simple, ultimately constructing a smooth
approximation by taking independent linear approximations (derivative) in a very dense
set, and carefully modifying and gluing them into a global map (with a mixture of bare-
hand techniques and some results from the PDE approach in high regularity). A key
point is to enforce that the choices involved in the construction are made through a local
decision process. This is useful to avoid long-range effects, which if left out would lead
us to a discretized version of the PDE approach in low regularity, with the associated
difficulties. To ensure locality, we use the original unregularized map f as background
data for making the decisions. The actual details of the procedure are best understood
by going through the proof, since the difficulties of this problem lie in the details.

1.1. Dynamical motivation

In the discussion below, we restrict ourselves to diffeomorphisms of compact manifolds
for definiteness.

There is a good reason why the regularization problem for conservative maps has
first been introduced in a dynamical context. In dynamics, low regularity is often used in
order to be able to have the strongest perturbation results available, such as the closing
lemma [21], the connecting lemma [16] and the simple but widely used Franks’ lemma
[15]. Currently such results are only proved precisely for the C1 topology (even getting to
C1+α would be an amazing progress), except when considering 1-dimensional dynamics.
On the other hand, higher regularity plays a fundamental role when distortion needs
to be controlled, which is the case for instance when the ergodic theory of the maps
is the focus (C1+α is a basic hypothesis of Pesin theory, and for most results on stable
ergodicity such as [12], though more regularity is necessary if KAM (Kolmogorov–Arnold–
Moser) methods are involved [23]). While dynamics in the smooth and the low regularity
worlds may often seem to be different altogether (compare [10] and [5]), it turns out that
their characteristics can often be combined (both in the conservative and the dissipative
setting), yielding for instance great flexibility in obtaining interesting examples: see the
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construction of non-uniformly hyperbolic Bernoulli maps [14] which uses C1-perturbation
techniques of [3].

In the dissipative and symplectic settings, regularization theorems have been an
important tool in the analysis of C1-generic dynamics: for instance, Zehnder’s theorem
is used in the proof of [2] that ergodicity is C1 generic for partially hyperbolic symplectic
diffeomorphisms.(3) Thus it is natural to expect that Theorem 1 will lead to several
applications on C1-generic conservative dynamics. Indeed many recent results have been
stated about certain properties of C2 maps being dense in the C1 topology, without being
able to conclude anything about C1 maps only due to the non-availability of Theorem 1.
Thus it had been understood for some time that proving Theorem 1 would have many
immediate applications. Just staying with examples in the line of [2], we point out
that [8] now implies that ergodicity is C1 generic for partially hyperbolic maps with 1-
dimensional center (see [8, §4]), and the same applies to the case of 2-dimensional center,
in view of the recent work [24].

Though we do not aim to be exhaustive in the discussion of applications here, we
give a few other examples which were pointed out to us by Bochi and Viana:

(1) Any C1
vol-robustly transitive diffeomorphism admits a dominated splitting (con-

jectured, e.g., in [6, p. 365]), a result obtained for C1+α diffeomorphisms in [1] using a
pasting lemma. (We note that this work also allows one to extend the pasting lemma of
[1] itself, and hence its other consequences, to the C1 case.)

(2) A C1-generic conservative non-Anosov diffeomorphism has only hyperbolic sets
of zero Lebesgue measure. Zehnder’s theorem has been used in [3] and [5] to achieve this
conclusion in the symplectic case, and such a result is necessary for the conclusion of the
central dichotomy of [3]. It is based on a statement about C2-conservative maps obtained
in [4], so the conclusion for conservative maps now follows directly from Theorem 1. We
hope that results in this direction will play a role in further strengthenings of [5].

(3) The existence of locally generic non-uniformly hyperbolic ergodic conservative
diffeomorphisms with non-simple Lyapunov spectrum [9], [25] (the proof, conditional to
the existence of regularization, is nicely sketched in [7, p. 260]).

1.2. Outline of the proof

Our basic idea is to construct the approximation of a diffeomorphism “from inside”,
growing it up through a growing frame while paying attention to compatibilities.

Let us think first of the case where we have a C1
vol map f : Rn!Rn, whose derivative

is bounded and uniformly continuous. We wish to approximate f by a C∞vol map, C1

(3) It was this fact indeed that convinced the author to work on Theorem 1.
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uniformly. We break Rn into small cubes with vertices in a multiple of the lattice Zn.
In each cube, the derivative of f varies little. Thus f restricted to each cube certainly
admits a nice C∞ approximation: in fact, we can just approximate it by an affine map.
Annoyingly, those approximations do not match.

Our next attempt is to build the approximation more slowly. First we will construct
an approximation in a neighborhood of the set of vertices of the cubes, then extend it
to an approximation near the set of edges, etc. Progressing through the k-faces of the
cubes, 06k6n, we will eventually get a map defined everywhere.

The first step is easy: consider a small ε-neighborhood V0 of the set of vertices of all
the cubes. In this set, we can define an approximation f0 of f which is just affine in each
connected component. Next, consider an ε2-neighborhood V1 of the set of edges. The
connected components of V1\V0 intersect, each, a single edge. We can extend f0|V0∩V1 to
a map f1 defined in V1: the extension argument follows [13], and is based on the fact that
f0 admits a nice C∞ (a priori not volume-preserving) extension. This extension, behaves
well at the scale of the cubes (after rescaling to unit size, the extension is C∞ close to
affine), which yields the estimates necessary to apply the (high regularity) Dacorogna–
Moser argument.

We repeat this process until getting a map fn−1 defined in a neighborhood Vn−1 of
the faces of the cubes. It is important to emphasize that, along this process, all decisions
taken are local: for instance, to know what to do near an edge we only need to look at
what we have done near the vertices of this edge. This eliminates long range effects in
the process.

At the last moment however, we face a new difficulty: there is an obstruction to
the extension of fn−1 to a volume-preserving map. In fact, Rn\Vn−1 is disconnected,
and for an extension (close to f) to exist, the boundary P (a topological sphere) of each
hole must be mapped, under fn−1 to a topological sphere P ′ such that the bounded
components of Rn\P and Rn\P ′ have the same volume.

To account for this, one could try to modify the map fn−1, so that the volume of
the “holes in the image” is the same as the volume of the “holes in the domain”. In
fact, if we have a volume-preserving map such as fn−1, defined in a neighborhood of the
boundaries of the cubes, it is easy to modify it to “shift mass” between adjacent “holes in
the image”. We could try to correct an increasing family of holes: choose one hole and an
adjacent one, move mass so that the first one becomes fine, then choose another adjacent
hole to the second one, move mass, etc. But this introduces possible long range effects:
the decisions taken early on, in some specific place, affect what we have to do much later,
and far away. Thus it is better to try to do it simultaneously. How to prescribe how
much mass should be moved from which hole to which hole? Trying to solve this takes
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us to some difference equation: we are given a function d from the set of cubes to R
(measuring the excess or deficit of volume of the “hole in the image”), and we want to
find some function s from the set of faces to R such that the sum of s over all faces of
each cube equals d. This is just some discretized form of the divergence equation, and
we do not want to follow this path, since, as described before, the divergence equation is
hard to solve in the regularity we are dealing with.

We will instead proceed differently, being careful to make the constructions of
f0,...,fn−1, so that the problem will not show up at the last step: we make the cor-
rections along the way, which breaks the problem into simple ones (we want to be able
to make local decisions). To make the decisions, we use an important guide: the “back-
ground” map f , which is known to be volume-preserving. When constructing f0, we
make sure that f0, near each vertex p, is fair to all cubes C that have p as a vertex: thus
if B is the connected component of V0 containing p, we want that f0(B)∩f(C) and B∩C
have the same volume. This can be done, starting with a careless attempt at defining f0,
such as the one considered before, by a “moving mass” argument, which this time has
no longer range effects. Later, when defining f1 near an edge q, the fairness property of
f0 will allow us to be fair to all cubes that have q as an edge. This goes on until fn−1,
when we find out that the fairness condition implies that there is no problem with the
holes any more. We can then extend fn−1 to the desired approximation fn of f .

This concludes the argument in this case. We can adapt this argument to deal with,
instead of the entire Rn, some domain in Rn. We just need to consider a suitable decom-
position into cubes which has locally bounded geometry, and the Whitney decomposition
will do. In fact, we can prove a more detailed result about domains, with “matching con-
ditions” (thus, if f is already smooth somewhere, we do not need to modify f there along
the approximation(4)). Once the case of domains in Rn is taken care of, we can deal with
the case of manifolds as well by a triangulation argument, building the approximation
through vertices, edges, etc., but with a much easier argument (since we can prescribe
matching conditions).

This paper is organized as follows. We first describe the kind of extension result
we will repeatedly make use of, obtained using the Dacorogna–Moser technique. Then
we show how to move mass between cubes, to achieve fairness. Next, we formulate and
prove a version of the approximation theorem with matching conditions. We conclude
with the application of this result to the case of manifolds.

(4) We note that this kind of result is more relevant for “pasting lemma” applications [1] than
Theorem 1 itself.
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2. Extending conservative maps

Fix two connected open sets with smooth boundary B1, B2⊂Rn with 
B1⊂B2 and 
B2\B1

smoothly diffeomorphic to ∂B1×[0, 1]. For the proof of Theorem 1, we will need the
following slight variations of Theorems 2 and 1 of Dacorogna–Moser [13].

Theorem 3. Let φ: Rn!R be a C∞ function with
∫

Rn φ(z) dz=0 supported in-
side B1. Then there exists v∈C∞(Rn,Rn) supported inside B2 with div v=φ. Moreover ,
if φ is C∞ small , then v is C∞ small.

Proof. Theorem 2 of [13] states in a more general context, that there exists a map
w: 
B2!Rn with divw=φ and w|∂B2 =0, and if φ is C∞ small then w is also C∞ small.
It is thus enough to find some C∞ map u: 
B2!Rn (small if φ is small) with div u=0
and u|


B2\B1
=w, and let v|


B2
=w−u and v|Rn\
B2

=0. This procedure is the standard one
already used in [13].

There is a duality between smooth vector fields u and smooth (n−1)-forms u∗,
given by u∗(x)(y1, ..., yn−1)=det(u(x), y1, ..., yn−1). The duality transforms the equation
div u=0 into du∗=0. The form w∗ is thus closed in 
B2\B1, and the boundary condition
w|∂B2 =0 implies that it is exact in 
B2\B1. Solve the equation dα=w∗ in 
B2\B1 and
extend α smoothly to 
B2 (notice that α can be required to be small if w is small). Let u
be a vector field on 
B2 given by dα=u∗. Then u|


B2\B1
=w, and since du∗=0 in 
B2, we

have div u|

B2

=0.

Theorem 4. Let φ: Rn!(−1,∞) be a C∞ function with
∫

Rn φ(z) dz=0 supported
inside B1. Then there exists ψ∈C∞(Rn,Rn), with ψ−id supported inside B1, such that
detψ=1+φ. Moreover , if φ is C∞ small , then ψ−id is C∞ small.

Proof. As in [13], the solution is given explicitly as ψ=ψ1, where ψt(x) is the solution
of the differential equation

dψt(x)
dt

=
v(φt(x))

t+(1−t)(1+φ(ψt(x)))

with ψ0(x)=x and v comes from the previous theorem.
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Corollary 5. Let K be a compact set , U be a neighborhood of K and let f∈
C∞(Rn,Rn) be C∞ close to the identity and such that f |U is volume-preserving. Assume
that for every bounded connected component W of Rn\K, W and f(W ) have the same
volume. Then there exists a C∞-conservative map close to the identity such that f̃=f
on K.

Proof. We may modify f away from K so that f−id is compactly supported and
det f−1 is supported inside some open set B̃1, which can be assumed to have smooth
boundary, disjoint from some neighborhood of K. Let m be the number of connected
components of B̃1. We can assume that each connected component of Rn\K contains at
most one connected component of B̃1 (otherwise we just enlarge B̃1 suitably). For each
connected component Bi

1 of B̃1, select a small ε-neighborhood B2
i of 
Bi

1. Let φi be given
by φi|Bi

1
=det f−1 and φi|Rn\Bi

1
=0. Then

∫
Rn φi(z) dz=0. Indeed, if Bi

1 is contained in a
bounded connected component of Rn\K, this follows immediately from f preserving the
volumes of such sets, and if Bi

1 is contained in the unbounded component W of Rn\K,
one uses that f preserves the volume of W∩B for all sufficiently large balls B (to see
this one uses that f−id is compactly supported). Applying the previous theorem, one
gets maps ψi with ψi−id supported inside Bi

1. We then take f̃=f �ψ−1
1 �...�ψ−1

m .

3. Moving mass

In this section we will consider the L∞ norm in Rn. The closed ball of radius r>0 around
p∈Rn will be denoted by B(p, r) (this ball is actually a cube). The canonical basis of Rn

will be denoted by e1, ..., en.

Lemma 6. Fix 0<δ< 1
10 . Let S⊂{1, ..., n} be a subset with 06k6n−1 elements.

Let P⊂Rn be the (finite) set of all p of the form
∑

i/∈S uiei with ui=±1. Let

B=
⋃
p∈P

B(p, 1),

and let B′ be the open δ-neighborhood of B. Let W be a Borel set whose δ-neighborhood
is contained in B and which contains B(0, δ). If F∈C1

vol(B
′,Rn) is C1 close to the

identity , then there exists s∈C∞vol(Rn,Rn) such that
(1) s|int B(0,10) is C∞ close to the identity ;
(2) vol(F (s(W ))∩B(p, 1))=vol(W∩B(p, 1)) for p∈P ;
(3) s is the identity outside the δ-neighborhood of the subspace generated by {ei}i/∈S.

Proof. Notice that there are 2n−k elements in P . Call two elements p, p′∈P adjacent
if p−p′=±2el for some 16l6n.



on the regularization of conservative maps 13

Let p and p′ be adjacent. Let q=q(p, p′)= 1
4δ(p

′+p), and let C=C(p, p′) be the
cylinder consisting of all z∈Rn of the form z+t(p′−p), where t∈R and z∈B

(
q, 1

4δ
)
. Let

φ=φp,p′ : Rn![0, 1] be a C∞ function such that φ(q)=1, φ|Rn\C =0 and φ(z+t(p−p′))=
φ(z) for t∈R. For t∈R, let st=s

p,p′

t ∈C∞vol(Rn,Rn) be given by st(z)=z+tφ(z)(p−p′).
Let us show that for |t|< 1

100δ, we have

vol(st(W )∩B(p, 1))−vol(W∩B(p, 1))= vol(st(C∩B(0, δ))∩B(p, 1))

−vol(C∩B(0, δ)∩B(p, 1))

= t

∫
B(0,1/2)

φ(z) dz.

(3.1)

Indeed, since the δ -neighborhood of W is contained in B, and st is the identity outside C,
if z∈W∩B(p, 1) belongs (respectively, does not belong) to C∩B(0, δ), then st(z) belongs
(respectively, does not belong) to B(p, 1) as well. Since C∩B(0, δ)⊂W , this justifies the
first equality. The second equality is a straightforward computation.

Let B′′ be the open 1
2δ -neighborhood of B. It is easy to see that if F̃∈C1

vol(B
′′,Rn)

is C1 close to the identity then vol(F̃ (st(W ))∩B(p̃, 1))=vol(F̃ (W )∩B(p̃, 1)) for every
p̃∈P \{p, p′}, since in this case we actually have F̃ (st(W ))∩B(p̃, 1)=F̃ (W )∩B(p̃, 1).

We claim that there exists t∈R small such that

vol(F̃ (st(W ))∩B(p, 1))= vol(W∩B(p, 1)).

Indeed, for |t|< 1
100δ, vol(F̃ (st(W ))∩B(p, 1))−vol(st(W )∩B(p, 1)) is small if F̃ is close

to the identity. The claim follows from (3.1) and the obvious continuity of

t 7−! vol(F̃ (st(W ))∩B(p, 1)).

As a graph, P is just a hypercube, so there exists an ordering p1, ..., p2n−k of the
elements of P such that for 16i62n−k−1, pi and pi+1 are adjacent. Given F , we
define sequences F(l)∈C1

vol(B
′′,Rn) and s(l)∈C∞vol(Rn,Rn), 06l62n−k−1, by induction

as follows. We let s(0)=id, F(l)=F �s(l) for 06l62n−k−1, and for 16l62n−k−1 we let
s(l)=s

p,p′

t �s(l−1), where p=pi, p′=pi+1 and t is given by the claim applied with F̃=F(l−1).
As long as F is sufficiently close to the identity, we get inductively that F(l) is close to
the identity, so this construction can indeed be carried out.

Let us show that s=s(2n−k−1) has all the required properties. Properties (1) and (3)
are rather clear. By construction, we get inductively that

vol(F(l)(W )∩B(p, 1))= vol(W∩B(p, 1))
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for p∈{p1, ..., pl}, so it is clear that vol(F (s(W ))∩B(p, 1))=vol(W∩B(p, 1)), except pos-
sibly for p=p2n−k . But

∑
p∈P

vol(F (s(W ))∩B(p, 1))= vol(F (s(W ))∩B) =vol(W∩B) =
∑
p∈P

vol(W∩B(p, 1)),

so we must have vol(F (s(W ))∩B(p, 1))=vol(W∩B(p, 1)) also for p=p2n−k , and property
(2) follows.

4. Proof of Theorem 1

4.1. Charts

If U⊂Rn is open and f :U!Rn is a bounded Cr map with bounded derivatives up to
order r, we let ‖f‖Cr be the natural Cr norm.

Theorem 7. Let W be an open subset of Rn and let f∈C1
vol(W,Rn) be a map with

bounded uniformly continuous derivative. Let K0⊂W be a compact set such that f is
C∞ in a neighborhood of K0. Let U⊂W be open. Then for every ε>0 there exists
f̃∈C1

vol(W,Rn) such that f̃ |U is C∞, f̃ coincides with f in W \U and in a neighborhood
of K0, and ‖f−f̃‖C1<ε.

Proof. We consider the L∞ metric in Rn. Let θ>0 be such that the θ-neighborhood
of K0 is contained in W and f is C∞ in it. We will now introduce a Whitney decompo-
sition of U .

If 06m6n, an m-cell x is some set of the form
∏n

k=1[2
−tak, 2−t(ak+bk)], where

t∈Z, ak∈Z and bk∈{0, 1} with #{k :bk=1}=m. For m>1, we let its interior intx be∏n
k=1(2

−tak, 2−t(ak+bk)), with the convention that (a, a)={a} for a∈R. Let ∂x be
x\intx.

We say that an n-cell x is ε-small if its diameter is at most ε, and every n-cell of the
same diameter as x which intersects x is contained in U . We say that a dyadic n-cell is
ε-good if it is a maximal (with respect to inclusion) ε-small n-cell. We say that a dyadic
m-cell, 06m6n−1, is ε-good if it is the intersection of all ε-good n-cells that intersect
its interior.

Given ε>0, we say that an ε-good m-cell x has rank t=t(x) if the minimal diameter
of the ε-good n-cells containing it is 2−t (if m>0, 2−t is just the diameter of x). The rank
is designed to give a measure of the intrinsic scale of the ε-good cells near x, so the more
cumbersome definition is needed to be meaningful for m=0. Notice that if x and y are
ε-good cells and x∩y 6=∅ then |t(x)−t(y)|61 (otherwise either x or y would not satisfy
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the maximality requirement of an ε-good m-cell). Each ε-good m-cell x is contained in
2n−m n-cells of diameter 2−t(x), called neighbors of x (which are not necessarily ε-good).

Fix some small ε>0. From now on, by m-cell we will understand an ε-good m-cell.
Let Nm be the set of m-cells. By construction, the interiors of distinct cells are always
disjoint, and their union covers U . This is what we meant by a Whitney decomposition
of U . The local geometry of the Whitney decomposition has some bounded complexity
(depending on the dimension): there exists C0=C0(n) such that each m-cell contains
at most C0 k-cells, 06k6m. Moreover, each x∈Nm is the union of the interior of the
k-cells, 06k6m, contained in x.

For x∈Nm, let D(x) be the 2−10(m+1)2−t(x)-neighborhood of x, and let

I(x) =
⋃
y

D(y),

where the union is taken over all proper subcells y⊂x. Thus I(x) is a neighborhood of
the boundary of x. Let B(x)=D(x)∪I(x) (a somewhat larger neighborhood of x) and
J(x)=D(x)\I(x) (and thus J(x) is obtained by truncating a neighborhood of x near
the boundary of x). Notice that if x and y are distinct cells, then J(x) and J(y) are
disjoint. Let R(x) be the interior of the union of all n-cells intersecting x. Thus R(x) is
again a neighborhood of x, larger than B(x) and D(x). Notice that the 2−100(m+1)2−t(x)-
neighborhood of J(x) is contained in the interior of the union of the neighbors of x.

For a cell x, let b be its barycenter, let λx: Rn!Rn be given by λx(z)=b+2−t(x)+1z

and let Hx(z)=f(b)+Df(b)(z−b). We say that h∈C∞vol(R(x),Rn) is x-nice if h−f
is C1 small, (λ−1

x �h�λx)−(λ−1
x �Hx�λx) is C∞ small, and for every neighbor y of x,

vol(f−1(h(J(x)))∩y)=vol(J(x)∩y). Notice that this last condition implies that for ev-
ery y∈Nn containing x, vol(f−1(h(J(x)))∩y)=vol(J(x)∩y).

A family {hx}x∈Nm is said to be nice if each hx is x-nice and ‖hx−f‖C1!0 uni-
formly as rank(x)!∞. Let %=2−100n. We will now inductively construct nice families
{h̃x}x∈Nm , 06m6n, such that h̃x=h̃y in a 2−t(x)%m+1-neighborhood of B(y) whenever
y is a subcell of x, and such that if x is 2−(m+1)θ-close to K0 then h̃x=f |R(x).

Let x∈N0. If ε is small and x is 1
2θ-close toK0, then h̃x=f |R(x) is x-nice. Otherwise,

if ε is sufficiently small, then by a C1 small modification of Hx we obtain a map h̃x

which is x-nice. The easiest way to see this is to first conjugate by λx, bringing things
to unit scale. More precisely, we get into the setting of Lemma 6 (with k=0, and hence
S=∅) by putting F=λ−1

x �f−1
�Hx�λx and W=λ−1

x (J(x)). Let s be the map given by
Lemma 6. Then h̃x=Hx�λx�s�λ

−1
x is x-nice. Moreover, {h̃x}x∈N0 is a nice family since

the estimates improve as the rank grows (indeed, as the rank grows, one looks at smaller
and smaller scales, and the derivative varies less and less).
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Let now 16m6n−1 and assume that for every k6m−1 we have defined a nice
family {h̃x}x∈Nk

with the required compatibilities.

If x∈Nm intersects a 2−(m+1)θ-neighborhood ofK0 just take h̃x=f |R(x) as definition
and it will satisfy the other compatibility by hypothesis. Otherwise, let Q be the open
%m-neighborhood of B(x) and define a map hx∈C∞vol(Q,Rn) such that hx=h̃y in the %m-
neighborhood of B(y) for every subcell y⊂x. Restricting hx to the 1

2%
m-neighborhood

of I(x), which is a full compact set (that is, it does not disconnect Rn), since m6n−1,
and extending it to R(x) using Corollary 5, we get that h(1)

x ∈C∞vol(R(x),Rn) which is
C∞ close to Hx after rescaling by λx. By a C1 small modification of h(1)(x) outside the
%-neighborhood of I(x), we can obtain a nice family {h̃x}x∈Nm . This is an application
of Lemma 6 (with k=m) analogous to the one described before. This time, we let
F=λ−1

x �f−1
�h

(1)
x �λx and W=λ−1

x (J(x)). We choose S as the subset of the canonical
basis of Rn which spans the tangent space to x at some (any) interior point. Letting s
be the map given by Lemma 6, the desired maps are given by h̃x=h(1)

x �λx�s�λ
−1
x .

By induction, we can construct the nice families as above for 06m6n−1. Let now
x∈Nn. As before, when x is close to K0 the definition is forced and there is no problem of
compatibility by hypothesis. Otherwise, let Q be the open %n-neighborhood of I(x). As
before, define a map hx:Q!Rn by gluing the definitions of h̃y for subcells of x. Notice
that Rn\I(x) has two connected components, and the bounded one is contained in x.
By construction, I(x) is the disjoint union of the J(y) contained in it. Thus the volumes
of hx(I(x))∩f(x) and I(x)∩x are equal. This implies that the bounded component
of Rn\hx(I(x)) has the same volume as the bounded component of Rn\I(x). We can
restrict h(x) to the 1

2%
n-neighborhood of I(x) and extend it to a map h̃x∈C∞vol(R(x),Rn)

which is x-nice using Corollary 5 (after rescaling by λx and then rescaling back). Thus
we obtain a nice family {h̃x}x∈Nn with all the compatibilities.

The nice family {h̃x}x∈Nn
is such that whenever two n-cells x and y intersect,

we have h̃x=h̃y in a neighborhood of the intersection. Let f̃ :W!Rn be defined by
f̃(z)=f(z), for z /∈U , and f̃(z)=h̃x(z) for every z∈x, x∈Nn. Then f̃∈C1

vol(W,Rn), since
near ∂U∩W the rank of an n-cell x is big and hence ‖h̃x−f |R(x)‖C1 is small. Moreover
‖f̃−f‖C1 is small everywhere, and f̃=f in a neighborhood of K0 by construction.

4.2. Manifolds

We now conclude the proof of Theorem 1 by a triangulation argument. Triangulate
M so that for every simplex D there are smooth charts gi:Wi!Rn and g̃i: W̃i!Rn

such that f(Wi)⊂W̃i and D is precompact in Wi. Such charts may be assumed to be
volume-preserving by [19].
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Enumerate the vertices. Apply Theorem 7 in charts to smooth f in a neighborhood of
the first vertex without changing f in a neighborhood of simplices that do not contain this
vertex. Repeat with the subsequent vertices. Now suppose we have already smoothed f
in a neighborhood ofm-simplices, for some 06m6n−1. Enumerate the (m+1)-simplices
and apply Theorem 7 in charts to smooth it in a neighborhood of the first (m+1)-simplex,
without changing it in a neighborhood of simplices that do not contain it (in particular
we do not change it near its boundary). Repeat with the subsequent (m+1)-simplices.
After n steps we will have smoothed f on the whole M .
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determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire, 7 (1990), 1–26.

[14] Dolgopyat, D. & Pesin, Y., Every compact manifold carries a completely hyperbolic
diffeomorphism. Ergodic Theory Dynam. Systems, 22 (2002), 409–435.

[15] Franks, J., Necessary conditions for stability of diffeomorphisms. Trans. Amer. Math.
Soc., 158 (1971), 301–308.

[16] Hayashi, S., Connecting invariant manifolds and the solution of the C1 stability and Ω-
stability conjectures for flows. Ann. of Math., 145 (1997), 81–137.



18 a. avila

[17] Hirsch, M.W., Differential Topology. Graduate Texts in Mathematics, 33. Springer, New
York, 1994.

[18] McMullen, C.T., Lipschitz maps and nets in Euclidean space. Geom. Funct. Anal., 8
(1998), 304–314.

[19] Moser, J., On the volume elements on a manifold. Trans. Amer. Math. Soc., 120 (1965),
286–294.

[20] Palis, J. & Pugh, C. C. (eds.), Fifty problems in dynamical systems, in Dynamical
Systems (Warwick, 1974), Lecture Notes in Math., 468, pp. 345–353. Springer, Berlin–
Heidelberg, 1975.

[21] Pugh, C.C., The closing lemma. Amer. J. Math., 89 (1967), 956–1009.
[22] Rivière, T. & Ye, D., Resolutions of the prescribed volume form equation. NoDEA

Nonlinear Differential Equations Appl., 3 (1996), 323–369.
[23] Rodriguez Hertz, F., Stable ergodicity of certain linear automorphisms of the torus.

Ann. of Math., 162 (2005), 65–107.
[24] Rodriguez Hertz, F., Rodriguez Hertz, M.A., Tahzibi, A. & Ures, R., A criterion

for ergodicity of non-uniformly hyperbolic diffeomorphisms. Electron. Res. Announc.
Math. Sci., 14 (2007), 74–81.

[25] Tahzibi, A., Stably ergodic diffeomorphisms which are not partially hyperbolic. Israel J.
Math., 142 (2004), 315–344.

[26] Thurston, W.P., Three-Dimensional Geometry and Topology. Vol. 1. Princeton Mathe-
matical Series, 35. Princeton University Press, Princeton, NJ, 1997.

[27] Ye, D., Prescribing the Jacobian determinant in Sobolev spaces. Ann. Inst. H. Poincaré
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