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The authors discuss multiple solutions for the nth-order singular boundary value problems of nonlinear integrodifferential
equations in Banach spaces by means of the fixed point theorem of cone expansion and compression. An example for infinite
system of scalar third-order singular nonlinear integrodifferential equations is offered.

1. Introduction

Singular nonlinear boundary value problems of the ordinary
differential equations appeared frequently in applications.
With Taliaferro [1] treating the general problem, Calle-
gari and Nachman [2] considered existence questions in
boundary layer theory, and Luning and Perry [3] obtained
constructive results for generalized Emden-Fowler problems.
Results have also been obtained for singular boundary value
problems arising in reaction-diffusion theory and in non-
Newtonian fluid theory [4]. Singular nonlinear boundary
value problems of the ordinary differential equations have
made great progress in recent years (please see [5–8]).

In the above papers, singular problems are studied in
scalar case. In Chen [9], the boundary value problems of a
class of 𝑛th-order nonlinear integrodifferential equations of
mixed type in Banach space are considered, and the existence
of three solutions is obtained by using the fixed point index
theory. But such equations do not have singular nonlinear
terms. As much as we know, there are a few papers ([10–18])
to consider the singular problems in abstract Banach spaces.
In Liu [10], the following singular problems in Banach spaces
𝐸

−𝑥


(𝑡) = 𝑓 (𝑡, 𝑥 (𝑡) , 𝑥


(𝑡)) , ∀0 < 𝑡 ≤ 𝑇;

𝑥 (0) = 𝑥


(0) = 𝜃,

(1)

were investigated by constructing a special convex closed set
and using Mönch fixed point theorem, where 𝜃 denotes the
zero element of 𝐸. In [10], (1) under certain conditions, there
is at least one solution. And, in the methods, under normal
circumstances, to investigate the singular problems, at first,
one needs to consider the approximation problems which
have no singularities. However, in the study of integrodiffer-
ential equations in infinite dimensional Banach space, this
method is very complicated and difficult.

In this paper, not considering approximative problems,
informed by the characteristic of nonlinear term, we con-
struct a new cone, and through the cone we create a
new special cone. Moreover, through finding the relations
from ‖𝑢‖

𝑐
to ‖𝑢
(𝑛−2)

‖
𝑐
(𝑢 belongs to the special cone), we

triumphantly overcome the singularity and use the fixed
point theorem of cone expansion and compression directly
to obtain the existence of multiple solutions for singular
boundary value problems of nonlinear integrodifferential
equations in Banach spaces. Finally, an example of scalar
third-order singular nonlinear integrodifferential equations
for an infinite system is offered. With the previous methods,
one can not get the results in this paper.

Let 𝑃 be a cone in Banach space 𝐸 which defines a partial
ordering in 𝐸 by 𝑥 ≤ 𝑦 if and only if 𝑦 − 𝑥 ∈ 𝑃. Let 𝑃

𝑟
= {𝑢 ∈

𝑃 : ‖𝑢‖ < 𝑟} (𝑟 > 0). 𝑃 is said to be normal if there exists a
positive constant𝑁 such that 𝜃 ≤ 𝑥 ≤ 𝑦 implies ‖𝑥‖ ≤ 𝑁‖𝑦‖,
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where 𝜃 denotes the zero element of 𝐸, and the smallest 𝑁

is called the normal constant of 𝑃. For convenience, in the
following, we set 𝑃 as a normal cone and 𝑁 = 1. Let 𝑃

1
=

{𝑢 ∈ 𝑃 : 𝑢 ≥ 𝑢
0
‖𝑢‖}, in which 𝑢

0
∈ 𝑃 and 0 < ‖𝑢

0
‖ < 1.

Obviously, 𝑃
1
is a normal cone of 𝐸, and the normal constant

of 𝑃
1
also is 1. Cone 𝑃

1
is the key to overcome the singular

nonlinear term (please see the last example).
We consider the following singular boundary value prob-

lem (SBVP for short) for an 𝑛th-order nonlinear integrodif-
ferential equations in Banach spaces 𝐸:

− 𝑢
(𝑛)

(𝑡)

= 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡) , . . . , 𝑢
(𝑛−2)

(𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡)) ,

0 < 𝑡 < 1;

𝑢
(𝑖)

(0) = 𝜃, (𝑖 = 0, 1, . . . , 𝑛 − 2) ,

𝑢
(𝑛−1)

(1) = 𝜃,

(2)

where 𝐽 := [0, 1], 𝑓 ∈ 𝐶[(0, 1) ×

𝑃
1
\ {𝜃} × 𝑃

1
\ {𝜃} × ⋅ ⋅ ⋅ × 𝑃

1
\ {𝜃} × 𝑃

1
× 𝑃
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟,

𝑛+1

𝑃
1
],

(𝑇𝑢) (𝑡) = ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) d𝑠,

(𝑆𝑢) (𝑡) = ∫

1

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) d𝑠,

∀𝑡 ∈ 𝐽,

(3)

with 𝑘 ∈ 𝐶[𝐷, 𝑅
+
] (𝐷 = {(𝑡, 𝑠) ∈ 𝐽 × 𝐽 : 𝑡 ≥ 𝑠}), ℎ ∈ 𝐶[𝐽 ×

𝐽, 𝑅
+
] (𝑅
+
denotes the set of all nonnegative real numbers).

𝑓(𝑡, V
0
, V
1
, . . . , V

𝑛−1
, V
𝑛
) is singular at V

𝑖
= 𝜃 (𝑖 = 0, 1, . . . ,

𝑛 − 2), 𝑡 = 0, and/or 𝑡 = 1 if

lim
V𝑖→𝜃





𝑓 (𝑡, V

0
, . . . , V

𝑛
)




= +∞, (𝑖 = 0, 1, . . . , 𝑛 − 2) , (4)

∀𝑡 ∈ (0, 1), V
𝑘
∈ 𝑃
1
(𝑘 = 𝑛 − 1, 𝑛), V

𝑗
∈ 𝑃
1
\ {𝜃} (𝑗 = 0, 1, . . . ,

𝑛 − 2),

lim
𝑡→0
+





𝑓 (𝑡, V

0
, . . . , V

𝑛
)




= +∞,

and/or lim
𝑡→1
−





𝑓 (𝑡, V

0
, . . . , V

𝑛
)




= +∞,

(5)

∀V
𝑖
∈ 𝑃
1
\ {𝜃} (𝑖 = 0, 1, . . . , 𝑛 − 2), V

𝑗
∈ 𝑃
1
(𝑗 = 𝑛 − 1, 𝑛).

Let 𝐽 = (0, 1). A map 𝑢 ∈ 𝐶
𝑛−2

[𝐽, 𝐸] ∩ 𝐶
𝑛
[𝐽

, 𝐸] is called

a solution of SBVP (2) if it satisfies (2).

2. Preliminaries and Several Lemmas

Denote 𝐶
𝑛−2

[𝐽, 𝐸] := {𝑢 : 𝑢 is a map from 𝐽 into 𝐸 and
𝑢
(𝑛−2)

(𝑡) is continuous on 𝐽}. The norm of 𝑢 ∈ 𝐶
𝑛−2

[𝐽, 𝐸] is
defined by

‖𝑢‖
𝑛−2

= max
𝑖=0,1,...,𝑛−2

{






𝑢
(𝑖)


𝑐
} , (6)

where





𝑢
(𝑖)


𝑐

= max
𝑡∈𝐽

{






𝑢
(𝑖)

(𝑡)






} , (𝑖 = 0, . . . , 𝑛 − 2) . (7)

Obviously (𝐶
𝑛−2

[𝐽, 𝐸], ‖ ⋅ ‖) is a Banach space.
Let

𝐶
𝑛−2

[𝐽, 𝑃
1
] := {𝑢

(𝑖)
∈ 𝐶 [𝐽, 𝐸] : 𝑢

(𝑖)

(𝑡) ∈ 𝑃
1
, 𝑡 ∈ 𝐽, 𝑖

= 0, 1, 2, . . . , 𝑛 − 2} .

(8)

Obviously, 𝐶𝑛−2[𝐽, 𝑃
1
] is a cone of 𝐶𝑛−2[𝐽, 𝐸]. For 𝑟 > 0, we

write 𝑃
1𝑟

:= {𝑢 ∈ 𝑃
1
: ‖𝑢‖ < 𝑟} and 𝑃

1𝑟
:= {𝑢 ∈ 𝑃

1
: ‖𝑢‖ ≤ 𝑟}.

Let 𝑢 : (0, 1] → 𝐸 be continuous. We call
the abstract generalized integral ∫

1

0
𝑢(𝑡)d𝑡 convergence if

lim
𝑠→0
+ ∫

1

𝑠
𝑢(𝑡)d𝑡 exists. Analogously, we can define the

convergence of other kinds of abstract generalized integrals.
We will use 𝛼 to denote the Kuratowski measure of non-

compactness of set in space 𝐸. For details of the Kuratowski
measure of noncompactness, please see [19].

Lemma 1 (see [19]). Let 𝐻 be a bounded set of 𝐶
𝑚
[𝐽, 𝐸].

Suppose that 𝐻(𝑚) := {𝑢
(𝑚)

: 𝑢 ∈ 𝐻} is equicontinuous. Then,

𝛼
𝑚

(𝐻) = max
𝑖=0,1,...,𝑚

{𝛼 (𝐻
(𝑖)

(𝐽))}

= max
𝑖=0,1,...,𝑚

{max
𝑡∈𝐽

{𝛼 (𝐻
(𝑖)

(𝑡))}} ,

(9)

where

𝐻
(𝑖)

(𝐽) := {𝑢
(𝑖)

(𝑡) : 𝑡 ∈ 𝐽, 𝑢 ∈ 𝐻} ,

(𝑖 = 0, 1, 2, . . . , 𝑚) ,

𝐻
(𝑖)

(𝑡) := {𝑢
(𝑖)

(𝑡) : 𝑢 ∈ 𝐻} , (𝑖 = 0, 1, 2, . . . , 𝑚) .

(10)

Lemma 2 (see [19]). If 𝐻 ⊂ 𝐶[𝐽, 𝐸] is bounded and equicon-
tinuous, then 𝛼(𝐻(𝑡)) is continuous on 𝐽. Moreover,

𝛼({∫

𝐽

𝑢 (𝑡) d𝑡 : 𝑢 ∈ 𝐻}) ≤ ∫

𝐽

𝛼 (𝐻 (𝑡)) d𝑡. (11)

Lemma3 (see [19]). Let𝐻 be a bounded set of𝐶𝑚[𝐽, 𝐸].Then,

𝛼
𝑚

(𝐻) ≥ 𝛼 (𝐻 (𝐽)) ,

𝛼
𝑚

(𝐻) ≥ 𝛼 (𝐻


(𝐽)) , . . . , 𝛼
𝑚

(𝐻) ≥ 𝛼 (𝐻
(𝑚−1)

(𝐽)) ,

𝛼
𝑚

(𝐻) ≥

1

2

𝛼 (𝐻
(𝑚)

(𝐽)) ,

(12)

where 𝐻
(𝑖)
(𝐽) (𝑖 = 0, 1, 2, . . . , 𝑚) is defined by Lemma 1.

Lemma 4 (the fixed point theorem of cone expansion and
compression [see [20]]). 𝑃 is a cone of real Banach space 𝐸.
Let

𝑃
𝑅
\ 𝑃
𝑟
:= {𝑥 ∈ 𝑃 : 𝑟 ≤ ‖ 𝑥 ‖ ≤𝑅} , 𝑅 > 𝑟 > 0. (13)

Suppose that 𝐴 : 𝑃
𝑅
\ 𝑃
𝑟

→ 𝑃 is a strict set contraction such
that one of the following two conditions is satisfied:
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(i) 𝐴𝑥 ̸≥ 𝑥, ∀𝑥 ∈ 𝑃, ‖𝑥‖ = 𝑟 and 𝐴𝑥 ≰ 𝑥, ∀𝑥 ∈ 𝑃,
‖𝑥‖ = 𝑅;

(ii) 𝐴𝑥 ̸≥ 𝑥, ∀𝑥 ∈ 𝑃, ‖𝑥‖ = 𝑅 and 𝐴𝑥 ≰ 𝑥, ∀𝑥 ∈ 𝑃,
‖𝑥‖ = 𝑟.

Then, 𝐴 has at least a fixed point in 𝑃
𝑅
\ 𝑃
𝑟
.

3. Main Results and an Example

To continue, let us formulate some conditions.
(𝐻
1
)There exist 𝑏 ∈ 𝐿[𝐽


, 𝑅
+
], 𝑎
𝑖
∈ 𝐿[𝐽

, 𝑅
+
] (𝑖 = 0, 1, . . . ,

𝑛), 𝑔
𝑖
∈ 𝐶[(0, +∞), (0, +∞)] (𝑖 = 0, 1, . . . , 𝑛 − 2), and ℎ

𝑖
∈

𝐶[[0, +∞), [0, +∞)], (𝑖 = 0, 1, . . . , 𝑛), such that




𝑓 (𝑡, V

0
, V
1
, . . . , V

𝑛−2
, V
𝑛−1

, V
𝑛
)





≤ 𝑏 (𝑡) +

𝑛−2

∑

𝑖=0

𝑎
𝑖
(𝑡) (𝑔
𝑖
(




V
𝑖





) + ℎ
𝑖
(




V
𝑖





))

+ 𝑎
𝑛−1

(𝑡) ℎ
𝑛−1

(




V
𝑛−1





) + 𝑎
𝑛
(𝑡) ℎ
𝑛
(




V
𝑛





) ,

∀𝑡 ∈ (0, 1) , V
𝑖
∈ 𝑃
1
\ {𝜃} (𝑖 = 0, 1, . . . , 𝑛 − 2) , V

𝑛−1
, V
𝑛
∈ 𝑃
1
,

(14)

where 𝑔
𝑖
is nonincreasing and ℎ

𝑖
/𝑔
𝑖
(𝑖 = 0, 1, . . . , 𝑛 − 2) and

ℎ
𝑛−1

, ℎ
𝑛
are nondecreasing.

(𝐻
2
) For any 𝑅 > 𝑟 > 0,

∫

1

0

𝑠 (𝑏 (𝑠)

+

𝑛−2

∑

𝑖=0

𝑎
𝑖
(𝑠) 𝑔
𝑖
(

𝑠
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑟)(1 +

ℎ
𝑖
(𝑅)

𝑔
𝑖
(𝑅)

)

+ 𝑎
𝑛−1

(𝑠) ℎ
𝑛−1

(𝑘
∗
𝑅) + 𝑎

𝑛
(𝑠) ℎ
𝑛
(ℎ
∗
𝑅)) d𝑠

< +∞.

(15)

And, there exists a 𝑅
0
> 0 such that

∫

1

0

𝑠 (𝑏 (𝑠)

+

𝑛−2

∑

𝑖=0

𝑎
𝑖
(𝑠) 𝑔
𝑖
(

𝑠
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑅
0
)(1 +

ℎ
𝑖
(𝑅
0
)

𝑔
𝑖
(𝑅
0
)

)

+ 𝑎
𝑛−1

(𝑠) ℎ
𝑛−1

(𝑘
∗
𝑅
0
) + 𝑎
𝑛
(𝑠) ℎ
𝑛
(ℎ
∗
𝑅
0
)) d𝑠

< 𝑅
0
,

(16)

where 𝑏, 𝑎
𝑖
(𝑖 = 0, 1, . . . , 𝑛), 𝑔

𝑖
(𝑖 = 0, 1, . . . , 𝑛 − 2), and ℎ

𝑖
(𝑖 =

0, 1, . . . , 𝑛) are defined as in condition (𝐻
1
), and

𝑘
∗

:= max
(𝑡,𝑠)∈𝐷

{𝑘 (𝑡, 𝑠)} ,

ℎ
∗

:= max
(𝑡,𝑠)∈𝐽×𝐽

{ℎ (𝑡, 𝑠)} .

(17)

(𝐻
3
) For any 𝑅 > 𝑟 > 0, [𝑎, 𝑏] ⊂ (0, 1), 𝑓 is uniformly

continuous on

[𝑎, 𝑏]

× 𝑃
1𝑅

\ 𝑃
1𝑟

× 𝑃
1𝑅

\ 𝑃
1𝑟

× ⋅ ⋅ ⋅ × 𝑃
1𝑅

\ 𝑃
1𝑟

× 𝑃
1𝑅

× 𝑃
1𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛+1

,
(18)

and there exist 𝐿
𝑖
≥ 0 (𝑖 = 0, 1, . . . , 𝑛), such that

𝛼 (𝑓 (𝑡, 𝐵
0
, 𝐵
1
, . . . , 𝐵

𝑛
)) ≤

𝑛

∑

𝑖=0

𝐿
𝑖
𝛼 (𝐵
𝑖
) ,

∀𝑡 ∈ (0, 1) , 𝐵
𝑖
⊂ 𝑃
1𝑅

\ 𝑃
1𝑟

(𝑖 = 0, 1, . . . , 𝑛 − 2) , 𝐵
𝑛−1

, 𝐵
𝑛
⊂ 𝑃
1𝑅

.

(19)

Remark 5. Obviously, condition (𝐻
3
) is satisfied automati-

cally when 𝐸 is finite dimensional.

(𝐻
4
) There exist 0 < 𝛼 < 1/2, and 𝜑 ∈ 𝑃

∗

1
(𝑃
∗

1
denotes

the dual cone of 𝑃
1
) such that 𝜑(V) > 0 for V > 𝜃. At the same

time, one of the 𝑛 − 1 conditions is satisfied

𝜑 (𝑓 (𝑡, V
0
, V
1
, . . . , V

𝑛
))

𝜑 (V
𝑗
)

→ +∞,

as 𝜑 (V
𝑗
) > 0, V

𝑗
∈ 𝑃
1
,






V
𝑗






→ 0

(20)

uniformly in 𝑡 ∈ [𝛼, 1 − 𝛼], with 𝑗 ∈ {0, 1, . . . , 𝑛 − 2}.

Remark 6. Because𝑓(𝑡, V
0
, V
1
, . . . , V

𝑛
) is singular at V

𝑖
= 𝜃 (𝑖 =

0, 1, . . . , 𝑛−2), condition (𝐻
4
) is easy to be satisfied. And only

one of the 𝑛 − 1 conditions is satisfied.

(𝐻
5
) There exist 0 < 𝛼 < 1/2, and 𝜑 ∈ 𝑃

∗

1
(𝑃
∗

1
denotes

the dual cone of 𝑃
1
) such that 𝜑(V) > 0 for V > 𝜃. At the same

time, one of the following 𝑛 − 1 conditions is satisfied:

𝜑 (𝑓 (𝑡, V
0
, V
1
, . . . , V

𝑛
))

𝜑 (V
𝑗
)

→ +∞,

as 𝜑 (V
𝑗
) > 0, V

𝑗
∈ 𝑃
1
,






V
𝑗






→ +∞

(21)

uniformly in 𝑡 ∈ [𝛼, 1 − 𝛼], with 𝑗 ∈ {0, 1, . . . , 𝑛 − 2}.

Remark 7. In condition (𝐻
5
), only one of the 𝑛−1 conditions

is satisfied.

To avoid singularity, let

𝑄 =: {𝑢 ∈ 𝐶
𝑛−2

[𝐽, 𝑃
1
] : 𝑢
(𝑖)

(0)

= 𝜃, (𝑖 = 0, 1, . . . , 𝑛 − 2) , 𝑢
(𝑖)

(𝑡)

≥

𝑡
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑢
(𝑖)

(𝑠) (𝑖 = 0, 1, . . . , 𝑛 − 2) , 𝑡, 𝑠

∈ 𝐽} .

(22)

Obviously, 𝑄 is a normal cone in 𝐶
𝑛−2

[𝐽, 𝐸], and the normal
constant of 𝑄 is 1.
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Lemma 8. Suppose 𝑢 ∈ 𝑄. Then,

‖𝑢‖
𝑛−2

=






𝑢
(𝑛−2)



𝑐

, (23)






𝑢
(𝑗)

(𝑡)






≥

𝑡
𝑛−1−𝑗

(𝑛 − 1 − 𝑗)!






𝑢
(𝑛−2)



𝑐

,

(𝑗 = 0, 1, . . . , 𝑛 − 2) , ∀𝑡 ∈ 𝐽.

(24)

Proof. For any 𝑢 ∈ 𝑄, that is, 𝑢(𝑖)(0) = 𝜃 (𝑖 = 0, 1, . . . , 𝑛 − 2),






𝑢
(𝑖)

(𝑡)






=










∫

𝑡

0

𝑢
(𝑖+1)

(𝑠) d𝑠









≤ 𝑡






𝑢
(𝑖+1)



𝑐

≤






𝑢
(𝑖+1)



𝑐

,

(𝑖 = 0, 1, . . . , 𝑛 − 3) , ∀𝑡 ∈ 𝐽.

(25)

Therefore,





𝑢
(𝑖)


𝑐

≤






𝑢
(𝑖+1)



𝑐

, (𝑖 = 0, 1, . . . , 𝑛 − 3) , (26)

which implies that

‖𝑢‖
𝑛−2

=






𝑢
(𝑛−2)



𝑐

. (27)

Because of 𝑢
(𝑛−2)

(𝑡) ≥ 𝑡𝑢
(𝑛−2)

(𝑠), ∀𝑡, 𝑠 ∈ 𝐽, and the normal
characters of 𝑃, it is easy to get






𝑢
(𝑛−2)

(𝑡)






≥ 𝑡






𝑢
(𝑛−2)



𝑐

, ∀𝑡 ∈ 𝐽. (28)

Hence,

𝑢
(𝑗)

(𝑡) =

1

(𝑛 − 3 − 𝑗)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−3−𝑗

𝑢
(𝑛−2)

(𝑠) d𝑠

≥

1

(𝑛 − 3 − 𝑗)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−3−𝑗

𝑠𝑢
(𝑛−2)

(𝜏) d𝑠

=

𝑡
𝑛−1−𝑗

(𝑛 − 1 − 𝑗)!

𝑢
(𝑛−2)

(𝜏) ,

(𝑗 = 0, 1, . . . , 𝑛 − 3) , ∀𝑡, 𝜏 ∈ 𝐽.

(29)

It follows from (28) and (29) and the normal characters of 𝑃
that






𝑢
(𝑗)

(𝑡)






≥

𝑡
𝑛−1−𝑗

(𝑛 − 1 − 𝑗)!






𝑢
(𝑛−2)



𝑐

,

(𝑗 = 0, 1, . . . , 𝑛 − 2) , ∀𝑡 ∈ 𝐽.

(30)

By (27) and (30), the conclusion holds.

Remark 9. Formula (23) implies that the norm of 𝑢 ∈ 𝑄 is
decided by (𝑛 − 2)th-order derivative 𝑢

(𝑛−2).

Remark 10. Inequality (24) implies that 𝑢
(𝑛−2) controls dis-

tance between 𝜃 and 𝑢
(𝑙)

(𝑙 = 0, 1, . . . , 𝑛 − 2). This is one of
the keys to apart from the singularities of the nonlinear term
𝑓.

Lemma 11. For 𝑗 = 1, 2, . . . , 𝑛 − 1, the following conclusion
holds:

𝑡
𝑗
(1 − (1 − 𝑠)

𝑗
)

𝑗!

≤ 𝐺
𝑗+1

(𝑡, 𝑠) ≤

(1 − (1 − 𝑠)
𝑗
)

𝑗!

, (31)

where

𝐺
𝑗
(𝑡, 𝑠) :=

{
{
{
{
{

{
{
{
{
{

{

𝑡
𝑗−1

− (𝑡 − 𝑠)
𝑗−1

(𝑗 − 1)!

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1;

𝑡
𝑗−1

(𝑗 − 1)!

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(32)

Proof. In fact, for 𝑗 = 1, 2, . . . , 𝑛 − 1, ∀𝑠
0
∈ 𝐽, we get

sup
𝑡∈𝐽

𝐺
𝑗+1

(𝑡, 𝑠
0
)

= max{ sup
0≤𝑠0≤𝑡≤1

𝑡
𝑗
− (𝑡 − 𝑠

0
)
𝑗

𝑗!

, sup
0≤𝑡≤𝑠0≤1

𝑡
𝑗

𝑗!

}

=

1

𝑗!

max {1 − (1 − 𝑠
0
)
𝑗

, 𝑠
𝑗

0
} .

(33)

Consider

1 − (1 − 𝑠
0
)
𝑗

≥ 𝑠
𝑗

0
, ∀𝑠

0
∈ 𝐽. (34)

It follows from (33) and (34) that

sup
𝑡∈𝐽

𝐺
𝑗+1

(𝑡, 𝑠
0
) =

1

𝑗!

(1 − (1 − 𝑠
0
)
𝑗

) , ∀𝑠
0
∈ 𝐽; (35)

that is,

sup
𝑡∈𝐽

𝐺
𝑗+1

(𝑡, 𝑠) =

1

𝑗!

(1 − (1 − 𝑠)
𝑗
) , ∀𝑠 ∈ 𝐽. (36)

On the other hand, for 𝑗 = 1, 2, . . . , 𝑛 − 1, it is easy to get

inf
0<𝑡≤1

𝐺
𝑗+1

(𝑡, 𝑠)

𝑡
𝑗

=

1

𝑗!

min{ inf
0≤𝑠<𝑡≤1

𝑡
𝑗
− (𝑡 − 𝑠)

𝑗

𝑡
𝑗

, inf
0<𝑡≤𝑠≤1

𝑡
𝑗

𝑡
𝑗
}

=

1

𝑗!

min{ inf
0≤𝑠<𝑡≤1

(1 − (1 −

𝑠

𝑡

)

𝑗

) , 1}

=

1

𝑗!

(1 − (1 − 𝑠)
𝑗
) .

(37)

It follows from (36) and (37) that

𝑡
𝑗
(1 − (1 − 𝑠)

𝑗
)

𝑗!

≤ 𝐺
𝑗+1

(𝑡, 𝑠) ≤

(1 − (1 − 𝑠)
𝑗
)

𝑗!

,

∀𝑡 ∈ (0, 1] .

(38)

Since for 𝑡 = 0 (38) holds, we get (31).



Abstract and Applied Analysis 5

Lemma 12. Suppose conditions (𝐻
1
) and (𝐻

2
) are satisfied.

Then, for any 𝑅 > 𝑟 > 0, 𝐴 : 𝑄
𝑅

\ 𝑄
𝑟

→ 𝑄, in which the
operator 𝐴 is defined by

(𝐴𝑢) (𝑡) := ∫

1

0

𝐺
𝑛
(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢)

⋅ (𝑠)) d𝑠, ∀𝑡 ∈ 𝐽,

(39)

where

𝐺
𝑛
(𝑡, 𝑠) =:

{
{
{
{
{

{
{
{
{
{

{

𝑡
𝑛−1

− (𝑡 − 𝑠)
𝑛−1

(𝑛 − 1)!

, 0 ≤ 𝑠 < 𝑡 ≤ 1;

𝑡
𝑛−1

(𝑛 − 1)!

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(40)

Proof. At first, we show that the operator𝐴 defined by (39) is
reasonable for 𝑢 ∈ 𝑄

𝑅
\ 𝑄
𝑟
with any 𝑅 > 𝑟 > 0. In fact, for

𝑢 ∈ 𝑄
𝑅
\𝑄
𝑟
with 𝑅 ≥ ‖𝑢

(𝑖)
(𝑡)‖ ≥ (𝑡

𝑛−1−𝑖
/(𝑛 − 1 − 𝑖)!)𝑟, by (𝐻

1
)

and (𝐻
2
),

∫

1

0

𝑠 (𝑏 (𝑠)

+

𝑛−2

∑

𝑖=0

𝑎
𝑖
(𝑠) 𝑔
𝑖
(

𝑠
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑟)(1 +

ℎ
𝑖
(𝑅)

𝑔
𝑖
(𝑅)

)

+ 𝑎
𝑛−1

(𝑠) ℎ
𝑛−1

(𝑘
∗
𝑅) + 𝑎

𝑛
(𝑠) ℎ
𝑛
(ℎ
∗
𝑅)) d𝑠

< +∞,

(41)

which implies that (𝐴𝑢)(𝑡) defined by (39) is reasonable for
𝑡 ∈ 𝐽.

Next, we show that (𝐴𝑢)(𝑡) ∈ 𝐶
𝑛−2

[𝐽, 𝑃
1
]. For 𝑢

(𝑖)
(𝑡) ∈

𝑃
1
(𝑖 = 0, 1, . . . , 𝑛 − 2),

(𝑇𝑢) (𝑡) = ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) d𝑠 ≥ ∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢
0
‖𝑢 (𝑠)‖ d𝑠

≥ 𝑢
0










∫

𝑡

0

𝑘 (𝑡, 𝑠) 𝑢 (𝑠) d𝑠









= 𝑢
0
‖(𝑇𝑢) (𝑡)‖ ,

(𝑆𝑢) (𝑡) = ∫

1

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) d𝑠 ≥ ∫

1

0

ℎ (𝑡, 𝑠) 𝑢
0
‖𝑢 (𝑠)‖ d𝑠

≥ 𝑢
0











∫

1

0

ℎ (𝑡, 𝑠) 𝑢 (𝑠) d𝑠










= 𝑢
0
‖(𝑆𝑢) (𝑡)‖ ,

(42)

which implies (𝑇𝑢)(𝑡) ∈ 𝑃
1
and (𝑆𝑢)(𝑡) ∈ 𝑃

1
. This together

with

𝑓 ∈ 𝐶
[

[

[

(0, 1)

× 𝑃
1
\ {𝜃} × 𝑃

1
\ {𝜃} × ⋅ ⋅ ⋅ × 𝑃

1
\ {𝜃} × 𝑃

1
× 𝑃
1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛+1

, 𝑃
1

]

]

]

,

(43)

gives

(𝐴𝑢)
(𝑙)

(𝑡) = ∫

1

0

𝐺
𝑛−𝑙

(𝑡, 𝑠)

⋅ 𝑓 (𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) d𝑠

≥ ∫

1

0

𝐺
𝑛−𝑙

(𝑡, 𝑠)

⋅ 𝑢
0






𝑓 (𝑢 (𝑠) , 𝑢



(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢)

⋅ (𝑠))






d𝑠 ≥ 𝑢

0











∫

1

0

𝐺
𝑛−𝑙

(𝑡, 𝑠)

⋅ 𝑓 (𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) d𝑠










= 𝑢
0






(𝐴𝑢)
(𝑙)

(𝑡)






, ∀𝑡 ∈ 𝐽, (𝑙 = 0, 1, . . . , 𝑛 − 2) .

(44)

Therefore, (𝐴𝑢)(𝑡) ∈ 𝐶
𝑛−2

[𝐽, 𝑃
1
] holds.

Finally, by Lemma 11 and (39) and (40), one can see

(𝐴𝑢)
(𝑙)

(0) = 𝜃 (𝑙 = 0, 1, . . . , 𝑛 − 2) ,

(𝐴𝑢)
(𝑙)

(𝑡) = ∫

1

0

𝐺
𝑛−𝑙

(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢)

⋅ (𝑠)) d𝑠 ≥

𝑡
𝑛−1−𝑙

(𝑛 − 1 − 𝑙)!

∫

1

0

𝐺
𝑛−𝑙

(𝜏, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢)

⋅ (𝑠)) d𝑠 =

𝑡
𝑛−1−𝑙

(𝑛 − 1 − 𝑙)!

(𝐴𝑢)
(𝑙)

(𝜏) ,

∀𝑡, 𝜏 ∈ 𝐽, (𝑙 = 0, 1, . . . , 𝑛 − 2) .

(45)

It follows from (44) and (45) that 𝐴 : 𝑄
𝑅
\ 𝑄
𝑟

→ 𝑄.

Lemma 13. Let cone 𝑃 be normal and let conditions (𝐻
1
) and

(𝐻
2
) be satisfied. Then, 𝑢 ∈ 𝑄

𝑅
\𝑄
𝑟
is a fixed point of operator

𝐴 if and only if 𝑢 ∈ 𝐶
𝑛
[𝐽

, 𝐸] ∩ 𝑄

𝑅
\𝑄
𝑟
is a solution for SBVP

(2).

Proof. By Lemma 12, 𝐴 : 𝑄
𝑅

\ 𝑄
𝑟

→ 𝑄. For 𝑢 ∈ 𝐶
𝑛
[𝐽, 𝐸],

Taylor’s formula with the integral remainder term gives

𝑢 (𝑡) =

𝑛−1

∑

𝑖=0

𝑡
𝑖

𝑖!

𝑢
(𝑖)

(0) +

1

(𝑛 − 1)!

∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

𝑢
(𝑛)

(𝑠) d𝑠,

∀𝑡 ∈ 𝐽.

(46)

Substituting

𝑢
(𝑛−1)

(0) = 𝑢
(𝑛−1)

(1) − ∫

1

0

𝑢
(𝑛)

(𝑠) d𝑠 (47)
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into (46), we get

𝑢 (𝑡) =

𝑛−2

∑

𝑖=0

𝑡
𝑖

𝑖!

𝑢
(𝑖)

(0) +

𝑡
𝑛−1

(𝑛 − 1)!

𝑢
(𝑛−1)

(1)

−

1

(𝑛 − 1)!

(∫

1

0

𝑡
𝑛−1

𝑢
(𝑛)

(𝑠) d𝑠

− ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

𝑢
(𝑛)

(𝑠) d𝑠) , ∀𝑡 ∈ 𝐽.

(48)

Let 𝑢 ∈ 𝐶
𝑛
[(0, 1), 𝐸] ∩ 𝐶

𝑛−2
[𝐽, 𝐸] be the solution of SBVP (2).

Then, (48) implies

𝑢 (𝑡) =

1

(𝑛 − 1)!

[∫

1

0

𝑡
𝑛−1

𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) ,

(𝑆𝑢) (𝑠)) d𝑠 − ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) d𝑠] .

(49)

Comparing this with (39) and (40), we have 𝑢(𝑡) = (𝐴𝑢)(𝑡),
which means 𝑢(𝑡) is the fixed point of the operator 𝐴 in 𝑄

𝑅
\

𝑄
𝑟
.
On the other hand, let 𝑢(𝑡) ∈ 𝑄

𝑅
\ 𝑄
𝑟
be the fixed point

of the operator 𝐴. By (39) and (40),

𝑢
(𝑗)

(𝑡) = (𝐴𝑢)
(𝑗)

(𝑡) =

1

(𝑛 − 1 − 𝑗)!

[∫

1

0

𝑡
𝑛−1−𝑗

𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) ,

. . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) d𝑠 − ∫

𝑡

0

(𝑡 − 𝑠)
𝑛−1−𝑗

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) d𝑠] ,

(50)

where 𝑗 = 1, 2, . . . , 𝑛 − 1. It follows by taking 𝑡 = 0 and 𝑡 = 1

in (50) that

𝑢
(𝑗)

(0) = 𝜃, (𝑖 = 0, 1, . . . , 𝑛 − 2) ,

𝑢
(𝑛−1)

(1) = 𝜃,

𝑢
(𝑛−1)

(𝑡) = ∫

1

𝑡

𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−1)

(𝑠) , (𝑇𝑢)

⋅ (𝑠) , (𝑆𝑢) (𝑠)) d𝑠, 𝑡 ∈ 𝐽

;

(51)

that is,

𝑢
(𝑛)

(𝑡) = −𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡) , . . . , 𝑢
(𝑛−1)

(𝑡) , (𝑇𝑢)

⋅ (𝑡) , (𝑆𝑢) (𝑡)) , 𝑡 ∈ 𝐽

.

(52)

Then, (51)-(52) imply that 𝑢 is the solution for SBVP (2) in
𝐶
𝑛
[(0, 1), 𝐸] ∩ 𝐶

𝑛−2
[𝐽, 𝐸].

Lemma 14. Suppose conditions (𝐻
1
)–(𝐻
3
) are satisfied. Let

𝐷
𝑙
(𝑡) := {∫

1

0

𝐺
𝑛−𝑙

(𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢)

⋅ (𝑠) , (𝑆𝑢) (𝑠)) d𝑠 : 𝑢 ∈ 𝐵} , (𝑙 = 0, 1, . . . , 𝑛 − 2) ,

(53)

with 𝑡 ∈ 𝐽, 𝐵 ⊂ 𝑄
𝑅
\ 𝑄
𝑟
. Then,

𝛼 (𝐷
𝑙
(𝑡)) ≤

𝑛−2

∑

𝑖=0

𝐿
𝑖
𝛼 (𝐵
(𝑖)

(𝐽)) + 𝐿
𝑛−1

𝑘
∗
𝛼 (𝐵 (𝐽))

+ 𝐿
𝑛
ℎ
∗
𝛼 (𝐵 (𝐽)) , (𝑙 = 0, 1, . . . , 𝑛 − 2) ,

(54)

with 𝐵
(𝑖)
(𝐽) := {𝑢

(𝑖)
(𝑠) : 𝑠 ∈ 𝐽, 𝑢 ∈ 𝐵} (𝑖 = 0, 1, . . . , 𝑛 − 2).

Proof. Apart from the singularities, let

𝐷
𝑙,𝛿

(𝑡) =: {∫

1−𝛿

𝛿

𝐺
𝑛−𝑙

(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , . . . , 𝑢
(𝑛−1)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) d𝑠 :

𝑢 ∈ 𝐵} , (𝑙 = 0, 1, . . . , 𝑛 − 2) , 0 < 𝛿 <

1

2

, 𝑡 ∈ 𝐽.

(55)

By conditions (𝐻
1
) and (𝐻

2
), for any 𝑡 ∈ 𝐽, 𝑢 ∈ 𝐵, one can see

that










∫

1

0

𝐺
𝑛−𝑙

(𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢)

⋅ (𝑠)) d𝑠 − ∫

1−𝛿

𝛿

𝐺
𝑛−𝑙

(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) d𝑠










≤ ∫

𝛿

0

𝑠 (𝑏 (𝑠) +

𝑛−2

∑

𝑖=0

𝑎
𝑖
(𝑠) 𝑔
𝑖
(

𝑠
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑟)

⋅ (1 +

ℎ
𝑖
(𝑅)

𝑔
𝑖
(𝑅)

) + 𝑎
𝑛−1

(𝑠) ℎ
𝑛−1

(𝑘
∗
𝑅) + 𝑎

𝑛
(𝑠)

⋅ ℎ
𝑛
(ℎ
∗
𝑅)) d𝑠 + ∫

1

1−𝛿

𝑠 (𝑏 (𝑠) +

𝑛−2

∑

𝑖=0

𝑎
𝑖
(𝑠)

⋅ 𝑔
𝑖
(

𝑠
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑟)(1 +

ℎ
𝑖
(𝑅)

𝑔
𝑖
(𝑅)

) + 𝑎
𝑛−1

(𝑠)

⋅ ℎ
𝑛−1

(𝑘
∗
𝑅) + 𝑎

𝑛
(𝑠) ℎ
𝑛
(ℎ
∗
𝑅)) d𝑠,

(𝑙 = 0, 1, . . . , 𝑛 − 2) .

(56)

By virtue of absolute continuity of the Lebesgue integrable
function and (56), it is easy to see that

𝑑
𝐻(𝐷𝑙,𝛿(𝑡),𝐷𝑙(𝑡))

→ 0,

as 𝛿 → 0, ∀𝑡 ∈ 𝐽, (𝑙 = 0, 1, . . . , 𝑛 − 2) ,

(57)

in which 𝑑
𝐻(𝐷𝑙,𝛿(𝑡),𝐷𝑙(𝑡))

denotes the Hausdorff distance
between 𝐷

𝑙,𝛿
(𝑡) and 𝐷

𝑙
(𝑡). Therefore,

𝛼 (𝐷
𝑙
(𝑡)) = lim

𝛿→0

𝛼 (𝐷
𝑙,𝛿

(𝑡)) ,

∀𝑡 ∈ 𝐽, (𝑙 = 0, 1, . . . , 𝑛 − 2) .

(58)



Abstract and Applied Analysis 7

Now, we check that

𝛼 (𝐷
𝑛−2

(𝑡)) ≤

𝑛−2

∑

𝑖=0

𝐿
𝑖
𝛼 (𝐵
(𝑖)

(𝐽)) + 𝐿
𝑛−1

𝑘
∗
𝛼 (𝐵 (𝐽))

+ 𝐿
𝑛
ℎ
∗
𝛼 (𝐵 (𝐽)) .

(59)

For 𝐵 ⊂ 𝑄
𝑅

\ 𝑄
𝑟
, it is easy to see that 𝐴(𝐵) ⊂ 𝐶

𝑛−1
[𝐽, 𝑃
1
] ⊂

𝐶
𝑛−2

[𝐽, 𝐸] is bounded, which implies that 𝐷
𝑙,𝛿

(𝑙 = 0, 1, . . . ,

𝑛 − 2) are bounded. Since

∫

1−𝛿

𝛿

𝐺
𝑛−𝑙

(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) d𝑠

∈ (1 − 2𝛿) 𝑐𝑜 (𝐺
𝑛−𝑙

(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) : 𝑠

∈ [𝛿, 1 − 𝛿]) ,

(60)

we have

𝛼 (𝐷
𝑛−2,𝛿

(𝑡)) = 𝛼({∫

1−𝛿

𝛿

𝐺
2
(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) d𝑠 :

𝑢 ∈ 𝐵}) ≤ 𝛼 ((1 − 2𝛿) 𝑐𝑜 (𝐺
2
(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) : 𝑠

∈ [𝛿, 1 − 𝛿] , 𝑢 ∈ 𝐵)) < 𝛼 ((𝐺
2
(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢 (𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠)) : 𝑠

∈ [𝛿, 1 − 𝛿] , 𝑢 ∈ 𝐵))

≤ 𝛼 (𝑓 (𝐼
𝛿
, 𝐵 (𝐼
𝛿
) , . . . , 𝐵

(𝑛−2)
(𝐼
𝛿
) , (𝑇𝐵) (𝐼

𝛿
) , (𝑆𝑢)

⋅ (𝐼
𝛿
))) ,

(61)

where 𝐼
𝛿

= [𝛿, 1 − 𝛿], 𝐵(𝑙)(𝐼
𝛿
) = {𝑢

(𝑙)
(𝑠) : 𝑠 ∈ 𝐼

𝛿
, 𝑢 ∈ 𝐵} (𝑙 =

0, 1, . . . , 𝑛 − 2), (𝑇𝐵)(𝐼
𝛿
) = {(𝑇𝑢)(𝑠) : 𝑠 ∈ 𝐼

𝛿
, 𝑢 ∈ 𝐵}, and

(𝑆𝐵)(𝐼
𝛿
) = {(𝑆𝑢)(𝑠) : 𝑠 ∈ 𝐼

𝛿
, 𝑢 ∈ 𝐵}. Take 𝑟

1
= (𝛿
𝑛−1

/(𝑛−1)!)𝑟,
𝑅
1
= 𝑅max{1, 𝑘∗, ℎ∗}, such that

𝐵
(𝑙)

(𝐼
𝛿
) ⊂ 𝑃
1𝑅1

\ 𝑃
1𝑟1

,

(𝑙 = 0, 1, . . . , 𝑛 − 2) , (𝑇𝐵) (𝐼
𝛿
) , (𝑆𝐵) (𝐼

𝛿
) ⊂ 𝑃
1𝑅1

.

(62)

Obviously, (𝑇𝐵) ⊂ 𝐶[𝐽, 𝐸] and 𝐵 ⊂ 𝐶[𝐽, 𝐸]; moreover, both
of them are equacontinuous on 𝐼

𝛿
. It follows from (62), (𝐻

3
),

and Lemmas 1 and 2 that

𝛼 (𝑓 (𝐼
𝛿
, 𝐵 (𝐼
𝛿
) , . . . , 𝐵

(𝑛−2)
(𝐼
𝛿
) , (𝑇𝐵) (𝐼

𝛿
) , (𝑆𝑢) (𝐼

𝛿
)))

= max
𝑠∈𝐼𝛿

𝛼 (𝑓 (𝑠, 𝐵 (𝐼
𝛿
) , . . . , 𝐵

(𝑛−2)
(𝐼
𝛿
) , (𝑇𝐵) (𝐼

𝛿
) ,

(𝑆𝑢) (𝐼
𝛿
))) ≤

𝑛−2

∑

𝑖=0

𝐿
𝑖
𝛼 (𝐵
(𝑖)

(𝐼
𝛿
)) + 𝐿

𝑛−1
𝛼 ((𝑇𝐵) (𝐼

𝛿
))

+ 𝐿
𝑛
𝛼 ((𝑆𝐵) (𝐼

𝛿
)) ,

𝛼 ((𝑇𝐵) (𝐼
𝛿
)) = max
𝑠∈𝐼𝛿

𝛼 ((𝑇𝐵) (𝑠))

= max
𝑠∈𝐼𝛿

𝛼({∫

𝑠

0

𝑘 (𝑠, 𝜏) 𝑢 (𝜏) d𝜏 : 𝑢 ∈ 𝐵})

≤ ∫

𝑠

0

𝛼 (𝑘 (𝑠, 𝜏) 𝐵 (𝜏)) d𝜏 ≤ 𝑘
∗
𝛼 (𝐵 (𝐽)) .

(63)

Analogously, it is easy to get

𝛼 ((𝑆𝐵) (𝐼
𝛿
)) ≤ ℎ

∗
𝛼 (𝐵 (𝐽)) . (64)

It follows from (𝐻
3
), (61), (63), and (64) that

𝛼 (𝐷
𝑛−2,𝛿

(𝑡)) ≤

𝑛−2

∑

𝑖=0

𝐿
𝑖
𝛼 (𝐵
(𝑖)

(𝐽)) + 𝐿
𝑛−1

𝑘
∗
𝛼 (𝐵 (𝐽))

+ 𝐿
𝑛
ℎ
∗
𝛼 (𝐵 (𝐽)) .

(65)

Hence, by (58), we know (59) is true, and the conclusion
holds.

Lemma 15. Let conditions (𝐻
1
), (𝐻
2
), and (𝐻

3
) be satisfied.

Suppose that 0 ≤ 𝛾 < 1, in which 𝛾 = ∑
𝑛−3

𝑖=0
𝐿
𝑖
+ 𝐿
𝑛−1

𝑘
∗

+

𝐿
𝑛
ℎ
∗
+ 2𝐿
𝑛−2

. Then, 𝐴 is a strict set contraction from 𝑄
𝑅
\ 𝑄
𝑟

into 𝑄.

Proof. By Lemma 12, (𝐻
1
), and (𝐻

2
), it is easy to see that

𝐴(𝑄
𝑅
\ 𝑄
𝑟
) ⊂ 𝑄 and 𝐴 is a bounded operator. We check that

𝐴(𝑄
𝑅
\ 𝑄
𝑟
) → 𝑄 is continuous. In fact, let 𝑢

𝑚
, 𝑢 ∈ 𝑄

𝑅
\ 𝑄
𝑟
,

‖𝑢
𝑚

− 𝑢‖
𝑛−2

→ 0 (𝑚 → ∞). For 𝑖 = 0, 1, . . . , 𝑛 − 2, it is easy
to get

𝑅 ≥






𝑢
(𝑖)

𝑚
(𝑡)






≥

𝑡
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑟,

𝑅 ≥‖ 𝑢
(𝑖)

(𝑡) ‖≥

𝑡
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑟,

∀𝑡 ∈ 𝐽.

(66)
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For ∀𝑡 ∈ 𝐽, by (31) and (50),








(𝐴𝑢
𝑚
)
(𝑛−2)

(𝑡) − (𝐴𝑢)
(𝑛−2)

(𝑡)








=











∫

1

0

𝐺
2
(𝑡, 𝑠) 𝑓 (𝑠,

𝑢
𝑚

(𝑠) , 𝑢


𝑚
(𝑠) , . . . , 𝑢

(𝑛−2)

𝑚
(𝑠) , (𝑇𝑢

𝑚
) (𝑠) , (𝑆𝑢

𝑚
) (𝑠)) d𝑠

− ∫

1

0

𝐺
2
(𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢



(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢)

⋅ (𝑠) , (𝑆𝑢) (𝑠)) d𝑠










≤ ∫

1

0

𝑠






𝑓 (𝑠, 𝑢

𝑚
(𝑠) , 𝑢


𝑚
(𝑠) ,

. . . , 𝑢
(𝑛−2)

𝑚
(𝑠) , (𝑇𝑢

𝑚
) (𝑠) , (𝑆𝑢

𝑚
) (𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠) ,

𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢) (𝑠) , (𝑆𝑢) (𝑠))






d𝑠.

(67)

By (66) and conditions (𝐻
1
) and (𝐻

2
), it is easy to get






𝑓 (𝑠, 𝑢

𝑚
(𝑠) , 𝑢


𝑚
(𝑠) , . . . , 𝑢

(𝑛−2)

𝑚
(𝑠) , (𝑇𝑢

𝑚
) (𝑠) , (𝑆𝑢

𝑚
)

⋅ (𝑠)) − 𝑓 (𝑠, 𝑢 (𝑠) , 𝑢


(𝑠) , . . . , 𝑢
(𝑛−2)

(𝑠) , (𝑇𝑢)

⋅ (𝑠) , (𝑆𝑢) (𝑠))






≤ 2𝑠(𝑏 (𝑠) +

𝑛−2

∑

𝑖=0

𝑎
𝑖
(𝑠)

⋅ 𝑔
𝑖
(

𝑠
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑟)(1 +

ℎ
𝑖
(𝑅)

𝑔
𝑖
(𝑅)

) + 𝑎
𝑛−1

(𝑠)

⋅ ℎ
𝑛−1

(𝑘
∗
𝑅) + 𝑎

𝑛
(𝑠) ℎ
𝑛
(ℎ
∗
𝑅)) .

(68)

From (67), by Lebesgue dominated convergence theorem,
combined with the equicontinuity of {𝐴𝑢

(𝑛−2)

𝑚
}
+∞

𝑚=1
and the

continuity of (𝐴𝑢)
(𝑛−2)

(𝑡), we have







(𝐴𝑢
𝑚
)
(𝑛−2)

(𝑡) − (𝐴𝑢)
(𝑛−2)

(𝑡)








→ 0,

as 𝑚 → ∞,

(69)

uniformly for 𝑡 ∈ 𝐽. Therefore,

lim
𝑚→∞








(𝐴𝑢
𝑚
)
(𝑛−2)

− (𝐴𝑢)
(𝑛−2)






𝑐

= lim
𝑚→∞

max
𝑡∈𝐽








(𝐴𝑢
𝑚
)
(𝑛−2)

(𝑡) − (𝐴𝑢)
(𝑛−2)

(𝑡)








= max
𝑡∈𝐽

lim
𝑚→∞








(𝐴𝑢
𝑚
)
(𝑛−2)

(𝑡) − (𝐴𝑢)
(𝑛−2)

(𝑡)








= 0.

(70)

Combining this with (23), we get




𝐴𝑢
𝑚

− 𝐴𝑢



𝑛−2

→ 0, as 𝑚 → ∞. (71)

Hence, 𝐴 : 𝑄
𝑅
\ 𝑄
𝑟

→ 𝑄 is continuous.
Let 𝐵 ⊂ 𝑄

𝑅
\ 𝑄
𝑟
be bounded, so 𝐴(𝐵) ⊂ 𝐶

𝑛−1
[𝐽, 𝑃
1
] ⊂

𝐶
𝑛−2

[𝐽, 𝐸] is bounded. It is easy to prove that (𝐴(𝐵))
(𝑛−1) is

bounded, so (𝐴(𝐵))
(𝑛−2) is equicontinuous. By Lemma 1,

𝛼
𝑛−2

(𝐴 (𝐵)) = max
𝑙=0,1,...,𝑛−2

{max
𝑡∈𝐽

{𝛼 ((𝐴 (𝐵))
(𝑙)

(𝑡))}} , (72)

where 𝛼((𝐴(𝐵))
(𝑙)
(𝑡)) = 𝛼({(𝐴𝑢)

(𝑙)
(𝑡) : 𝑢 ∈ 𝑆}) (𝑡 is fixed,

𝑙 = 0, 1, . . . , 𝑛 − 2). On account of Lemmas 14 and 3, it is easy
to see that

𝛼 ((𝐴 (𝐵)) (𝑡)) = 𝛼 (𝐷
0
(𝑡))

≤

𝑛−2

∑

𝑖=0

𝐿
𝑖
𝛼 (𝐵
(𝑖)

(𝐽)) + 𝐿
𝑛−1

𝑘
∗
𝛼 (𝐵 (𝐽))

+ 𝐿
𝑛
ℎ
∗
𝛼 (𝐵 (𝐽))

≤ (

𝑛−3

∑

𝑖=0

𝐿
𝑖
+ 𝐿
𝑛−1

𝑘
∗
+ 𝐿
𝑛
ℎ
∗
+ 2𝐿
𝑛−2

)𝛼
𝑛−2

(𝐵)

= 𝛾𝛼
𝑛−2

(𝐵) .

(73)

Similarly,

𝛼 ((𝐴 (𝐵))
(𝑙)

(𝑡)) ≤ 𝛾𝛼
𝑛−2

(𝐵) , (𝑙 = 1, 2, . . . , 𝑛 − 2) . (74)

Thus, we get 𝛼
𝑛−2

(𝐴(𝐵)) ≤ 𝛾𝛼
𝑛−2

(𝐵) by (72), (73), and (74).
Since 𝐴 is bounded and continuous and 0 ≤ 𝛾 < 1, the
conclusion holds.

Theorem 16. Suppose that the conditions (𝐻
1
), (𝐻
2
), (𝐻
3
),

(𝐻
4
), and (𝐻

5
) are satisfied. Then, SBVP (2) has at least two

solutions 𝑢
∗
and 𝑢

∗ in 𝐶
𝑛
[(0, 1), 𝐸] ∩ 𝐶

𝑛−2
[𝐽, 𝐸], satisfying

0 <




𝑢
∗




𝑛−2

< 𝑅
0
<





𝑢
∗


𝑛−2

. (75)

Proof. Suppose that the conditions (𝐻
1
), (𝐻
2
), and (𝐻

4
) are

satisfied. For a 𝑙 ∈ {0, 1, 2, . . . , 𝑛 − 2}, 0 < 𝛿 < 1/2, let 𝑀 >

(𝑛−1−𝑙)!/𝛿
𝑛−1−𝑙

(1−(1−𝛿)
𝑛−1−𝑙

)(1−2𝛿).There is a 0 < 𝛽 < 𝑅
0
,

such that

𝜑 (𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡) , . . . , 𝑢
(𝑛−2)

(𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡)))

≥ 𝑀𝜑 (𝑢
(𝑙)

(𝑡)) ,

𝑡 ∈ [𝛿, 1 − 𝛿] , 𝑢
(𝑖)

∈ 𝑃
1
\ {𝜃} , (𝑖 = 0, 1, . . . , 𝑛 − 2) , ‖𝑢‖

𝑛−2
≤ 𝛽.

(76)

Now, for any 0 < 𝑟
1
< 𝛽, we show that

𝐴𝑢≰
1
𝑢, 𝑢 ∈ 𝑄, ‖𝑢‖

𝑛−2
= 𝑟
1
, (77)

in which ≤
1
is partial ordering defined by 𝑄. In fact, suppose

that there is a 𝑢
1
∈ 𝑄, ‖𝑢

1
‖
𝑛−2

= 𝑟
1
, such that 𝐴𝑢

1
≤
1
𝑢
1
.Then,

for 𝑙 ∈ {0, 1, 2, . . . , 𝑛 − 2}, 𝑡 ∈ [𝛿, 1 − 𝛿], we have

𝑢
(𝑙)

1
(𝑡) ≥ (𝐴𝑢

1
)
(𝑙)

(𝑡) = ∫

1

0

𝐺
𝑛−𝑙

(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢
1
(𝑠) , 𝑢


1
(𝑠) , . . . , 𝑢

(𝑛−2)

1
(𝑠) , (𝑇𝑢

1
)

⋅ (𝑠) , (𝑆𝑢
1
) (𝑠)) d𝑠 ≥

𝛿
𝑛−1−𝑙

(1 − (1 − 𝛿)
𝑛−1−𝑙

)

(𝑛 − 1 − 𝑙)!

⋅ ∫

1−𝛿

𝛿

𝑓 (𝑠, 𝑢
1
(𝑠) , 𝑢


1
(𝑠) , . . . , 𝑢

(𝑛−2)

1
(𝑠) , (𝑇𝑢

1
)

⋅ (𝑠) , (𝑆𝑢
1
) (𝑠)) d𝑠.

(78)
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By (76) and (78), one can see that

𝜑 (𝑢
(𝑙)

1
(𝑡)) ≥ 𝜑[

𝛿
𝑛−1−𝑙

(1 − (1 − 𝛿)
𝑛−1−𝑙

)

(𝑛 − 1 − 𝑙)!

∫

1−𝛿

𝛿

𝑓 (𝑠,

𝑢
1
(𝑠) , 𝑢


1
(𝑠) , . . . , 𝑢

(𝑛−2)

1
(𝑠) , (𝑇𝑢

1
) (𝑠) , (𝑆𝑢

1
) (𝑠)) d𝑠]

=

𝛿
𝑛−1−𝑙

(1 − (1 − 𝛿)
𝑛−1−𝑙

)

(𝑛 − 1 − 𝑙)!

∫

1−𝛿

𝛿

𝜑 [𝑓 (𝑠, 𝑢
1
(𝑠) ,

𝑢


1
(𝑠) , . . . , 𝑢

(𝑛−2)

1
(𝑠) , (𝑇𝑢

1
) (𝑠) , (𝑆𝑢

1
) (𝑠))] d𝑠

≥

𝛿
𝑛−1−𝑙

(1 − (1 − 𝛿)
𝑛−1−𝑙

)

(𝑛 − 1 − 𝑙)!

∫

1−𝛿

𝛿

𝑀𝜑(𝑢
(𝑙)

1
(𝑠)) d𝑠.

(79)

Hence,

∫

1−𝛿

𝛿

𝜑 (𝑢
(𝑙)

1
(𝑡)) d𝑡

≥

𝛿
𝑛−1−𝑙

(1 − (1 − 𝛿)
𝑛−1−𝑙

) (1 − 2𝛿)

(𝑛 − 1 − 𝑙)!

⋅ 𝑀∫

1−𝛿

𝛿

𝜑 (𝑢
(𝑙)

1
(𝑠)) d𝑠.

(80)

Then, it follows from 𝑀(𝛿
𝑛−1−𝑙

(1 − (1 − 𝛿)
𝑛−1−𝑙

)(1 − 2𝛿)/(𝑛 −

1 − 𝑙)!) > 1, 𝜑(𝑢
(𝑙)

1
(𝑡)) ≥ 0 and (80) that

𝜑 (𝑢
(𝑙)

1
(𝑡)) = 0, ∀𝑡 ∈ [𝛿, 1 − 𝛿] . (81)

Since 𝑢
1
∈ 𝑄, by (24), we get






𝑢
(𝑙)

1
(𝑡)






≥

𝑡
𝑛−1−𝑙

(𝑛 − 1 − 𝑙)!






𝑢
(𝑛−2)

1





𝑐

≥

𝛿
𝑛−1−𝑙

(𝑛 − 1 − 𝑙)!






𝑢
(𝑛−2)

1





𝑐

, (∀𝑡 ∈ [𝛿, 1 − 𝛿]) ,

(82)

which implies






𝑢
(𝑛−2)

1





𝑐

= 0. (83)

It contradicts ‖𝑢
1
‖
𝑛−2

= 𝑟
1
> 0. Thus, (77) holds.

On the other hand, by conditions (𝐻
1
), (𝐻
2
), and (𝐻

5
),

for 𝑙 ∈ {0, 1, 2, . . . , 𝑛 − 2}, 0 < 𝛿 < 1/2, let

𝑀 >

(𝑛 − 1 − 𝑙)!

𝛿
𝑛−1−𝑙

(1 − (1 − 𝛿)
𝑛−1−𝑙

) (1 − 2𝛿)

. (84)

There exists 𝜏 > 0 such that

𝜑 (𝑓 (𝑡, 𝑢 (𝑡) , 𝑢


(𝑡) , . . . , 𝑢
(𝑛−2)

(𝑡) , (𝑇𝑢) (𝑡) , (𝑆𝑢) (𝑡)))

≥ 𝑀𝜑 (𝑢
(𝑛−2)

(𝑡)) ,

𝑡 ∈ [𝛿, 1 − 𝛿] , 𝑢
(𝑖)

∈ 𝑃
1
\ {𝜃} , (𝑖 = 0, 1, . . . , 𝑛 − 2) ,






𝑢
(𝑙)



≥ 𝜏.

(85)

Set

𝑅
1
> max{

(𝑛 − 1 − 𝑙)!𝜏

𝛿
𝑛−1−𝑙

, 𝑅
0
} . (86)

We show that

𝐴𝑢≰
1
𝑢, 𝑢 ∈ 𝑄, ‖𝑢‖

𝑛−2
= 𝑅
1
. (87)

In fact, by (24), if there is 𝑢
1

∈ 𝑄, ‖𝑢
1
‖
𝑛−2

= 𝑅
1
such that

𝐴𝑢
1
≤
1
𝑢
1
, then






𝑢
(𝑙)

1
(𝑡)






≥

𝑡
𝑛−1−𝑙

(𝑛 − 1 − 𝑙)!






𝑢
(𝑛−2)

1





𝑐

, ∀𝑡 ∈ [𝛿, 1 − 𝛿] . (88)

It is easy to see by (86) and (88) that

min
𝑡∈[𝛿,1−𝛿]






𝑢
(𝑙)

1
(𝑡)






≥

𝑡
𝑛−1−𝑙

(𝑛 − 1 − 𝑙)!





𝑢
1




𝑛−2

= 𝛿𝑅
1
> 𝜏. (89)

In the same way, similar to the proof of (77), (87) holds.
Finally, by condition (𝐻

2
), one can see

𝐴𝑢 ̸≥
1
𝑢, 𝑢 ∈ 𝑄, ‖ 𝑢‖

𝑛−2
= 𝑅
0
. (90)

In fact, if there is 𝑢
1

∈ 𝑄, ‖𝑢
1
‖
𝑛−2

= 𝑅
0
such that 𝐴𝑢

1
≥
1
𝑢
1
,

then

𝜃 ≤ 𝑢
(𝑛−2)

1
(𝑡) ≤ (𝐴𝑢

1
)
(𝑛−2)

(𝑡) = ∫

1

0

𝐺
2
(𝑡, 𝑠)

⋅ 𝑓 (𝑠, 𝑢
1
(𝑠) , 𝑢


1
(𝑠) , . . . , 𝑢

(𝑛−2)

1
(𝑠) , (𝑇𝑢

1
)

⋅ (𝑠) , (𝑆𝑢
1
) (𝑠)) d𝑠, ∀𝑡 ∈ 𝐽.

(91)

Hence,

𝑅
0
=





𝑢
1




𝑛−2

≤ ∫

1

0

𝑠 (𝑏 (𝑠)

+

𝑛−2

∑

𝑖=0

𝑎
𝑖
(𝑠) 𝑔
𝑖
(

𝑠
𝑛−1−𝑖

(𝑛 − 1 − 𝑖)!

𝑅
0
)(1 +

ℎ
𝑖
(𝑅
0
)

𝑔
𝑖
(𝑅
0
)

)

+ 𝑎
𝑛−1

(𝑠) ℎ
𝑛−1

(𝑘
∗
𝑅
0
) + 𝑎
𝑛
(𝑠) ℎ
𝑛
(ℎ
∗
𝑅
0
)) d𝑠

< 𝑅
0
.

(92)

This is a contradiction. Therefore, (90) is true.
Above all, we set 𝑅 = 𝑅

1
, 𝑟 = 𝑟

1
. By (𝐻

1
), (𝐻
2
), (𝐻
3
),

and Lemma 15, we know that 𝐴 : 𝑄
𝑅1

\ 𝑄
𝑟1

→ 𝑄 is a strict
set contraction. By virtue of (77), (87), and (90), applying
Lemma 4 twice, we obtain that operator 𝐴 has at least one
fixed point in 𝑄

𝑅1
\ 𝑄
𝑅0

and 𝑄
𝑅0

\ 𝑄
𝑟1
, respectively. By

Lemma 13, SBVP (2) has at least two solutions 𝑢
∗

∈ 𝑄
𝑅1

\𝑄
𝑅0

and𝑢
∗

∈ 𝑄
𝑅0

\𝑄
𝑟1
satisfying 0 < ‖𝑢

∗
‖
𝑛−2

< 𝑅
0
< ‖𝑢
∗
‖
𝑛−2

.

An application of Theorem 16 is as follows.
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Example 17. Consider SBVP of infinite system for scalar
nonlinear third-order singular integrodifferential equations:

−𝑢


𝑛
(𝑡) =

1

4𝑛√𝑡 (1 − 𝑡)

+

𝑡
4

6𝑛
3/2

(𝑢
2𝑛

(𝑡))
1/2

+

𝑡
4
√𝑢
𝑛
(𝑡)

4 (𝑛 + 2)

+

1 − 𝑡
1/2

5𝑛 (𝑢


(𝑛+1)
(𝑡))

1/3

+

1 − 𝑡
1/2

3 (𝑛 + 1)
2

sup
𝑛∈{1,2,...}

(𝑢


𝑛
(𝑡))

2

+

𝑡
2

4

∫

𝑡

0

1

1 + (𝑡 − 𝑠)

𝑢
𝑛
(𝑠) d𝑠

+

𝑡
5

6

∫

1

0

(𝑡 + 𝑠) 𝑢
𝑛
(𝑠) d𝑠, 0 < 𝑡 < 1;

𝑢
𝑛
(0) = 𝑢



𝑛
(0) = 𝑢



𝑛
(1) = 0, (𝑛 = 1, 2, . . .) .

(93)

Conclusion 18. Infinite system (93) has at least two solutions:

{𝑢
𝑛
(𝑡)} , (𝑛 = 1, 2, 3, . . .) ,

{V
𝑛
(𝑡)} , (𝑛 = 1, 2, 3, . . .)

(94)

such that

𝑢
𝑛
(𝑡) → 0,

V
𝑛
(𝑡) → 0,

as 𝑛 → ∞,

0 < sup
𝑛

max
𝑡∈[0,1]

{𝑢


𝑛
(𝑡)} < 1 < sup

𝑛

max
𝑡∈[0,1]

{V
𝑛
(𝑡)} .

(95)

Proof. Let 𝐽 = [0, 1], 𝐸 =: 𝐶
0

= {𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
, . . .) :

𝑢
𝑛

→ 0} with norm ‖𝑢‖ = sup
𝑛
|𝑢
𝑛
|, and 𝑃 = {𝑢 =

(𝑢
1
, . . . , 𝑢

𝑛
, . . .) ∈ 𝐶

0
: 𝑢
𝑛

≥ 0, 𝑛 = 1, 2, . . .}. Obviously
𝑃 is a normal cone in 𝐸 and the normal constant 𝑁 = 1.
Let 𝑢
0

= (1/4, 1/9, . . . , 1/(𝑛 + 1)
2
, . . .). Then, it is easy to see

𝑢
0

∈ 𝑃, 0 < ‖𝑢
0
‖ = 1/4 < 1, and 𝑃

1
= {𝑢 ∈ 𝑃 : 𝑢

𝑛
≥

𝑢
0𝑛
‖𝑢‖, 𝑛 = 1, 2, . . . .}. Infinite system (93) can be regarded as

SBVP of the form (2) in 𝐸. In this situation,

𝑘 (𝑡, 𝑠) =

1

1 + (𝑡 − 𝑠)

∈ 𝐶 [𝐷, 𝑅
+
] ,

(𝐷 = {(𝑡, 𝑠) ∈ 𝐽 × 𝐽 : 𝑠 ≤ 𝑡}) ,

ℎ (𝑡, 𝑠) = 𝑡 + 𝑠 ∈ 𝐶 [𝐽 × 𝐽, 𝑅
+
] ,

𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑛
, . . .) ,

V = (V
1
, V
2
, . . . , V

𝑛
, . . .) ,

𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑛
, . . .) ,

𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, . . .) ,

(96)

𝑓 = (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
, . . .), with

𝑓
𝑛
(𝑡, 𝑢, V, 𝑤, 𝑥) =

1

4𝑛√𝑡 (1 − 𝑡)

+

𝑡
4

6𝑛
3/2

(𝑢
2𝑛
)
1/2

+

𝑡
4

√𝑢
𝑛

4 (𝑛 + 2)

+

1 − 𝑡
1/2

5𝑛 (V
(𝑛+1)

)
1/3

+

1 − 𝑡
1/2

3 (𝑛 + 1)
2
‖V‖2 +

𝑡
2

4

𝑤
𝑛
+

𝑡
5

6

𝑥
𝑛
.

(97)

Obviously, for (𝑡, 𝑢, V, 𝑤, 𝑥) ∈ (0, 1)×𝑃
1
\{𝜃}×𝑃

1
\{𝜃}×𝑃

1
×𝑃
1
,

it is easy to see that

6𝑛
3/2

(𝑢
2𝑛
)
1/2

≥

6𝑛
3/2

2𝑛 + 1

‖𝑢‖
1/2

> 0,

‖𝑢‖
1/2

4 (𝑛 + 2)

≥

(𝑢
𝑛
)
1/2

4 (𝑛 + 2)

≥

1

4 (𝑛 + 2) (𝑛 + 1)

‖𝑢‖
1/2

,

5𝑛 (V
(𝑛+1)

)
1/3

≥ 5𝑛 (

1

𝑛 + 2

)

2/3

‖V‖1/3 > 0,

1

12

‖V‖2 ≥
1

3 (𝑛 + 1)
2
‖V‖2 ,

𝑤
𝑛
≥ (

1

𝑛 + 1

)

2

‖𝑤‖ ,

𝑥
𝑛
≥ (

1

𝑛 + 1

)

2

‖𝑥‖ ,

𝑛 = 1, 2, . . . ,

(98)

which implies that





𝑓
𝑛





≤

1

4𝑛√𝑡 (1 − 𝑡)

+

(2𝑛 + 1) 𝑡
4

6𝑛
3/2

‖𝑢‖
1/2

+

‖𝑢‖
1/2

𝑡
4

4 (𝑛 + 2)

+

1 − 𝑡
1/2

5𝑛 (1/ (𝑛 + 2))
2/3

‖V‖1/3
+

1 − 𝑡
1/2

3 (𝑛 + 1)
2
‖V‖2

+

𝑡
2

4

𝑤
𝑛
+

𝑡
5

6

𝑥
𝑛
, 𝑛 = 1, 2, . . . .

(99)

Since 𝑢
𝑛

→ 0, V
𝑛

→ 0, 𝑤
𝑛

→ 0, 𝑥
𝑛

→ 0, as 𝑛 → +∞,
one can see that |𝑓

𝑛
| → 0, as 𝑛 → +∞. That is, 𝑓 ∈ 𝐸.

Obviously, 𝑓 ∈ 𝑃. By (99), we can see





𝑓




≤

1

4√𝑡 (1 − 𝑡)

+

𝑡
4

2 ‖𝑢‖
1/2

+

‖𝑢‖
1/2

𝑡
4

12

+

3
2/3

(1 − 𝑡
1/2

)

5 ‖V‖1/3
+

1 − 𝑡
1/2

12

‖V‖2 +
𝑡
2

4

‖𝑤‖

+

𝑡
5

6

‖𝑥‖ .

(100)
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On the other hand, it follows from (97) and (98) that

𝑓
𝑛
(𝑡, 𝑢, V, 𝑤, 𝑥) ≥

1

4𝑛√𝑡 (1 − 𝑡)

+

𝑡
4

6𝑛
3/2

‖𝑢‖
1/2

+

𝑡
4

4 (𝑛 + 2) (𝑛 + 1)

‖𝑢‖
1/2

+

1 − 𝑡
1/2

5𝑛 (1/ (𝑛 + 2))
2/3

‖V‖1/3
+

1 − 𝑡
1/2

3 (𝑛 + 1)
2
‖V‖2 +

𝑡
2

4

⋅ 𝑤
𝑛
+

𝑡
5

6

𝑥
𝑛
≥

1

(𝑛 + 1)
2
(

(𝑛 + 1)
2

4𝑛√𝑡 (1 − 𝑡)

+

(𝑛 + 1)
2
𝑡
4

6𝑛
3/2

‖𝑢‖
1/2

+

(𝑛 + 1) 𝑡
4

4 (𝑛 + 2)

‖𝑢‖
1/2

+

(𝑛 + 2)
2/3

(𝑛 + 1)
2
(1 − 𝑡

1/2
)

5𝑛 ‖V‖1/3
+

1 − 𝑡
1/2

3

‖V‖2

+

𝑡
2

4

‖𝑤‖ +

𝑡
5

6

‖𝑥‖) , 𝑛 = 1, 2, . . . .

(101)

It is easy to get

(𝑛 + 1)
2

𝑛

≥ 4,

(𝑛 + 1)
2

𝑛
3/2

≥ 3,

𝑛 + 1

4 (𝑛 + 2)

≥

1

6

,

(𝑛 + 2)
2/3

(𝑛 + 1)
2

5𝑛

≥ 4

3
2/3

5

,

𝑛 = 1, 2, . . . .

(102)

It follows from (100), (101), and (102) that

𝑓
𝑛
(𝑡, 𝑢, V, 𝑤, 𝑥) ≥

1

(𝑛 + 1)
2
(

1

4√𝑡 (1 − 𝑡)

+

𝑡
4

2 ‖𝑢‖
1/2

+

‖𝑢‖
1/2

𝑡
4

6

+ 4

3
2/3

(1 − 𝑡
1/2

)

5 ‖V‖1/3
+

1 − 𝑡
1/2

3

‖V‖2

+

𝑡
2

4

‖𝑤‖ +

𝑡
5

6

‖𝑥‖) ≥

1

(𝑛 + 1)
2





𝑓




= 𝑢
0𝑛





𝑓




,

𝑛 = 1, 2, . . . .

(103)

So, 𝑓 ∈ 𝐶[(0, 1) × 𝑃
1

\ {𝜃} × 𝑃
1

\ {𝜃} × 𝑃
1

× 𝑃
1
, 𝑃
1
] and

𝑓(𝑡, V
0
, V
1
, V
2
, V
3
) is singular at V

𝑖
= 𝜃(𝑖 = 0, 1), 𝑡 = 0, and/or

𝑡 = 1. Thus, by (100), condition (𝐻
1
) holds for

𝑏 (𝑡) =

1

4√𝑡 (1 − 𝑡)

,

𝑎
0
(𝑡) =

1

2

𝑡
4
,

𝑎
1
(𝑡) =

1

2

(1 − 𝑡
1/2

) ,

𝑎
2
(𝑡) =

𝑡
2

4

,

𝑎
3
(𝑡) =

𝑡
5

6

,

𝑔
0
(𝑦) =

1

𝑦
1/2

,

𝑔
1
(𝑦) =

1

𝑦
1/3

,

ℎ
2
(𝑦) = ℎ

3
(𝑦) = 𝑦,

ℎ
0
(𝑦) = 𝑦

1/2
,

ℎ
1
(𝑦) = 𝑦

2
.

(104)

For any 𝑅 > 𝑟 > 0, by (100), we have, with 𝑘
∗

= 1 and
ℎ
∗

= 2,

∫

1

0

(

𝑠

4√𝑠 (1 − 𝑠)

+

√2𝑠
4

2√𝑟

(1 + 𝑅)

+

𝑠 (1 − 𝑠
1/2

)

2
3
√𝑠𝑟

(1 + 𝑅
4/3

) +

𝑠
3

4

𝑅 +

𝑠
6

6

2𝑅) d𝑠

< +∞.

(105)

On the other hand, taking 𝑅
0
= 1, by (105), we have

∫

1

0

(

𝑠

4√𝑠 (1 − 𝑠)

+ √2𝑠
4
+

𝑠 (1 − 𝑠
1/2

)

2
3
√𝑠

(1 + 1) +

𝑠
3

4

+

𝑠
6

6

2) d𝑠 =

𝜋

8

+

√2

5

+

9

65

+

1

16

+

1

21

< 1.

(106)

By (105) and (106), condition (𝐻
2
) is satisfied.

For any 𝑅 > 𝑟 > 0, [𝑎, 𝑏] ⊂ (0, 1), it is clear that 𝑓 is
uniformly continuous on

[𝑎, 𝑏]

× 𝑃
1𝑅

\ 𝑃
1𝑟

× 𝑃
1𝑅

\ 𝑃
1𝑟

× ⋅ ⋅ ⋅ × 𝑃
1𝑅

\ 𝑃
1𝑟

× 𝑃
1𝑅

× 𝑃
1𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑛+1

.
(107)
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Let 𝑓 = 𝑓
1
+ 𝑓
2
+ 𝑓
3, with

𝑓
1
= (𝑓
1

1
, 𝑓
1

2
, . . . , 𝑓

1

𝑛
, . . .) ,

𝑓
2
= (𝑓
2

1
, 𝑓
2

2
, . . . , 𝑓

2

𝑛
, . . .) ,

𝑓
3
= (𝑓
3

1
, 𝑓
3

2
, . . . , 𝑓

3

𝑛
, . . .) ,

(108)

where

𝑓
1

𝑛
(𝑡, 𝑢, V, 𝑤, 𝑥) =

1

4𝑛√𝑡 (1 − 𝑡)

+

𝑡
4

6𝑛
3/2

(𝑢
2𝑛
)
1/2

+

𝑡
4

√𝑢
𝑛

4 (𝑛 + 2)

+

1 − 𝑡
1/2

5𝑛 (V
(𝑛+1)

)
1/3

+

1 − 𝑡
1/2

3 (𝑛 + 1)
2
‖V‖2 ,

𝑓
2

𝑛
(𝑡, 𝑢, V, 𝑤, 𝑥) =

𝑡
4

4

𝑤
𝑛
,

𝑓
3

𝑛
(𝑡, 𝑢, V, 𝑤, 𝑥) =

𝑡
5

6

𝑥
𝑛
,

𝑛 = 1, 2, . . . .

(109)

For any

𝑧 = (𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
, . . .) ∈ 𝑓

1
(𝑡, 𝐵
0
, 𝐵
1
, 𝐵
2
, 𝐵
3
)

(∀𝑡 ∈ [𝑎, 𝑏] , 𝐵
0
, 𝐵
1
⊂ 𝑃
1𝑅

\ 𝑃
1𝑟
, 𝐵
2
, 𝐵
3
⊂ 𝑃
1𝑅

) ,

(110)

by (99) and (109), we get





𝑧
𝑛





≤

1

4𝑛√𝑎 (1 − 𝑏)

+

(2𝑛 + 1) 𝑏
4

6𝑛
3/2

𝑟
1/2

+

𝑅
1/2

𝑏
4

4 (𝑛 + 2)

+

1 − 𝑎
1/2

5𝑛 (1/ (𝑛 + 2))
2/3

𝑟
1/3

+

1 − 𝑎
1/2

3 (𝑛 + 1)
2
𝑅
2
,

𝑛 = 1, 2, . . . .

(111)

So, the relative compactness of 𝑓
1
(𝑡, 𝐵
0
, 𝐵
1
, 𝐵
2
, 𝐵
3
) in 𝐶

0

follows directly from a known result (see [21]): a bounded set
𝑋 of 𝐶

0
is relatively compact if and only if

lim
𝑛→∞

{sup
𝑧∈𝑋

[max {




𝑍
𝑘





: 𝑘 ≥ 𝑛}]} = 0. (112)

Hence,

𝛼 (𝑓
1
(𝑡, 𝐵
0
, 𝐵
1
, 𝐵
2
, 𝐵
3
)) = 0,

∀𝑡 ∈ [𝑎, 𝑏] , 𝐵
0
, 𝐵
1
⊂ 𝑃
1𝑅

\ 𝑃
1𝑟
, 𝐵
2
, 𝐵
3
⊂ 𝑃
1𝑅

.

(113)

By (109), it is easy to get

𝛼 (𝑓
2
(𝑡, 𝐵
0
, 𝐵
1
, 𝐵
2
, 𝐵
3
)) ≤

1

4

𝛼 (𝐵
2
) ,

∀𝑡 ∈ (0, 1) , 𝐵
0
, 𝐵
1
⊂ 𝑃
1𝑅

\ 𝑃
1𝑟
, 𝐵
2
, 𝐵
3
⊂ 𝑃
1𝑅

,

(114)

𝛼 (𝑓
3
(𝑡, 𝐵
0
, 𝐵
1
, 𝐵
2
, 𝐵
3
)) ≤

1

6

𝛼 (𝐵
3
) ,

∀𝑡 ∈ (0, 1) , 𝐵
0
, 𝐵
1
⊂ 𝑃
1𝑅

\ 𝑃
1𝑟
, 𝐵
2
, 𝐵
3
⊂ 𝑃
1𝑅

.

(115)

Combining this with (109), (113), and (114), one can see
𝛼 (𝑓 (𝑡, 𝐵

0
, 𝐵
1
, 𝐵
2
, 𝐵
3
))

≤ 𝛼 (𝑓
1
(𝑡, 𝐵
0
, 𝐵
1
, 𝐵
2
, 𝐵
3
))

+ 𝛼 (𝑓
2
(𝑡, 𝐵
0
, 𝐵
1
, 𝐵
2
, 𝐵
3
))

+ 𝛼 (𝑓
3
(𝑡, 𝐵
0
, 𝐵
1
, 𝐵
2
, 𝐵
3
))

≤

1

4

𝛼 (𝐵
2
) +

1

6

𝛼 (𝐵
3
) ,

∀𝑡 ∈ [𝑎, 𝑏] , 𝐵
0
, 𝐵
1
⊂ 𝑃
1𝑅

\ 𝑃
1𝑟
, 𝐵
2
, 𝐵
3
⊂ 𝑃
1𝑅

.

(116)

Therefore, condition (𝐻
3
) holds.

For any 𝑢 ∈ 𝑃
1
, define 𝜑 by 𝜑(𝑢) = 𝑢

1
. It is easy to see

𝜑 ∈ 𝑃
∗

1
, ‖𝜑‖ = 1. Let [𝑎, 𝑏] = [1/4, 3/4], for

(𝑡, 𝑢, V, 𝑤, 𝑥) ∈ [

1

4

,

3

4

] × 𝑃
1
\ {𝜃} × 𝑃

1
\ {𝜃} × 𝑃

1

× 𝑃
1
,

(117)

and it is easy to see 0 < (1/4)‖𝑢‖ ≤ 𝑢
1
≤ ‖𝑢‖, 0 < (1/4)‖V‖ ≤

V
1
≤ ‖V‖. Thus, (97), (101), and (102) imply that

lim
‖𝑢‖→0

𝜑 (𝑓 (𝑡, 𝑢, V, 𝑤, 𝑥))

𝜑 (𝑢)

= lim
‖𝑢‖→0

𝑓
1
(𝑡, 𝑢, V, 𝑤, 𝑥)

𝑢
1

≥ lim
‖𝑢‖→0

1/2
11

‖𝑢‖
1/2

𝑢
1

≥ lim
‖𝑢‖→0

1

2
11

‖𝑢‖
3/2

= +∞,

(118)

lim
‖V‖→+∞

𝜑 (𝑓 (𝑡, 𝑢, V, 𝑤, 𝑥))

𝜑 (V)
= lim
‖V‖→+∞

𝑓
1
(𝑡, 𝑢, V, 𝑤, 𝑥)

V
1

≥ lim
‖V‖→+∞

‖V‖2

24V
1

≥ lim
‖V‖→+∞

‖V‖
24

= +∞.

(119)

The conditions (𝐻
4
) and (𝐻

5
) follow from (118) and (119). It

is easy to see that

𝛾 =

1

4

+

1

3

=

7

12

< 1 (120)

for
𝐿
0
= 0,

𝐿
1
= 0,

𝐿
2
=

1

4

,

𝐿
3
=

1

6

.

(121)

Therefore, by Theorem 16, our conclusion holds.
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