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For two complex Banach spaces 𝑋 and 𝑌, in this paper, we study the generalized spectrum M𝑏(𝑋, 𝑌) of all nonzero algebra
homomorphisms from H𝑏(𝑋), the algebra of all bounded type entire functions on 𝑋, into H𝑏(𝑌). We endow M𝑏(𝑋, 𝑌) with a
structure of Riemann domain overL(𝑋

∗
, 𝑌

∗
)whenever𝑋 is symmetrically regular.The size of the fibers is also studied. Following

the philosophy of (Aron et al., 1991), this is a step to study the set M𝑏,∞(𝑋, 𝐵𝑌) of all nonzero algebra homomorphisms from
H

𝑏
(𝑋) into H

∞
(𝐵

𝑌
) of bounded holomorphic functions on the open unit ball of 𝑌 and M

∞
(𝐵

𝑋
, 𝐵

𝑌
) of all nonzero algebra

homomorphisms fromH∞(𝐵𝑋) intoH∞(𝐵𝑌).

1. Introduction

The study of homomorphisms between topological algebras
is one of the basic issues in this theory. Two are the main
topological algebras that we come across when we deal with
holomorphic functions on infinite dimensional spaces (see
Section 2 for precise definitions): H𝑏(𝑋), the holomorphic
functions of bounded type (which is a Fréchet algebra), and
H∞(𝐵𝑋), the bounded holomorphic functions on the open
unit ball (which is a Banach algebra). Here, as a first step in
the study of the set of homomorphisms between H∞(𝐵𝑋)

spaces, wemainly focus on algebras of holomorphic functions
of bounded type and homomorphisms between them; 𝐿 :

H𝑏(𝑋) → H𝑏(𝑌) (i.e., continuous, linear, andmultiplicative
mappings). These were already considered in [1]. There the
focus was to study the homomorphisms as “individuals,”
seeking properties of single ones. We have here a different
interest: we treat them as a whole, considering the set

M𝑏 (𝑋, 𝑌) = M (H𝑏 (𝑋) ,H𝑏 (𝑌))

= {Φ : H𝑏 (𝑋) 󳨀→ H𝑏 (𝑌)

algebra homomorphisms} \ {0} .

(1)

We will call this set the generalized spectrum or simply the
spectrum. Our main aim is to study M𝑏(𝑋, 𝑌) and to define
on it a topological and a differential structure.

This problem has the same flavor as consideringM𝑏(𝑋),
the spectrum of the algebra H𝑏(𝑋) (i.e., the set of nonzero
continuous, linear, and multiplicative Φ : H𝑏(𝑋) → C).
This was studied in [2, 3], where a structure of Riemannian
manifold over the bidual 𝑋∗∗ was defined on it (see also [4,
Section 3.6] for a very neat and nice presentation and [5–7]
for similar results). Our approach is very much indebted to
that in [2] and we get up to some point analogous results,
defining on M𝑏(𝑋, 𝑌) a Riemann structure over L(𝑋

∗
, 𝑌

∗
)

(note that𝑋∗∗
= L(𝑋

∗
,C)). We will also be interested in the

fibers of elements ofL(𝑋
∗
, 𝑌

∗
).

The outline of the paper is the following. In Section 3,
for two complex Banach spaces 𝑋 and 𝑌, we study the
generalized spectrumM𝑏(𝑋, 𝑌) of all nonzero algebra homo-
morphisms from H𝑏(𝑋) to H𝑏(𝑌). We endow it with a
structure of Riemann domain over L(𝑋

∗
, 𝑌

∗
) whenever 𝑋

is symmetrically regular. In Section 4, we focus on the sets
(fibers) of elements in M𝑏(𝑋, 𝑌) that are projected on the
same element 𝑢 of L(𝑋

∗
, 𝑌

∗
). The size of these fibers is

studied and we prove that they are big by showing that
they contain big sets. Following the philosophy of [2], all
about M𝑏(𝑋, 𝑌) is a step to study in Section 5 the spectrum
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M𝑏,∞(𝑋, 𝐵𝑌) of all nonzero algebra homomorphisms from
H𝑏(𝑋) to H∞(𝐵𝑌) of bounded holomorphic functions on
the open unit ball of 𝑌. Finally, in Section 6, we deal with
the generalized spectrumM∞(𝐵𝑋, 𝐵𝑌) of all nonzero algebra
homomorphisms fromH∞(𝐵𝑋) toH∞(𝐵𝑌).

2. Definitions and Preliminaries

Unless otherwise stated capital letters such as 𝑋,𝑌, . . . will
denote complex Banach spaces. The dual will be denoted
by 𝑋

∗ and the open ball of center 𝑥0 and radius 𝑟 > 0

by 𝐵𝑋(𝑥0, 𝑟). If 𝑥0 = 0 and 𝑟 = 1 we just write 𝐵𝑋. The
space of continuous, linear operators from 𝑋 to 𝑌 will be
denoted by L(𝑋, 𝑌); this is a Banach space with the norm
‖𝑢‖ = sup

𝑥∈𝐵𝑋
‖𝑢(𝑥)‖. The adjoint operator of 𝑢 ∈ L(𝑋, 𝑌)

will be denoted by 𝑢∗ ∈ L(𝑌
∗
, 𝑋

∗
).

We will denote the canonical inclusion of a space into its
bidual by 𝐽𝑋 : 𝑋 󳨅→ 𝑋

∗∗.
Given two complex locally convex spaces 𝐸 and 𝐹, a

mapping 𝑃 : 𝐸 → 𝐹 is a continuous 𝑚-homogeneous
polynomial if there is a continuous 𝑚-linear mapping 𝐿 :

𝐸 × ⋅ ⋅ ⋅ × 𝐸 → 𝐹 such that

𝑃 (𝑥) = 𝐿 (𝑥, . . . , 𝑥) for every 𝑥. (2)

Throughout the paper every polynomial and multilinear
mapping will be assumed to be continuous.

An 𝑚-linear mapping 𝐿 is called symmetric if
𝐿(𝑥𝜎1, . . . , 𝑥𝜎𝑚) = 𝐿(𝑥1, . . . , 𝑥𝑚) for every permutation 𝜎 of
{1, . . . , 𝑚}. Each 𝑚-homogeneous polynomial has a unique
symmetric mapping (which we denote by

∨

𝑃) satisfying (2).
If 𝑃 : 𝑋 → 𝑌 is a continuous 𝑚-homogeneous polynomial
between Banach spaces, the following expressions define
norms for 𝑚-linear mappings and for 𝑚-homogeneous
polynomials, respectively:

‖𝐿‖ = sup {󵄩󵄩󵄩󵄩𝐿 (𝑥1, . . . , 𝑥𝑚)
󵄩󵄩󵄩󵄩 :

󵄩󵄩󵄩󵄩󵄩
𝑥𝑗

󵄩󵄩󵄩󵄩󵄩
≤ 1, 𝑗 = 1, . . . , 𝑚} ,

‖𝑃‖ = sup {‖𝑃 (𝑥)‖ : ‖𝑥‖ ≤ 1} .

(3)

The polarization formula gives [4, Corollary 1.8]

‖𝑃‖ ≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∨

𝑃

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤
𝑚
𝑚

𝑚!
‖𝑃‖ . (4)

Given an𝑚-linearmapping𝐿, the notation𝐿(𝑥(𝑘), 𝑦(𝑚−𝑘))will
mean that 𝑥 is repeated 𝑘 times and 𝑦 is repeated𝑚−𝑘 times.

A mapping 𝑓 : 𝑈 ⊆ 𝐸 → 𝐹 is holomorphic on the open
set𝑈 if for every 𝑥0 in𝑈, there exist (𝑃𝑚𝑓(𝑥0))𝑚, each one of
them an𝑚-homogeneous polynomial, such that the series

𝑓 (𝑥) =

∞

∑

𝑚=0

𝑃𝑚𝑓 (𝑥0) (𝑥 − 𝑥0) (5)

converges uniformly in some neighborhood of 𝑥0 contained
in 𝑈. This is called the “Taylor series expansion” of 𝑓 at 𝑥0.

If 𝐸 and 𝐹 are Fréchet spaces, then 𝑓 : 𝐸 → 𝐹 is Gâteaux
holomorphic if for every 𝑥, 𝑦 ∈ 𝐸 the function C → 𝐹, 𝑡 󳨃→
𝑓(𝑥 + 𝑡𝑦) is holomorphic on some neighborhood of 0. It is

known [4, page 152-153] that 𝑓 is holomorphic if and only if
it is Gâteaux holomorphic and continuous.

In the case that 𝑓 : 𝑋 → 𝑌, 𝑋 and 𝑌 being complex
Banach spaces, 𝑓 is holomorphic on 𝑋 if and only if it is
Fréchet differentiable on 𝑋 and in that case 𝑃1(𝑥) = 𝑑𝑓(𝑥)

for every 𝑥. Also, by the Cauchy inequalities [4, Proposition
3.2] we have, for every𝑚,

sup
𝑥∈𝐵𝑋(0,𝑅)

󵄩󵄩󵄩󵄩𝑃𝑚 (𝑥0) (𝑥)
󵄩󵄩󵄩󵄩 ≤ sup

𝑥∈𝐵𝑋(𝑥0,𝑅)

󵄩󵄩󵄩󵄩𝑓 (𝑥)
󵄩󵄩󵄩󵄩 . (6)

A holomorphic function 𝑓 : 𝐸 → 𝐹 is of bounded type if it
sends bounded subsets of 𝐸 to bounded sets of 𝐹. We denote
byH𝑏(𝐸, 𝐹) the space of holomorphic functions of bounded
type from 𝐸 to 𝐹. If 𝐹 = C we simply write H𝑏(𝐸). Given
𝑈 ⊆ 𝐸 we write

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑈

= sup
𝑥∈𝑈

󵄨󵄨󵄨󵄨𝑓 (𝑥)
󵄨󵄨󵄨󵄨 . (7)

With this notation for 𝑋 a Banach space H𝑏(𝑋) is a
Fréchet algebra endowed with the topology 𝜏𝑏 of uniform
convergence on the bounded sets, whose seminorms are (for
𝑅 > 0)

𝑞𝑅 (𝑓) =
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑅)
= sup {󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨 : ‖𝑥‖ < 𝑅} . (8)

Let𝑀 be a differential manifold on a complex Banach space
𝑋 and 𝐹 a locally convex space. A mapping 𝑓 : 𝑀 → 𝐹 is
said to be holomorphic (of bounded type) if𝑓∘𝜑

−1
: Ω → 𝐹

is holomorphic (of bounded type) for every chart (𝜑, Ω) of
𝑀.

Given 𝑥 ∈ 𝑋, we write 𝛿𝑥 for the evaluation mapping at
𝑥; that is, 𝛿𝑥(𝑓) = 𝑓(𝑥) for all holomorphic 𝑓.

Let 𝐿 : 𝑋×𝑋 → C be a continuous bilinear form. Fix 𝑥 ∈

𝑋 and for𝑤 ∈ 𝑋
∗∗ let (𝑦𝛽) be a net in𝑋weak-star convergent

to 𝑤. Since 𝐿(𝑥, −) ∈ 𝑋
∗, then there exists lim𝛽𝐿(𝑥, 𝑦𝛽) :=

𝐿(𝑥, 𝑤). Now, fix𝑤 ∈ 𝑋
∗∗ and for 𝑧 ∈ 𝑋

∗∗ let (𝑥𝛼) be a net in
𝑋 weak-star convergent to 𝑧. Since 𝐿(−, 𝑤) ∈ 𝑋

∗, then there
exists

𝐿̃ (𝑧, 𝑤) := lim
𝛼

𝐿 (𝑥𝛼, 𝑤) = lim
𝛼

lim
𝛽

𝐿 (𝑥𝛼, 𝑦𝛽) . (9)

Following this idea Aron and Berner showed in [8] that every
function𝑓 ∈ H𝑏(𝑋) admits an extension to the bidual, called
the Aron-Berner extension, 𝑓 ∈ H𝑏(𝑋

∗∗
). By [9, Theorem 3],

for every𝑚-homogeneous polynomial 𝑃, we have ‖𝑃‖ = ‖𝑃‖.
A Banach space 𝑋 is symmetrically regular if for all

continuous symmetric bilinear form 𝐿 : 𝑋 × 𝑋 → C it
follows that

𝐿̃ (𝑧, 𝑤) = lim
𝛽

lim
𝛼

𝐿 (𝑥𝛼, 𝑦𝛽) . (10)

We refer the reader to [4, 10, 11] for the general back-
ground on the theory of holomorphic functions on infinite
dimensional spaces.

We are going to work with the set M𝑏(𝑋, 𝑌) of nonzero
algebra homomorphisms between spaces of holomorphic
functions of bounded type defined in (1). Observe that an
idempotent element 𝑔 inH𝑏(𝑌) satisfies that 𝑔(𝑌) is a subset
of {0, 1} and 𝑔(𝑌) is a connected set. Hence, either 𝑔 ≡ 0 or
𝑔 ≡ 1. So, for anyΦ ∈ M𝑏(𝑋, 𝑌), we should haveΦ(1𝑋) = 1𝑌.
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3. The Differential Structure of M𝑏(𝑋,𝑌)

Our aim in this section is to endowM𝑏(𝑋, 𝑌)with a structure
of Riemann domain overL(𝑋

∗
, 𝑌

∗
). On a first step, for each

linear operator 𝑢 ∈ L(𝑋
∗
, 𝑌

∗
), we define, inspired by [12,

Lemma 1],

𝑢 : H𝑏 (𝑋) 󳨀→ H𝑏 (𝑌) ,

𝑓 󳨃󳨀→ 𝑓 ∘ 𝑢
∗
∘ 𝐽𝑌.

(11)

It is plain that 𝑢 is an algebra homomorphism and 𝑢|𝑋∗ = 𝑢.
This defines a natural inclusion:

𝑖 : L (𝑋
∗
, 𝑌

∗
) 󳨀→ M𝑏 (𝑋, 𝑌) ,

𝑢 󳨃󳨀→ 𝑢.

(12)

On the other hand there is also a projection:

𝜋 : M𝑏 (𝑋, 𝑌) 󳨀→ L (𝑋
∗
, 𝑌

∗
) ,

Φ 󳨃󳨀→ [𝑥
∗
󳨃󳨀→ 𝑑 (Φ (𝑥

∗
)) (0)] .

(13)

These clearly satisfy 𝜋(𝑖(𝑢)) = 𝑢 for every 𝑢.
Given 𝑧 ∈ 𝑋

∗∗ we consider the mapping 𝜏∗
𝑧
: H𝑏(𝑋) →

H𝑏(𝑋) defined by 𝜏∗
𝑧
(𝑓)(𝑥) = 𝑓(𝐽𝑋𝑥 + 𝑧). It is a well-known

fact that fixed 𝑓 in H𝑏(𝑋) the mapping 𝑇 : 𝑋
∗∗

→ H𝑏(𝑋)

given by 𝑇(𝑧) = 𝜏
∗

𝑧
(𝑓) is a holomorphic function of bounded

type. See [4, Proposition 6.30] or more in general the proof of
[3, Theorem 2.2].

With this, for each Φ ∈ M𝑏(𝑋, 𝑌) and each 𝑢 ∈

L(𝑋
∗
, 𝑌

∗
), we can define Φ𝑢

∈ M𝑏(𝑋, 𝑌) by

Φ
𝑢
(𝑓) (𝑦) = Φ (𝜏

∗

𝑢∗𝐽𝑌𝑦
(𝑓)) (𝑦)

= Φ [𝑥 󳨃󳨀→ 𝑓 (𝐽𝑋𝑥 + 𝑢
∗
𝐽𝑌𝑦)] (𝑦) ,

(14)

for all 𝑓 ∈ H𝑏(𝑋) and 𝑦 ∈ 𝑌. Let us see that Φ𝑢 is well
defined. To do that we need to check that the function

𝑦 󳨃󳨀→ Φ(𝜏
∗

𝑢∗𝐽𝑌𝑦
(𝑓)) (𝑦) (15)

belongs to H𝑏(𝑌). We see first that it is holomorphic. The
following function of two variables

𝑌 × 𝑌 󳨀→ C,

(𝑦, 𝑧) 󳨃󳨀→ Φ(𝜏
∗

𝑢∗𝐽𝑌𝑧
(𝑓)) (𝑦) ,

(16)

is holomorphic on each variable.ThenHartogs’ theoremgives
that it is holomorphic and hence it is so when restricted to the
diagonal {(𝑦, 𝑦) : 𝑦 ∈ 𝑌}. This gives that (15) is holomorphic.

We see now that Φ𝑢
(𝑓) is of bounded type. Given 𝑅 > 0

there exists 𝑆 = 𝑆(𝑅) > 0 such that

󵄩󵄩󵄩󵄩Φ(𝑔)
󵄩󵄩󵄩󵄩𝐵𝑌(0,𝑅)

≤
󵄩󵄩󵄩󵄩𝑔
󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑆)

, (17)

for all 𝑔 ∈ H𝑏(𝑋). Hence

sup
‖𝑦‖<𝑅

󵄨󵄨󵄨󵄨󵄨
Φ (𝜏

∗

𝑢∗𝐽𝑌𝑦
(𝑓)) (𝑦)

󵄨󵄨󵄨󵄨󵄨

≤ sup
‖𝑧‖<𝑅

󵄩󵄩󵄩󵄩󵄩
Φ (𝜏

∗

𝑢∗𝐽𝑌𝑧
(𝑓))

󵄩󵄩󵄩󵄩󵄩𝐵𝑌(0,𝑅)

≤ sup
‖𝑧‖<𝑅

󵄩󵄩󵄩󵄩󵄩
𝜏
∗

𝑢∗𝐽𝑌𝑧
(𝑓)

󵄩󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑆)

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑆+‖𝑢‖𝑅)
< ∞,

(18)

since ‖𝐽𝑋𝑥 + 𝑢
∗
𝐽𝑌𝑧‖ ≤ ‖𝑥‖ + ‖𝑢

∗
‖‖𝑧‖ < 𝑆 + ‖𝑢‖𝑅 for all

𝑥 ∈ 𝐵𝑋(0, 𝑆) and all 𝑧 ∈ 𝐵𝑌(0, 𝑅).
On the other hand it is easy to see that Φ𝑢 is an algebra

homomorphism, which finally gives Φ𝑢
∈ M𝑏(𝑋, 𝑌).

As a second step we show that

𝜋 (Φ
𝑢
) = 𝜋 (Φ) + 𝑢. (19)

Indeed, for each 𝑥
∗
∈ 𝑋

∗ and 𝑦 ∈ 𝑌, we have

Φ
𝑢
(𝑥

∗
) (𝑦) = Φ [𝑥 󳨃󳨀→ 𝑥∗ (𝐽𝑋𝑥 + 𝑢

∗
𝐽𝑌𝑦)] (𝑦)

= Φ [𝑥 󳨃󳨀→ 𝑥
∗
(𝑥) + 𝑢 (𝑥

∗
) (𝑦)] (𝑦)

= (Φ (𝑥
∗
) + 𝑢 (𝑥

∗
)) (𝑦) .

(20)

Thus,

𝜋 (Φ
𝑢
) (𝑥

∗
) = 𝑑 (Φ

𝑢
(𝑥

∗
)) (0)

= 𝑑 (Φ (𝑥
∗
) + 𝑢 (𝑥

∗
)) (0)

= 𝑑 (Φ (𝑥
∗
)) (0) + 𝑢 (𝑥

∗
)

= (𝜋 (Φ) + 𝑢) (𝑥
∗
) .

(21)

Finally, given Φ ∈ M𝑏(𝑋, 𝑌) and 𝜀 > 0, we consider the set

𝑉Φ,𝜀 = {Φ
𝑢
: 𝑢 ∈ L (𝑋

∗
, 𝑌

∗
) , ‖𝑢‖ < 𝜀} . (22)

Now we assume that𝑋 is symmetrically regular. We proceed
as in the definition of the Riemann domain structure of
the spectrum of H𝑏(𝑋) and we omit the details (see [4,
Section 6.3] for a complete and detailed explanation of the
procedure). First of all, ifΨ ∈ 𝑉Φ,𝜀, thenΨ = Φ

𝑢, with ‖𝑢‖ < 𝜀.
Hence, for any V ∈ L(𝑋

∗
, 𝑌

∗
),

Ψ
V
(𝑓) (𝑦) = (Φ

𝑢
)
V
(𝑓) (𝑦) = Φ

𝑢
(𝜏
∗

V∗𝐽𝑌𝑦 (𝑓)) (𝑦)

= Φ (𝜏
∗

𝑢∗𝐽𝑌𝑦
∘ 𝜏

∗

V∗𝐽𝑌𝑦 (𝑓)) (𝑦)

= Φ (𝜏
∗

(𝑢
∗+V∗)𝐽𝑌𝑦 (𝑓)) (𝑦) = Φ

𝑢+V
(𝑓) (𝑦) .

(23)

Therefore, for 𝛿 = 𝜀 − ‖𝑢‖, we have 𝑉Ψ,𝛿 ⊂ 𝑉Φ,𝜀 and {𝑉Φ,𝜀}𝜀>0
is a neighborhood basis at Φ.

Also, forΦ ̸=Ψ ∈ M𝑏(𝑋, 𝑌), we have that if 𝜋(Φ) = 𝜋(Ψ),
then 𝑉Φ,𝜀 ∩ 𝑉Ψ,𝛿 = 0, for all 𝜀, 𝛿 > 0 and if 𝜋(Φ) ̸= 𝜋(Ψ), then
𝑉Φ,𝜀 ∩ 𝑉Ψ,𝜀 = 0 for 𝜀 = ‖𝜋(Φ) − 𝜋(Ψ)‖/2. This gives that the
topology generated by {𝑉Φ,𝜀}𝜀>0 is Hausdorff.
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Let us note that for each Φ in M𝑏(𝑋, 𝑌) the subset
𝑉Φ = {Φ

𝑢
: 𝑢 ∈ L(𝑋

∗
, 𝑌

∗
)} is the connected component

containingΦ.
Summing all this up we have proved the following result.

Proposition 1. If 𝑋 is a symmetrically regular Banach space
and 𝑌 is any Banach space, (M𝑏(𝑋, 𝑌), 𝜋) is a Riemann
domain over L(𝑋

∗
, 𝑌

∗
) and each connected component of

(M𝑏(𝑋, 𝑌), 𝜋) is homeomorphic toL(𝑋
∗
, 𝑌

∗
).

Our aim now is to show that each function 𝑓 ∈ H𝑏(𝑋)

can be extended, in some sense, to a function on M𝑏(𝑋, 𝑌)

of bounded type. We do it with the following sort of Gelfand
transform:

𝑓 : M𝑏 (𝑋, 𝑌) 󳨀→ H𝑏 (𝑌) ,

Φ 󳨃󳨀→ Φ (𝑓) ,

(24)

and showing that this, when restricted to each connected
component, is holomorphic of bounded type. To do that we
need the following lemma.

Lemma 2. If 𝑋 and 𝑌 are complex Banach spaces and 𝐺 is
an element of H𝑏(𝑋 × 𝑌), then the mapping 𝑔 defined by
𝑔(𝑥)(𝑦) = 𝐺(𝑥, 𝑦) for (𝑥, 𝑦) ∈ 𝑋×𝑌 belongs toH𝑏(𝑋,H𝑏(𝑌)).
Conversely, given 𝑔 in H𝑏(𝑋,H𝑏(𝑌)) the mapping 𝐺(𝑥, 𝑦) =
𝑔(𝑥)(𝑦) belongs toH𝑏(𝑋 × 𝑌).

Proof. Let𝐺 be inH𝑏(𝑋×𝑌), and let∑∞

𝑚=0
𝑃𝑚𝑓 be the Taylor

series expansion of 𝐺 at (0, 0). We have

𝐺 (𝑥, 𝑦) =

∞

∑

𝑚=0

𝑃𝑚𝑓 (𝑥, 𝑦)

=

∞

∑

𝑚=0

𝑚

∑

𝑘=0

(
𝑚

𝑘
)

∨

𝑃𝑚𝑓 ((𝑥, 0)
(𝑘)
, (0, 𝑦)

(𝑚−𝑘)
) .

(25)

Note that if we take 𝑅, 𝑆 > 0 by the polarization formula (4)
and Cauchy inequalities (6), we have

∞

∑

𝑚=0

𝑚

∑

𝑘=0

(
𝑚

𝑘
) sup
‖𝑥‖≤𝑅

sup
‖𝑦‖≤𝑆

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∨

𝑃𝑚𝑓 ((𝑥, 0)
(𝑘)
, (0, 𝑦)

(𝑚−𝑘)
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≤

∞

∑

𝑚=0

𝑚

∑

𝑘=0

(
𝑚

𝑘
) sup
‖𝑥‖≤𝑅

sup
‖𝑦‖≤𝑆

𝑚
𝑚

𝑚!

󵄩󵄩󵄩󵄩𝑃𝑚𝑓
󵄩󵄩󵄩󵄩 ‖𝑥‖

𝑘󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩

𝑚−𝑘

≤

∞

∑

𝑚=0

(𝑒 (𝑅 + 𝑆))
𝑚

× sup
‖𝑥‖≤2𝑒(𝑅+𝑆)

sup
‖𝑦‖≤2𝑒(𝑅+𝑆)

1

(2𝑒 (𝑅 + 𝑆))
𝑚

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨

= 2 sup
‖𝑥‖≤2𝑒(𝑅+𝑆)

sup
‖𝑦‖≤2𝑒(𝑅+𝑆)

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 < ∞.

(26)

By the properties of convergent double series of nonneg-
ative numbers we obtain that, for each fixed 𝑘, the series
𝑄𝑘(𝑥)(𝑦) := ∑

∞

𝑚=𝑘
(
𝑚

𝑘 )

∨

𝑃𝑚𝑓 ((𝑥, 0)
(𝑘)
, (0, 𝑦)

(𝑚−𝑘)
) converges

absolutely and uniformly on any product of balls in 𝑋 and 𝑌

with finite radii. Hence 𝑄𝑘 : 𝑋 → H𝑏(𝑌) is a continuous
𝑘-homogeneous polynomial and actually 𝑔 = ∑

∞

𝑘=0
𝑄𝑘 is an

entire function from 𝑋 toH𝑏(𝑌) that, by above inequalities,
is of bounded type.

Conversely, consider 𝑔 in H𝑏(𝑋,H𝑏(𝑌)) and define 𝐺 :

𝑋 × 𝑌 → C by 𝐺(𝑥, 𝑦) = 𝑔(𝑥)(𝑦). By definition, for each
𝑥 ∈ 𝑋, 𝐺(𝑥, −) belongs to H𝑏(𝑌). If we fix now 𝑦 ∈ 𝑌,
we have that 𝛿𝑦 is a continuous linear form on H𝑏(𝑌) and
𝐺(𝑥, 𝑦) = 𝛿𝑦(𝑔(𝑥)), implying that 𝐺(−, 𝑦) is the composition
of holomorphic mappings. Thus 𝐺(−, 𝑦) is holomorphic for
every 𝑦 ∈ 𝑌. By Hartogs’ theorem,𝐺 ∈ H(𝑋×𝑌). Finally, for
fixed 𝑅, 𝑆 > 0we have that 𝑔(𝐵𝑋(0, 𝑅)) is a bounded subset of
H𝑏(𝑌). Hence

sup
‖𝑥‖≤𝑅,‖𝑦‖≤𝑆

󵄨󵄨󵄨󵄨𝐺 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 = sup

‖𝑦‖≤𝑆

sup
‖𝑥‖≤𝑅

󵄨󵄨󵄨󵄨𝑔 (𝑥) (𝑦)
󵄨󵄨󵄨󵄨 < ∞, (27)

and 𝐺 is bounded on the bounded subsets of𝑋 × 𝑌.

Proposition 3. Let𝑋 be a symmetrically regular Banach space
and let 𝑌 be any Banach space. Given a function 𝑓 ∈ H𝑏(𝑋)

consider its extension 𝑓 : M𝑏(𝑋, 𝑌) → H𝑏(𝑌) defined in
(24). We have that 𝑓 is a holomorphic function of bounded
type. That is, 𝑓 ∘ (𝜋|𝑉Φ

)
−1

∈ H𝑏(L(𝑋
∗
, 𝑌

∗
),H𝑏(𝑌)) for every

Φ.

Proof. The point is to prove that the function

L (𝑋
∗
, 𝑌

∗
) 󳨀→ H𝑏 (𝑌) ,

𝑢 󳨃󳨀→ Φ
𝑢
(𝑓)

(28)

is holomorphic of bounded type. For that, we introduce an
auxiliary mapping𝑀 : L(𝑋

∗
, 𝑌

∗
) × 𝑌

∗∗
× 𝑌 → C, defined

by

𝑀(𝑢, 𝑧, 𝑦) = Φ [𝑥 󳨃󳨀→ 𝑓 (𝑥 + 𝑢
∗
(𝑧))] (𝑦) . (29)

As above, we only need to check that it is separately holo-
morphic to conclude that𝑀 is holomorphic. First we fix 𝑢 ∈

L(𝑋
∗
, 𝑌

∗
) and 𝑧 ∈ 𝑌

∗∗ and denote 𝑀𝑢,𝑧(𝑦) := 𝑀(𝑢, 𝑧, 𝑦).
We have𝑀𝑢,𝑧 = Φ(𝜏

∗

𝑢∗(𝑧)
(𝑓)) and this belongs toH𝑏(𝑌). Now

we fix 𝑧, 𝑦 and take𝑀𝑧,𝑦(𝑢) := 𝑀(𝑢, 𝑧, 𝑦) = 𝛿𝑦(Φ(𝜏
∗

𝑢∗(𝑧)
(𝑓))).

This mapping is holomorphic (of bounded type) since it is
the composition of the linear mapping L(𝑋

∗
, 𝑌

∗
) → 𝑋

∗∗

defined by 𝑢 󳨃→ 𝑢
∗
(𝑧) with the holomorphic mapping of

bounded type:

𝑋
∗∗

󳨀→ C,

V 󳨃󳨀→ (𝛿𝑦 ∘ Φ) (𝜏
∗

V (𝑓)) .
(30)

Finally we fix 𝑢, 𝑦 and denote 𝑀𝑢,𝑦(𝑧) := 𝑀(𝑢, 𝑧, 𝑦) =

𝛿𝑦(Φ(𝜏
∗

𝑢∗(𝑧)
(𝑓))). Again, this is the composition of a linear

mapping 𝑌
∗∗

→ 𝑋
∗∗ defined by 𝑧 → 𝑢

∗
(𝑧) with the

same holomorphic mapping (30). We conclude that 𝑀 is
holomorphic.
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Let now 𝑅, 𝑆, 𝑇 > 0. Given 𝑇 > 0 there exists 𝑈 > 0 such
that ‖Φ(ℎ)‖𝐵𝑌(0,𝑇) ≤ ‖ℎ‖𝐵𝑋(0,𝑈)

for every ℎ ∈ H𝑏(𝑋). Hence

sup
‖𝑢‖≤𝑅,‖𝑧‖≤𝑆,‖𝑦‖≤𝑇

󵄨󵄨󵄨󵄨𝑀 (𝑢, 𝑧, 𝑦)
󵄨󵄨󵄨󵄨

= sup
‖𝑢‖≤𝑅

sup
‖𝑧‖≤𝑆

󵄩󵄩󵄩󵄩󵄩
Φ (𝜏

∗

𝑢∗(𝑧)
(𝑓))

󵄩󵄩󵄩󵄩󵄩𝐵𝑌(0,𝑇)

≤ sup
‖𝑢‖≤𝑅

sup
‖𝑧‖≤𝑆

󵄩󵄩󵄩󵄩󵄩
𝜏
∗

𝑢∗(𝑧)
(𝑓)

󵄩󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑈)

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑈+𝑅𝑆)
< ∞,

(31)

and 𝑀 is of bounded type. Since the mapping 𝑌 → 𝑌
∗∗

×

𝑌 defined by 𝑦 󳨃→ (𝐽𝑌𝑦, 𝑦) is obviously holomorphic of
bounded type we have that

𝐺 : L (𝑋
∗
, 𝑌

∗
) × 𝑌 󳨀→ C (32)

defined by 𝐺(𝑢, 𝑦) = 𝑀(𝑢, 𝑦, 𝑦) is holomorphic of bounded
type.Now a direct application of Lemma 2 gives that themap-
ping 𝑢 󳨃→ Φ

𝑢
(𝑓) belongs toH𝑏(L(𝑋

∗
, 𝑌

∗
),H𝑏(𝑌)).

The above proposition is related to the study of extension
of functions of bounded type given in [13].

4. The Size of the Fibers of M𝑏(𝑋,𝑌)

We focus now on the sets of elements in M𝑏(𝑋, 𝑌) that are
projected on the same element 𝑢 ofL(𝑋

∗
, 𝑌

∗
). This is called

the “fiber” of 𝑢 and is defined by

F (𝑢) = {Φ ∈ M𝑏 (𝑋, 𝑌) : 𝜋 (Φ) = 𝑢} . (33)

Our aim in this section is to find out how big these fibers can
be. To begin with, each fixed 𝑢 ∈ L(𝑋

∗
, 𝑌

∗
) defines a set

𝐴𝑢 = {𝑔 ∈ H𝑏 (𝑌,𝑋
∗∗
) : 𝑑𝑔 (0) = 𝑢

∗
∘ 𝐽𝑌} . (34)

On the other hand every 𝑔 ∈ H𝑏(𝑌,𝑋
∗∗
) defines a compo-

sition homomorphism Φ𝑔 ∈ M𝑏(𝑋, 𝑌) given by Φ𝑔(𝑓) =

𝑓 ∘ 𝑔. This gives an inclusion

𝑗 : H𝑏 (𝑌,𝑋
∗∗
) 󳨀→ M𝑏 (𝑋, 𝑌) ,

𝑔 󳨃󳨀→ Φ𝑔,

(35)

which maps the set 𝐴𝑢 into the fiber F(𝑢). Let us check
that 𝑗 is injective. Given 𝑔1, 𝑔2 ∈ H𝑏(𝑌,𝑋

∗∗
) \ {0}, 𝑔1 ̸= 𝑔2,

there exists 𝑦0 ∈ 𝑌 such that 𝑔1(𝑦0) ̸= 𝑔2(𝑦0) and since
𝑋
∗ separates points of 𝑋∗∗ we can find 𝑥

∗

0
∈ 𝑋

∗ with
𝑔1(𝑦0)(𝑥

∗

0
) ̸= 𝑔2(𝑦0)(𝑥

∗

0
). Thus Φ𝑔1

(𝑥
∗

0
)(𝑦0) ̸=Φ𝑔2

(𝑥
∗

0
)(𝑦0)

and this gives Φ𝑔1
̸= Φ𝑔2

.
There is also a projection

𝜁 : M𝑏 (𝑋, 𝑌) 󳨀→ H𝑏 (𝑌,𝑋
∗∗
) ,

Φ 󳨃󳨀→ [𝑦 󳨃󳨀→ (𝑥
∗
󳨃󳨀→ Φ (𝑥

∗
) (𝑦))] .

(36)

Themapping 𝜁(Φ) belongs toH𝑏(𝑌,𝑋
∗∗
) (and hence 𝜁 is well

defined). This follows from the fact that

𝑌 × 𝑋
∗
󳨀→ C,

(𝑦, 𝑥
∗
) 󳨃󳨀→ Φ (𝑥

∗
) (𝑦)

(37)

is holomorphic. Clearly, (𝜁 ∘ 𝑗)(𝑔) = 𝑔. Also, note that 𝜁(Φ)
determines the values that takes Φ when restricted to 𝑋

∗.
This means that when finite type polynomials are dense in
H𝑏(𝑋), 𝜁(Φ) determines Φ. So, the only homomorphisms
in M𝑏(𝑋, 𝑌) are the Φ𝑔’s and we have the following result,
which is closely related to [13, Lemmas 4.5 and 4.6] and in [1,
Theorem 21].

Proposition 4. Let 𝑋 and 𝑌 be Banach spaces. If finite type
polynomials are dense inH𝑏(𝑋) then for each Φ ∈ M𝑏(𝑋, 𝑌)

there exists 𝑔 ∈ H𝑏(𝑌,𝑋
∗∗
) such that Φ = Φ𝑔. Also, F(𝑢) =

{Φ𝑔 : 𝑔 ∈ 𝐴𝑢}.

Let us note that the mapping 𝑗|𝐴𝑢
: 𝐴𝑢 → F(𝑢)

is actually injective and, by Proposition 4, if finite type
polynomials are dense, surjective. This means that even in
the case when finite type polynomials are dense in H𝑏(𝑋)

(i.e., the space H𝑏(𝑋) is rather small), the fibers are thick.
Let us see now that if this is not the case (i.e., when there is
a polynomial in𝑋 that is not weakly continuous on bounded
sets), this mapping is no longer surjective and we can find
even more homomorphisms inside each fiber.

Proposition 5. If 𝑋 is symmetrically regular and there exists
a polynomial on 𝑋 not weakly continuous on bounded sets at
a point 𝑥0, then, for each 𝑢 ∈ L(𝑋

∗
, 𝑌

∗
), there is Φ ∈ F(𝑢)

such that Φ ̸=Φ𝑔, for all 𝑔 ∈ 𝐴𝑢.

Proof. It is enough to prove the result for 𝐹(0) because we can
change fibers through the mapping

𝐹 (0) 󳨀→ 𝐹 (𝑢) ,

Φ 󳨃󳨀→ Φ
𝑢
.

(38)

Also, if Φ𝑔 ∈ 𝐹(0), then (Φ𝑔)
𝑢
= Φℎ, with ℎ(𝑦) = 𝑔(𝑦) +

𝑢
∗
𝐽𝑌𝑦.
Let 𝑃 be a polynomial that is not weakly continuous on

bounded sets at 𝑥0 and {𝑥𝛼} a bounded net weakly convergent
to 𝑥0 such that |𝑃(𝑥𝛼) −𝑃(𝑥0)| > 1, for all 𝛼. For an ultrafilter
U containing the sets {𝛼 : 𝛼 ≥ 𝛼0}, let Φ be given by

Φ(𝑓) (𝑦) = lim
U
𝑓 (𝑥𝛼) , ∀𝑓 ∈ H𝑏 (𝑋) , 𝑦 ∈ 𝑌. (39)

Then Φ is a homomorphism in M𝑏(𝑋, 𝑌) (actually in 𝐹(0)),
that is, not of composition type. Indeed, since Φ(𝑓) is a
constant function on 𝑌 it follows that 𝑑(Φ(𝑓))(0) = 0 for
every 𝑓 in H𝑏(𝑋) and so Φ ∈ 𝐹(0). If Φ = Φ𝑔 for certain
𝑔 ∈ H𝑏(𝑌,𝑋

∗∗
), then we have

𝑥
∗
(𝑥0) = lim

U
𝑥
∗
(𝑥𝛼) = 𝑥

∗
(𝑔 (𝑦)) , ∀𝑥

∗
∈ 𝑋

∗
, 𝑦 ∈ 𝑌.

(40)
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This says that 𝑔(𝑦) = 𝐽𝑋𝑥0, for all 𝑦. Hence,

lim
U

𝑃 (𝑥𝛼) = 𝑃 (𝑔 (𝑦)) = 𝑃 (𝐽𝑋𝑥0) = 𝑃 (𝑥0) , (41)

which is a contradiction.

Something more can be said when there is a polynomial
that is not weakly continuous on bounded sets. In this case,
we can insert in each fiber a big set of homomorphisms that
are not of composition type. We do it in detail in the fiber of
0.

First, note that if there is a polynomial not weakly
continuous on bounded sets, then there is a homogeneous
polynomial 𝑃 which is not weakly continuous on bounded
sets at 0. So, the Aron-Berner extension of 𝑃 is not 𝑤∗-
continuous at any point 𝑥

∗∗
∈ 𝑋

∗∗ [14, Corollary 2,
Proposition 3] and [15, Proposition 1] (see also [16, Proof
of Proposition 2.6]). Thus, we fix, for each 𝑥

∗∗
∈ 𝑋

∗∗ a
bounded net {𝑥∗∗

𝛼
} in 𝑋

∗∗ which 𝑤
∗-converges to 𝑥

∗∗, but
|𝑃(𝑥

∗∗

𝛼
) − 𝑃(𝑥

∗∗
)| > 1, for all 𝛼. For each 𝑥

∗∗
∈ 𝑋

∗∗ we fix
also an ultrafilterU containing the sets {𝛼 : 𝛼 ≥ 𝛼0}. Consider
the set

𝐴 = {𝑔 ∈ H𝑏 (𝑌,𝑋
∗∗
) : 𝑔 (0) = 0, 𝑑𝑔 (0) ≡ 0} (42)

and define the following mapping

𝐴 × 𝑋
∗∗

󳨀→ 𝐹 (0) ,

(𝑔, 𝑥
∗∗
) 󳨃󳨀→ Ψ𝑔,𝑥∗∗ ,

(43)

where

Ψ𝑔,𝑥∗∗ (𝑓) (𝑦) = lim
U
𝑓 (𝑥

∗∗

𝛼
+ 𝑔 (𝑦)) . (44)

This mapping is well defined because Ψ𝑔,𝑥∗∗(𝑥
∗
)(𝑦) =

𝑥∗(𝑥
∗∗

𝛼
+ 𝑔(𝑦)) = 𝑥

∗∗
(𝑥
∗
) + 𝑥∗(𝑔(𝑦)); then 𝜋(Ψ𝑔,𝑥∗∗)(𝑥

∗
) =

𝑑(𝑥∗ ∘ 𝑔)(0) = 𝑥∗ ∘ 𝑑𝑔(0) ≡ 0. The mapping is also injective.
Indeed, ifΨ𝑔,𝑥∗∗ = Ψℎ,𝑧∗∗ , thenΨ𝑔,𝑥∗∗(𝑥

∗
)(𝑦) = Ψℎ,𝑧∗∗(𝑥

∗
)(𝑦),

for all 𝑥∗ ∈ 𝑋
∗ and 𝑦 ∈ 𝑌. Then,

𝑥
∗∗

(𝑥
∗
) + 𝑥∗ (𝑔 (𝑦)) = 𝑧

∗∗
(𝑥

∗
) + 𝑥∗ (ℎ (𝑦)) ,

∀𝑥
∗
∈ 𝑋

∗
, 𝑦 ∈ 𝑌.

(45)

Therefore, ℎ(𝑦) = 𝑔(𝑦) + 𝑥
∗∗

− 𝑧
∗∗, for all 𝑦 and, evaluating

at 0, we obtain that 𝑥∗∗ = 𝑧
∗∗ and, hence, 𝑔 = ℎ.

Note, also, that the homomorphisms Ψ𝑔,𝑥∗∗ are not of
composition type. Indeed, if Ψ𝑔,𝑥∗∗ = Φℎ, for certain 𝑔 ∈ 𝐴,
𝑥
∗∗

∈ 𝑋
∗∗, and ℎ ∈ H𝑏(𝑌,𝑋

∗∗
), then, for all 𝑥∗ ∈ 𝑋

∗,

𝑥
∗∗

(𝑥
∗
) + 𝑥∗ ∘ 𝑔 = Ψ𝑔,𝑥∗∗ (𝑥

∗
) = Φℎ (𝑥

∗
) = 𝑥∗ ∘ ℎ. (46)

If this were the case we would have ℎ(𝑦) = 𝑥
∗∗

+ 𝑔(𝑦), for all
𝑦. Now,

lim
U

𝑃 (𝑥
∗∗

𝛼
+ 𝑔 (𝑦))

= Ψ𝑔,𝑥∗∗ (𝑃) (𝑦) = Φℎ (𝑃) (𝑦) = 𝑃 (𝑥
∗∗

+ 𝑔 (𝑦)) .

(47)

Evaluating at 0 leads to a contradiction.

Let us finish this analysis by studying Λ: the composition
of the inclusion 𝑗 defined in (35) with the inclusion of
M𝑏(𝑋, 𝑌) intoL(H𝑏(𝑋),H𝑏(𝑌)).Then themappingΛ turns
out to be holomorphic (endowingL(H𝑏(𝑋),H𝑏(𝑌))with an
appropriate topology). We prepare the proof of this fact with
a lemma that is a variant of a classical Dunford result; see also
[17, Theorem 3].

Lemma 6. let Ψ : 𝐸 → 𝑋 be a Gâteaux holomorphic
mapping from a complex Fréchet space 𝐸 to a Banach space
𝑋 such that 𝑥∗ ∘ Ψ is holomorphic for every 𝑥

∗
∈ 𝐴, where

𝐴 is a norming subset of the closed unit ball of 𝑋∗ (i.e., ‖𝑥‖ =
sup

𝑥∗∈𝐴
{|𝑥

∗
(𝑥)|} for every 𝑥 ∈ 𝑋). Then Ψ is holomorphic on

𝐸.

Proof. Let 𝐾 be a finite dimensional compact subset of 𝐸. By
hypothesis, Ψ(𝐾) is a compact subset of 𝑋 and hence it is
bounded. Thus, there exists𝑀 > 0 such that

sup {󵄨󵄨󵄨󵄨𝑥
∗
∘ Ψ (𝑦)

󵄨󵄨󵄨󵄨 : 𝑥
∗
∈ 𝐴, 𝑦 ∈ 𝐾}

= sup {󵄩󵄩󵄩󵄩Ψ (𝑦)
󵄩󵄩󵄩󵄩 : 𝑦 ∈ 𝐾} < 𝑀.

(48)

Hence, the family of scalar valued holomorphic functions
{𝑥
∗
∘ Ψ : 𝑥

∗
∈ 𝐴} is bounded on the finite dimensional

compact subsets of 𝐸. But as 𝐸 is a Fréchet space, then it is
also Baire, and by [11] this family is locally bounded: given
𝑦0 ∈ 𝐸 there exists an open neighborhood 𝑉 of 𝑦0 such that

sup {󵄩󵄩󵄩󵄩Ψ (𝑦)
󵄩󵄩󵄩󵄩 : 𝑦 ∈ 𝑉}

= sup {󵄨󵄨󵄨󵄨𝑥
∗
∘ Ψ (𝑦))

󵄨󵄨󵄨󵄨 : 𝑥
∗
∈ 𝐴, 𝑦 ∈ 𝑉} < ∞.

(49)

We have obtained that the Gâteaux holomorphic function Ψ

is locally bounded.Then it is holomorphic by [4, Proposition
3.7].

The following proposition gives that Λ is holomorphic.
The proof may seem at some points similar to that of
Proposition 3, but the fact that in the target space we have
now a nonmetrizable locally convex topology makes the
whole situationmuchmore delicate.We are going to consider
now in L(H𝑏(𝑋),H𝑏(𝑌)) the topology 𝜏𝛽 defined by the
following fundamental system of seminorms:

𝑞𝑅,B (𝑇) = sup {󵄨󵄨󵄨󵄨𝑇 (𝑓) (𝑦)
󵄨󵄨󵄨󵄨 : 𝑦 ∈ 𝑌,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑅, 𝑓 ∈ B} , (50)

for 𝑇 ∈ L(H𝑏(𝑋),H𝑏(𝑌)), where 𝑅 > 0 andB is a bounded
subset ofH𝑏(𝑋).

Proposition 7. The mapping

Λ : H𝑏 (𝑌,𝑋
∗∗
) 󳨀→ L (H𝑏 (𝑋) ,H𝑏 (𝑌)) ,

𝑔 󳨃󳨀→ Λ (𝑔) = Φ𝑔

(51)

is injective and holomorphic if we consider in L(H𝑏(𝑋),

H𝑏(𝑌)) the 𝜏𝛽-topology.
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Proof. Clearly Λ is well defined. Our first step is to prove
that Λ : H𝑏(𝑌,𝑋

∗∗
) → L𝜏𝛽

(H𝑏(𝑋),H𝑏(𝑌)) is Gâteaux
holomorphic. Let 𝑔1, 𝑔2 ∈ H𝑏(𝑌,𝑋

∗∗
), 𝑓 ∈ H𝑏(𝑋), 𝑦 ∈ 𝑌,

and 𝑡 ∈ C. Here we have Λ(𝑔1 + 𝑡𝑔2)(𝑓)(𝑦) = 𝑓(𝑔1(𝑦) +

𝑡𝑔2(𝑦)). If ∑
∞

𝑚=0
𝑃𝑚𝑓 is the Taylor series expansion of 𝑓 at 0

on𝑋, then

𝑓 (𝑥
∗∗
) =

∞

∑

𝑚=0

𝑃𝑚𝑓 (𝑥
∗∗
) , (52)

for every 𝑥
∗∗

∈ 𝑋
∗∗ and the convergence is absolute and

uniform on the bounded subsets of𝑋∗∗ [8, 9]. Thus

Λ (𝑔1 + 𝑡𝑔2) (𝑓) (𝑦)

=

∞

∑

𝑚=0

𝑃𝑚𝑓 (𝑔1 (𝑦) + 𝑡𝑔2 (𝑦))

=

∞

∑

𝑚=0

𝑚

∑

𝑘=0

(
𝑚

𝑘
)

∨

𝑃𝑚𝑓 (𝑔1(𝑦)
(𝑚−𝑘)

, (𝑡𝑔2 (𝑦))
(𝑘)
)

=

∞

∑

𝑚=0

𝑚

∑

𝑘=0

(
𝑚

𝑘
) 𝑡

𝑘

∨

𝑃𝑚𝑓 (𝑔1(𝑦)
(𝑚−𝑘)

, 𝑔2(𝑦)
(𝑘)
)

=

∞

∑

𝑘=0

∞

∑

𝑚=𝑘

(
𝑚

𝑘
)

∨

𝑃𝑚𝑓 (𝑔1(𝑦)
(𝑚−𝑘)

, 𝑔2(𝑦)
(𝑘)
) 𝑡

𝑘
,

(53)

where our last step is simply formal. We are going to
concentrate our effort now to show that this formal last
equality holds in our setting. If we denote by 𝐵𝑌(0, 𝑅) the
closure of 𝐵𝑌(0, 𝑅), then 𝑔𝑗(𝐵𝑌(0, 𝑅)) is a bounded subset
of 𝑋∗∗ for 𝑗 = 1, 2. Thus there exists 𝑀 > 0 such that
‖𝑔𝑗(𝑦)‖ ≤ 𝑀, for every 𝑦 in 𝐵𝑌(0, 𝑅) and 𝑗 = 1, 2. We fix
𝑠0 > 1 and we take 𝑆 > 0 such that (1 + 𝑠0)𝑒𝑀 < 𝑆. We have

∞

∑

𝑚=0

𝑚

∑

𝑘=0

𝑒
𝑚
(
𝑚

𝑘
)(

𝑀

𝑆
)

𝑚−𝑘

(
𝑠0𝑀

𝑆
)

𝑘

=

∞

∑

𝑚=0

(
𝑒 (1 + 𝑠0)𝑀

𝑆
)

𝑚

=
𝑆

𝑆 − 𝑒 (1 + 𝑠0)𝑀
.

(54)

Hence, by the properties of summability of double series of
nonnegative numbers, the double series below is convergent
in R:

∞

∑

𝑘=0

∞

∑

𝑚=𝑘

𝑒
𝑚
(
𝑚

𝑘
)(

𝑀

𝑆
)

𝑚−𝑘

(
𝑠0𝑀

𝑆
)

𝑘

< ∞, (55)

and its sum is again 𝑆/(𝑆 − 𝑒(1 + 𝑠0)𝑀). On the other hand,
by using the polarization formula (4), [9, Theorem 3], and
Cauchy’s inequalities (6) we get

sup
‖𝑦‖≤𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∨

𝑃𝑚𝑓 (𝑔1(𝑦)
(𝑚−𝑘)

, 𝑔2(𝑦)
(𝑘)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ sup
‖𝑦‖≤𝑅

𝑒
𝑚 󵄩󵄩󵄩󵄩𝑃𝑚𝑓

󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩𝑔1 (𝑦)
󵄩󵄩󵄩󵄩

𝑚−𝑘󵄩󵄩󵄩󵄩𝑔2 (𝑦)
󵄩󵄩󵄩󵄩

𝑘

≤ (
𝑒𝑀

𝑆
)

𝑚
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑆)
.

(56)

By applying now (55) we obtain

∞

∑

𝑘=0

∞

∑

𝑚=𝑘

(
𝑚

𝑘
) sup
‖𝑦‖≤𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∨

𝑃𝑚𝑓 (𝑔1(𝑦)
(𝑚−𝑘)

, 𝑔2(𝑦)
(𝑘)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑠
𝑘

0

≤
𝑆

𝑆 − 𝑒 (1 + 𝑠0)𝑀

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑆)

.

(57)

Since the function 𝑦 ∈ 𝑌 →

∨

𝑃𝑚𝑓 (𝑔1(𝑦)
(𝑚−𝑘)

, 𝑔2(𝑦)
(𝑘)
) is the

composition of a continuous multilinear mapping and two
holomorphic mappings of bounded type, it is holomorphic
of bounded type on𝑌. By using (57), we obtain that the series

𝑇𝑘 (𝑓) :=

∞

∑

𝑚=𝑘

∨

𝑃𝑚𝑓 (𝑔1(⋅)
(𝑚−𝑘)

, 𝑔2(⋅)
(𝑘)
) (58)

𝜏𝑏-converges in H𝑏(𝑌); hence 𝑇𝑘(𝑓) belongs to H𝑏(𝑌) for
every 𝑓 in H𝑏(𝑋). Actually, if we consider 𝑇𝑘 : H𝑏(𝑋) →

H𝑏(𝑌), this is a linear operator. By (57), it is also continuous,
since given 𝑅 > 0 there exists 𝑆 > 0 such that

sup
‖𝑦‖≤𝑅

󵄨󵄨󵄨󵄨𝑇𝑘 (𝑓) (𝑦)
󵄨󵄨󵄨󵄨 ≤

𝑆

𝑆 − 𝑒 (1 + 𝑠0)𝑀

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑆)

, (59)

for every 𝑓 ∈ H𝑏(𝑋). Then

𝑞 (𝑇𝑘) = sup
‖𝑦‖≤𝑅

sup
𝑓∈B

󵄨󵄨󵄨󵄨𝑇𝑘 (𝑓) (𝑦)
󵄨󵄨󵄨󵄨

≤

∞

∑

𝑚=𝑘

(
𝑚

𝑘
)(

𝑒 (1 +𝑀)

𝑆
)

𝑚

sup
𝑓∈B

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑆)

.

(60)

We have, for 𝑡 ∈ C with |𝑡| ≤ 𝑠0, again by (57),

sup
|𝑡|≤𝑠0

∞

∑

𝑘=0

𝑞 (𝑇𝑘) |𝑡|
𝑘

=

∞

∑

𝑘=0

𝑞 (𝑇𝑘) 𝑠
𝑘

0
≤

𝑆

𝑆 − 𝑒 (1 + 𝑠0)𝑀

× sup
𝑓∈B

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑆)

.

(61)

As a consequence the series ∑
∞

𝑘=0
𝑇𝑘𝑡

𝑘 defined on C with
values inL(H𝑏(𝑋),H𝑏(𝑌)), 𝜏𝛽-converges uniformly on the
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compacts of C. Hence it is an entire function. Since we have
proved that all series involved converge absolutely, we can
apply the reordering of absolutely convergent double series
to conclude that the last formal equality of (53) actually holds
and then

Λ (𝑔1 + 𝑡𝑔2) (𝑓) (𝑦) =

∞

∑

𝑘=0

𝑇𝑘𝑡
𝑘 (62)

is an entire function onC for every 𝑔1, 𝑔2. This gives thatΛ is
Gâteaux holomorphic.

We fix now 𝑞 = 𝑞𝑅,B, a continuous seminorm of the fun-
damental system defined in (50) and denote by 𝑍𝑞 the com-
pletion of the normed space (L(H𝑏(𝑋),H𝑏(𝑌))/Ker 𝑞, 𝑞).
Given 𝑦 ∈ 𝑌 and 𝑓 ∈ H𝑏(𝑋) we define the continuous linear
functional

𝛿𝑓,𝑦 : L (H𝑏 (𝑋) ,H𝑏 (𝑌)) 󳨀→ C (63)

by 𝛿𝑓,𝑦(𝑇) = 𝑇(𝑓)(𝑦). Clearly the quotient mapping 𝛿𝑓,𝑦 :

𝑍𝑞 → C, defined by 𝛿𝑓,𝑦(𝑇̂) = 𝑇(𝑓)(𝑦), belongs to 𝑍
∗

𝑞
. On

the other hand the set {𝛿𝑓,𝑦 : ‖𝑦‖ ≤ 𝑅, 𝑓 ∈ B} is a norming
subset of 𝑍𝑞 since

𝑞 (𝑇) = sup {󵄨󵄨󵄨󵄨󵄨𝛿𝑓,𝑦 (𝑇)
󵄨󵄨󵄨󵄨󵄨
: 𝑦 ∈ 𝑌,

󵄩󵄩󵄩󵄩𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑅, 𝑓 ∈ B} . (64)

We can consider Λ̂ : H𝑏(𝑌,𝑋
∗∗
) → 𝑍𝑞 that remains

Gâteaux holomorphic. Thus 𝛿𝑓,𝑦 ∘ Λ = 𝛿𝑓,𝑦 ∘ Λ̂ : H𝑏(𝑌,

𝑋
∗∗
) → C is Gâteaux holomorphic for every 𝑦 ∈ 𝑌 and

every 𝑓 ∈ H𝑏(𝑋). If we show that it is continuous, then
it will be holomorphic and, by Lemma 6, we will get that
Λ̂ : H𝑏(𝑌,𝑋

∗∗
) → 𝑍𝑞 is holomorphic for every seminorm

𝑞. Since L𝜏𝛽
(H𝑏(𝑋),H𝑏(𝑌)) is a complete space, we can

conclude that Λ : H𝑏(𝑌,𝑋
∗∗
) → L𝜏𝛽

(H𝑏(𝑋),H𝑏(𝑌)) is
holomorphic.

Let 𝑔 ∈ H𝑏(𝑌,𝑋
∗∗
). Now for fixed 𝑓 ∈ H𝑏(𝑋) and 𝑦0 ∈

𝑌, we consider 𝑅 > ‖𝑦0‖ and we choose 𝑆 > 0 such that

𝑔 (𝐵𝑌 (0, 𝑅)) ⊂ 𝐵𝑋∗∗ (0, 𝑆) . (65)

As 𝑓 is uniformly continuous on bounded subsets of𝑋∗∗, for
a given 𝜀 > 0, there exists 0 < 𝛿 < 1 such that if 𝑧1, 𝑧2 ∈

𝐵𝑋∗∗(0, 𝑆 + 1) with ‖𝑧1 − 𝑧2‖ < 𝛿, then
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑧1) − 𝑓 (𝑧2)

󵄨󵄨󵄨󵄨󵄨
< 𝜀. (66)

Let ℎ ∈ H𝑏(𝑌,𝑋
∗∗
) with sup

‖𝑦‖<𝑅
‖𝑔(𝑦) − ℎ(𝑦)‖ < 𝛿. Clearly

ℎ(𝑦0) ∈ 𝐵𝑋∗∗(0, 𝑆 + 1). Thus
󵄨󵄨󵄨󵄨󵄨
𝛿𝑓,𝑦0

∘ Λ (𝑔) − 𝛿𝑓,𝑦0
∘ Λ (ℎ)

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
𝑓 (𝑔 (𝑦0)) − 𝑓 (ℎ (𝑦0))

󵄨󵄨󵄨󵄨󵄨
< 𝜀.

(67)

This gives that 𝛿𝑓,𝑦0 ∘ Λ is continuous for every 𝑦0 and 𝑓 and
completes the proof.

We recall that the 𝜏𝑝 topology on L(H𝑏(𝑋),H𝑏(𝑌)) is
the topology of the pointwise convergence on the points of
H𝑏(𝑋).

Corollary 8. The mapping

𝑗 : H𝑏 (𝑌,𝑋
∗∗
) 󳨀→ M𝑏 (𝑋, 𝑌) ,

𝑔 󳨃󳨀→ 𝑗 (𝑔) = Φ𝑔

(68)

is injective and holomorphic whenM𝑏(𝑋, 𝑌) is endowed with
the topology induced by 𝜏𝑝.

5. Some Properties of M𝑏,∞(𝑋, 𝐵𝑌)

When Aron et al. undertook in [2] the study of M𝑏(𝑋),
the spectra of the Fréchet algebra of holomorphic functions
of bounded type they explicitly stated that it was a step to
study the spectra of the Banach algebraH∞(𝐵𝑋) of bounded
holomorphic functions on the open unit ball of 𝑋 (endowed
with the supremum norm). Following this philosophy we
now study the spectrum consisting of nonzero continuous
homomorphisms Φ : H𝑏(𝑋) → H∞(𝐵𝑌) that we will
denote byM𝑏,∞(𝑋, 𝐵𝑌).

As above we can define

𝜋 : M𝑏,∞ (𝑋, 𝐵𝑌) 󳨀→ L (𝑋
∗
, 𝑌

∗
) ,

Φ 󳨃󳨀→ [𝑥
∗
󳨃󳨀→ 𝑑 (Φ (𝑥

∗
)) (0)] .

(69)

Proposition 9. If 𝑋 is a symmetrically regular Banach space
and 𝑌 is any Banach space, then (M𝑏,∞(𝑋, 𝐵𝑌), 𝜋) is a Rie-
mann domain overL(𝑋

∗
, 𝑌

∗
) and each connected component

of (M𝑏,∞(𝑋, 𝐵𝑌), 𝜋) is homeomorphic toL(𝑋
∗
, 𝑌

∗
).

Proof. The proof follows almost word by word that of
Proposition 1. The basis of neighborhoods of a point Φ in
M𝑏,∞(𝑋, 𝐵𝑌) is given by 𝑉Φ,𝜀 = {Φ

𝑢
: 𝑢 ∈ L(𝑋

∗
, 𝑌

∗
), ‖𝑢‖ <

𝜀}, for 𝜀 > 0, where

Φ
𝑢
(𝑓) (𝑦) = Φ (𝜏

∗

𝑢∗𝐽𝑌𝑦
(𝑓)) (𝑦)

= Φ [𝑥 󳨃󳨀→ 𝑓 (𝐽𝑋𝑥 + 𝑢
∗
𝐽𝑌𝑦)] (𝑦) ,

(70)

for all 𝑓 ∈ H𝑏(𝑋) and 𝑦 ∈ 𝐵𝑌. The fact that Φ𝑢
(𝑓) is

in H∞(𝐵𝑌) follows from a similar argument to that in (18)
taking 𝑅 = 1.

Now, as in (24), we can define a Gelfand transform of 𝑓 ∈

H𝑏(𝑋) by

𝑓 : M𝑏,∞ (𝑋, 𝐵𝑌) 󳨀→ H∞ (𝐵𝑌) ,

Φ 󳨃󳨀→ 𝑓 (Φ) = Φ (𝑓) ,

(71)

and we can see that this is a holomorphic extension of 𝑓 to
M𝑏,∞(𝑋, 𝐵𝑌).

Proposition 10. Let 𝑋 be a symmetrically regular Banach
space and let 𝑌 be any Banach space. Given a function 𝑓 ∈

H𝑏(𝑋) consider its extension 𝑓 defined in (71). Then the
restriction of 𝑓 to each connected component of M𝑏,∞(𝑋, 𝐵𝑌)

is a holomorphic function of bounded type.
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Proof. Like in Proposition 3 it is enough to prove that for each
fixed Φ in M𝑏,∞(𝑋, 𝐵𝑌), the mapping 𝑇 : L(𝑋

∗
, 𝑌

∗
) →

H∞(𝐵𝑌) defined as 𝑇(𝑢) = Φ
𝑢
(𝑓) for 𝑢 in L(𝑋

∗
, 𝑌

∗
) is

holomorphic of bounded type.
First we check that it is uniformly continuous on any

bounded subset ofL(𝑋
∗
, 𝑌

∗
). By definition, there exists 𝑅 >

0 such that
‖Φ (ℎ)‖ = sup

‖𝑧‖<1

|Φ (ℎ) (𝑧)| ≤ sup
‖𝑥‖<𝑅

|ℎ (𝑥)| , (72)

for every ℎ in H𝑏(𝑋). Let 𝑀 > 0. Since 𝑓 is uniformly
continuous on 𝐵𝑋∗∗(0, 𝑅 + 𝑀), given 𝜀 > 0 there exists 𝛿 > 0

such that if 𝑧1, 𝑧2 are in 𝐵𝑋∗∗(0, 𝑅 + 𝑀) with ‖𝑧1 − 𝑧2‖ < 𝛿,
then |𝑓(𝑧1) − 𝑓(𝑧2)| < 𝜀. Consider now 𝑢1, 𝑢2 in L(𝑋

∗
, 𝑌

∗
)

with ‖𝑢𝑗‖ < 𝑀 for 𝑗 = 1, 2 and ‖𝑢1 − 𝑢2‖ < 𝛿. We have
󵄩󵄩󵄩󵄩𝑇 (𝑢1) − 𝑇 (𝑢2)

󵄩󵄩󵄩󵄩

= sup
‖𝑦‖<1

󵄨󵄨󵄨󵄨Φ
𝑢1 (𝑓) (𝑦) − Φ

𝑢2 (𝑓) (𝑦)
󵄨󵄨󵄨󵄨

= sup
‖𝑦‖<1

󵄨󵄨󵄨󵄨󵄨
Φ (𝜏

∗

𝑢∗
1
𝐽𝑌𝑦

(𝑓) − 𝜏
∗

𝑢∗
2
𝐽𝑌𝑦

(𝑓)) (𝑦)
󵄨󵄨󵄨󵄨󵄨

≤ sup
‖𝑦‖<1

sup
‖𝑧‖<1

󵄨󵄨󵄨󵄨󵄨
Φ (𝜏

∗

𝑢∗
1
𝐽𝑌𝑦

(𝑓) − 𝜏
∗

𝑢∗
2
𝐽𝑌𝑦

(𝑓)) (𝑧)
󵄨󵄨󵄨󵄨󵄨

≤ sup
‖𝑦‖<1

sup
‖𝑥‖<𝑅

󵄨󵄨󵄨󵄨󵄨
(𝜏
∗

𝑢∗
1
𝐽𝑌𝑦

(𝑓) − 𝜏
∗

𝑢∗
2
𝐽𝑌𝑦

(𝑓)) (𝑥)
󵄨󵄨󵄨󵄨󵄨

= sup
‖𝑦‖<1

sup
‖𝑥‖<𝑅

󵄨󵄨󵄨󵄨󵄨
𝑓 (𝐽𝑋𝑥 + 𝑢

∗

1
𝐽𝑌𝑦) − 𝑓 (𝐽𝑋𝑥 + 𝑢

∗

2
𝐽𝑌𝑦)

󵄨󵄨󵄨󵄨󵄨
< 𝜀.

(73)

The last inequality holds because 𝐽𝑋𝑥 + 𝑢
∗

𝑗
𝐽𝑌𝑦 ∈ 𝐵𝑋∗∗(0, 𝑅 +

𝑀) for 𝑗 = 1, 2 and ‖𝐽𝑋𝑥 + 𝑢
∗

1
𝐽𝑌𝑦 − (𝐽𝑋𝑥 + 𝑢

∗

2
𝐽𝑌𝑦)‖ ≤ ‖𝑢1 −

𝑢2‖ < 𝛿.
Now we prove that 𝑇 is Gâteaux holomorphic. Let us

denote by ∑
∞

𝑚=0
𝑃𝑚𝑓(𝑥) the Taylor series expansion of 𝑓 at

a point 𝑥 in 𝑋. Consider 𝑢1, 𝑢2 in L(𝑋
∗
, 𝑌

∗
). Since 𝑋 is

symmetrically regular we have that

𝑓 (𝐽𝑋𝑥 + 𝑢
∗

1
(𝑧) + 𝜆𝑢

∗

2
(𝑧))

=

∞

∑

𝑚=0

𝑃𝑚𝑓 (𝑥) (𝑢
∗

1
(𝑧) + 𝜆𝑢

∗

2
(𝑧))

=

∞

∑

𝑚=0

𝑚

∑

𝑘=0

(
𝑚

𝑘
)

∨

𝑃𝑚𝑓 (𝑥) ((𝑢
∗

1
(𝑧))

(𝑚−𝑘)
, (𝑢

∗

2
(𝑧))

(𝑘)
) 𝜆

𝑘
,

(74)

for every 𝑧 in𝑌∗∗ and 𝜆 inC. Nowwe fix 𝑧 and take𝑅,𝑀 > 1

with ‖𝑥‖ ≤ 𝑅 and |𝜆| ≤ 𝑀. We have, by using the polarization
constants and Cauchy inequalities, that

∞

∑

𝑚=0

𝑚

∑

𝑘=0

(
𝑚

𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∨

𝑃𝑚𝑓 (𝑥) ((𝑢
∗

1
(𝑧))

(𝑚−𝑘)
,

(𝑢
∗

2
(𝑧))

(𝑘)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

|𝜆|
𝑘

≤

∞

∑

𝑚=0

𝑚

∑

𝑘=0

(
𝑚

𝑘
) 𝑒

𝑚󵄩󵄩󵄩󵄩𝑃𝑚𝑓 (𝑥)
󵄩󵄩󵄩󵄩𝐵𝑋

×
󵄩󵄩󵄩󵄩𝑢

∗

1

󵄩󵄩󵄩󵄩

𝑚−𝑘󵄩󵄩󵄩󵄩𝑢
∗

2

󵄩󵄩󵄩󵄩

𝑘
‖V‖𝑚𝑀𝑘

= (𝑒𝑀‖V‖ (󵄩󵄩󵄩󵄩𝑢
∗

1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑢

∗

2

󵄩󵄩󵄩󵄩))
𝑚

×
󵄩󵄩󵄩󵄩𝑃𝑚𝑓 (𝑥)

󵄩󵄩󵄩󵄩𝐵𝑋
=

1

2𝑚

󵄩󵄩󵄩󵄩𝑃𝑚𝑓 (𝑥)
󵄩󵄩󵄩󵄩𝐵𝑋(0,2𝐾)

≤
1

2𝑚

󵄩󵄩󵄩󵄩𝑓 (𝑥)
󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑅+2𝐾)

,

(75)

where𝐾 = 𝑒𝑀‖V‖(‖𝑢∗
1
‖ + ‖𝑢

∗

2
‖). As a consequence

∞

∑

𝑚=0

𝑚

∑

𝑘=0

(
𝑚

𝑘
) sup
‖𝑥‖≤𝑅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∨

𝑃𝑚𝑓 (𝑥) ((𝑢
∗

1
(𝑧))

(𝑚−𝑘)
,

(𝑢
∗

2
(𝑧))

(𝑘)
) 𝜆

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

∞

∑

𝑚=0

1

2𝑚

󵄩󵄩󵄩󵄩𝑓 (𝑥)
󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑅+2𝐾)

= 2
󵄩󵄩󵄩󵄩𝑓 (𝑥)

󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑅+2𝐾)
.

(76)

Hence we have that the function 𝑔𝑧,𝑘(𝑥) = ∑
∞

𝑘=𝑚
(
𝑚

𝑘 )

∨

𝑃𝑚𝑓(𝑧)

((𝑢
∗

1
(𝑧))

(𝑚−𝑘)
, (𝑢

∗

2
(𝑧))

(𝑘)
) is well defined and actually belongs

toH𝑏(𝑋) for every nonnegative integer 𝑘 and every 𝑧 in 𝑌∗∗.
Moreover, the equality

𝑓 (𝐽𝑋𝑥 + 𝑢
∗

1
(𝑧) + 𝜆𝑢

∗

2
(𝑧)) =

∞

∑

𝑘=0

𝑔𝑧,𝑘 (𝑥) 𝜆
𝑘 (77)

holds for every 𝑥 in 𝑋, 𝑧 in 𝑌
∗∗ and 𝜆 in C. Actually, (76)

implies also that the series∑∞

𝑘=0
𝑔𝑧,𝑘(⋅)𝜆

𝑘 converges inH𝑏(𝑋)

for each 𝑧 in 𝑌
∗∗. Hence,

Φ[𝑥 󳨃󳨀→ 𝑓 (𝐽𝑋𝑥 + 𝑢
∗

1
(𝑧) + 𝜆𝑢

∗

2
(𝑧))] =

∞

∑

𝑘=0

Φ(𝑔𝑧,𝑘) 𝜆
𝑘
,

(78)

with Φ(𝑔𝑧,𝑘) in H∞(𝐵𝑌) for every 𝑧 and 𝑘 and the series
converges in H∞(𝐵𝑌) for each 𝜆 in C. Now, if we take 𝑧 =

𝑦 ∈ 𝐵𝑌, we have

𝑇 (𝑢1 + 𝜆𝑢2) (𝑦) =

∞

∑

𝑘=0

Φ(𝑔𝑦,𝑘) (𝑦) 𝜆
𝑘
. (79)

To finish we just have to observe that the function 𝑦 󳨃→

Φ(𝑔𝑦,𝑘)(𝑦) belongs to H∞(𝐵𝑌) for every 𝑘. This is an
immediate consequence of the fact thatΦ(𝑔𝑦,𝑘)(𝑦) = 𝐺(𝑦, 𝑦),
where 𝐺 is the function

𝐺 : 𝑌
∗∗

× 𝐵𝑌 󳨀→ C,

(𝑧, 𝑦) 󳨃󳨀→ 𝐺 (𝑧, 𝑦) = Φ (𝑔𝑧,𝑘) (𝑦) ,

(80)

which clearly is separately holomorphic. Thus, by Hartogs’
theorem, 𝐺 is holomorphic.
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Proceeding now as in Section 4 we are going to see how
we can insert big sets into the fibers ofM𝑏,∞(𝑋, 𝐵𝑌). Indeed,
given 𝑔 ∈ H∞(𝐵𝑌, 𝑋

∗∗
) we consider Φ𝑔 ∈ M𝑏,∞(𝑋, 𝐵𝑌)

given by Φ𝑔(𝑓) = 𝑓 ∘ 𝑔. This is well defined, since 𝑔(𝐵𝑌)

is bounded in 𝑋
∗∗ and 𝑓 ∈ H𝑏(𝑋

∗∗
). This again gives an

inclusion

𝑗 : H∞ (𝐵𝑌, 𝑋
∗∗
) 󳨀→ M𝑏,∞ (𝑋, 𝐵𝑌) ,

𝑔 󳨃󳨀→ Φ𝑔

(81)

that for each 𝑢 ∈ L(𝑋
∗
, 𝑌

∗
)maps the set

{𝑔 ∈ H∞ (𝐵𝑌, 𝑋
∗∗
) : 𝑑𝑔 (0) = 𝑢

∗
∘ 𝐽𝑌} (82)

into the fiber of 𝑢. Also in this case we have a projection

𝜁 : M𝑏,∞ (𝑋, 𝐵𝑌) 󳨀→ H∞ (𝐵𝑌, 𝑋
∗∗
) ,

Φ 󳨃󳨀→ [𝑦 󳨃󳨀→ (𝑥
∗
󳨃󳨀→ Φ (𝑥

∗
) (𝑦))] .

(83)

Again like in Section 4 the map [𝑦 ∈ 𝐵𝑌 󳨃→ (𝑥
∗

󳨃→

Φ(𝑥
∗
)(𝑦))] is holomorphic. The fact that it is also bounded

follows immediately from the fact that 𝐵𝑋∗ is a bounded
subset in H𝑏(𝑋) and then {Φ(𝑥

∗
) : 𝑥

∗
∈ 𝐵𝑋∗} is bounded

inH∞(𝐵𝑌).
Like in the case of M𝑏(𝑋, 𝑌) we have that if finite

type polynomials are dense in H𝑏(𝑋) then for each Φ ∈

M𝑏,∞(𝑋, 𝐵𝑌) there exists 𝑔 ∈ H∞(𝐵𝑌, 𝑋
∗∗
) such that Φ =

Φ𝑔.
On the other hand for every nontrivial Banach space 𝑌,

there exists an element inM𝑏,∞(ℓ2, 𝐵𝑌) that does not belong
to {Φ𝑔 : 𝑔 ∈ H∞(𝐵𝑌, ℓ2)}. Indeed, in [18] it is shown that
there exists a continuous homomorphism 𝜑 : H𝑏(ℓ2) → C

such that 𝜑(𝑄) = 1, where 𝑄 = ∑
∞

𝑛=1
𝑥
2

𝑛
, and vanishes on all

continuous homogeneous polynomial on ℓ2 of odd degree.
We define 𝜑 ⊗ 1𝑌 as 𝜑 ⊗ 1𝑌(𝑓) = 𝜙(𝑓)1𝑌 for 𝑓 ∈ H𝑏(ℓ2).
Clearly 𝜑⊗ 1𝑌 is inM𝑏,∞(ℓ2, 𝐵𝑌). Observe that if 𝜑⊗1𝑌 = Φ𝑔

for a certain 𝑔 ∈ H∞(𝐵𝑌, ℓ2), then

0 = 𝜑 (𝑥
∗
) = (𝜑 ⊗ 1𝑌) (𝑦) (𝑥

∗
) = 𝑔 (𝑦) (𝑥

∗
) , (84)

for every 𝑦 ∈ 𝐵𝑌 and every 𝑥
∗
∈ (ℓ2)

∗
= ℓ2, and we have

obtained that 𝑔 = 0. HenceΦ𝑔(𝑓)(𝑦) = 𝑓 ∘ 𝑔(𝑦) = 𝑓 ∘ 0(𝑦) =

𝑓(0) for every 𝑦 ∈ 𝐵𝑌 and every 𝑓 ∈ H𝑏(ℓ2). In particular,
1 = 𝜑(𝑄) = 𝑄(0) = 0, a contradiction.

6. Homomorphisms between Algebras of
Bounded Functions

In this last section we introduce, for two given 𝑋 and 𝑌

complex Banach spaces,

M∞ (𝐵𝑋, 𝐵𝑌) = M (H∞ (𝐵𝑋) ,H∞ (𝐵𝑌))

= {Φ : H∞ (𝐵𝑋) 󳨀→ H∞ (𝐵𝑌)

algebra homomorphisms} \ {0} .

(85)

In this case, noRiemannmanifold structure is known, but
on the other hand we are going to show that some results very

close to the Gelfand transform of the elements of a uniform
algebra can be obtained.

The space H∞(𝐵𝑌) is a dual space. That was proved by
Mujica in [19], where he found a topological predualG∞(𝐵𝑌)

that is a subspace ofH∞(𝐵𝑌)
∗ such that 𝜑 ∈ G∞(𝐵𝑌) if and

only if the restriction of 𝜑 to 𝐵𝑌 is continuous when endowed
with the compact open topology 𝜏0. Let us observe that {𝛿𝑦 :

𝑦 ∈ 𝐵𝑌} is a subset ofG∞(𝐵𝑌).We denote by𝑤∗ theweak-star
topology 𝑤(H∞(𝐵𝑌),G∞(𝐵𝑌)).

Theorem 11. M∞(𝐵𝑋, 𝐵𝑌) is a 𝜏𝑝-compact subset
of L(H∞(𝐵𝑋), (H∞(𝐵𝑌), 𝑤

∗
)).

Proof. An application of the Banach Steinhaus theorem
yields that L(H∞(𝐵𝑋),H∞(𝐵𝑌)) and L(H∞(𝐵𝑋),

(H∞(𝐵𝑌), 𝑤
∗
)) coincide as sets.

By Alaoglu-Bourbaki theorem any bounded subset of
(H∞(𝐵𝑌), 𝑤

∗
) is weak-star relatively compact.Thus, by [20, §

39.4(5)] the spaceL(H∞(𝐵𝑋), (H∞(𝐵𝑌), 𝑤
∗
)) has the prop-

erty that every equicontinuous subset of it is relatively 𝜏𝑝-
compact. As the spectrum M∞(𝐵𝑋, 𝐵𝑌) is equicontinuous,
we obtain that it is relatively 𝜏𝑝-compact. Now we check
that the spectrum is 𝜏𝑝-closed. Take 𝑇 in the 𝜏𝑝 closure
of M∞(𝐵𝑋, 𝐵𝑌) and let (Φ𝛼) be a net in the spectrum 𝜏𝑝

convergent to 𝑇. Then, given 𝑓, 𝑔 in H∞(𝐵𝑋) we have that
Φ𝛼(𝑓), Φ𝛼(𝑔), and Φ𝛼(𝑓𝑔) = Φ𝛼(𝑓)Φ𝛼(𝑔) 𝑤

∗-converge to
𝑇(𝑓), 𝑇(𝑔), and 𝑇(𝑓𝑔), respectively. But the 𝑤∗ topology in
H∞(𝐵𝑌) coincideswith the topology of uniform convergence
on the compact subsets ofG∞(𝐵𝑌). On the other hand in [19,
2.1 Theorem] it is proved that the mapping

𝑔𝐵𝑌
: 𝐵𝑌 󳨀→ G∞ (𝐵𝑌) (86)

defined by 𝑔𝐵𝑌
(𝑦) = 𝛿𝑦 is holomorphic. Hence if 𝐾 is a

compact subset of 𝐵𝑌, then {𝛿𝑦 : 𝑦 ∈ 𝐾} is a compact subset
of G∞(𝐵𝑌) and we obtain that Φ𝛼(𝑓) converges uniformly
to 𝑇(𝑓) on 𝐾. Also Φ𝛼(𝑔) converges uniformly to 𝑇(𝑔)

on 𝐾. As a consequence the net Φ𝛼(𝑓)Φ𝛼(𝑔) converges to
𝑇(𝑓)𝑇(𝑔) on the compact open topology of 𝐵𝑌. This implies,
by the definition of G∞(𝐵𝑌), that 𝜑(Φ𝛼(𝑓)Φ𝛼(𝑔)) converges
to𝜑(𝑇(𝑓)𝑇(𝑔)) for every𝜑 inG∞(𝐵𝑌). In other words the net
Φ𝛼(𝑓)Φ𝛼(𝑔) 𝑤

∗-converges to 𝑇(𝑓)𝑇(𝑔) and we have
𝑇 (𝑓𝑔) = 𝑇 (𝑓) 𝑇 (𝑔) , (87)

for every 𝑓, 𝑔 in H∞(𝐵𝑋). Thus 𝑇 belongs to M∞(𝐵𝑋, 𝐵𝑌)

and the conclusion follows.

In our setting, taking M∞(𝐵𝑋, 𝐵𝑌) as a 𝜏𝑝-compact set,
we are going to extend the concept of Gelfand transform of
an element of a Banach algebra in the following way. Given
𝑓 ∈ H∞(𝐵𝑋), define

𝑓 : M∞ (𝐵𝑋, 𝐵𝑌) 󳨀→ H∞ (𝐵𝑌) (88)

by 𝑓(Φ) = Φ(𝑓).

Proposition 12. The mapping
̂ : H∞ (𝐵𝑋) 󳨀→ 𝐶 (M∞ (𝐵𝑋, 𝐵𝑌) ,H∞ (𝐵𝑌)) ,

𝑓 󳨃󳨀→ 𝑓

(89)

is an isometry of algebras.



Abstract and Applied Analysis 11

Proof. Clearly it is an algebra homomorphism and
󵄩󵄩󵄩󵄩󵄩
𝑓
󵄩󵄩󵄩󵄩󵄩
= sup
Φ∈M∞(𝐵𝑋,𝐵𝑌)

󵄩󵄩󵄩󵄩Φ (𝑓)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩 , (90)

for every 𝑓 inH∞(𝐵𝑋). For a fixed 𝑓, given 𝜀 > 0 there exists
𝑥0 ∈ 𝐵𝑋 such that |𝑓(𝑥0)| > ‖𝑓‖ − 𝜀. Let 1 < 𝑅 < 1/‖𝑥0‖ and
consider any 𝑦∗

0
∈ 𝑋

∗ with ‖𝑦∗
0
‖ = 1 that attains its norm at a

certain 𝑦0 ∈ 𝑌with ‖𝑦0‖ = 1. Let 𝑔 : 𝐵𝑌 → 𝐵𝑋 be defined by
𝑔(𝑦) = 𝑦

∗

0
(𝑦)𝑅𝑥0. We have that Φ𝑔 belongs to M∞(𝐵𝑋, 𝐵𝑌)

and
󵄩󵄩󵄩󵄩󵄩
𝑓
󵄩󵄩󵄩󵄩󵄩
≥
󵄩󵄩󵄩󵄩󵄩
Φ𝑔 (𝑓)

󵄩󵄩󵄩󵄩󵄩
≥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓 ∘ 𝑔 (

𝑦0

𝑅
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓(
𝑦
∗

0
(𝑦0)

𝑅
𝑅𝑥0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨𝑓 (𝑥0)

󵄨󵄨󵄨󵄨 >
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩 − 𝜀.

(91)

Hence the inequality ‖𝑓‖ ≥ ‖𝑓‖ also holds.

The scalar spectrum of H∞(𝐵𝑋), denoted by M∞(𝐵𝑋),
can be considered as a subset of M∞(𝐵𝑋, 𝐵𝑌) by associating
to each 𝜑 inM∞(𝐵𝑋) the homomorphism𝜑⊗1𝑌 that belongs
toM∞(𝐵𝑋, 𝐵𝑌). In that way the new Gelfand transform 𝑓 of
each 𝑓 in H∞(𝐵𝑋) can be considered and extension of the
classical 𝑓 by the equality

𝑓 (𝜑) 1𝑌 = 𝑓 (𝜑 ⊗ 1𝑌) . (92)

It is natural to consider againM𝑏(𝑋, 𝑌) andM𝑏,∞(𝑋, 𝐵𝑌)

under the light of Proposition 12. We cannot give to any
of these two spectra a topology that makes them compact
sets. But in the case of M𝑏,∞(𝑋, 𝐵𝑌) it can be endowed
with a topology in such a way that this set is a countable
union of compact sets. Indeed, as above, an application of
the Banach Steinhaus theorem, now for Fréchet spaces, yields
that L(H𝑏(𝑋),H∞(𝐵𝑌)) and L(H𝑏(𝑋), (H∞(𝐵𝑌), 𝑤

∗
))

coincide as sets and, also as above, any equicontinuous subset
ofL(H𝑏(𝑋), (H∞(𝐵𝑌), 𝑤

∗
)) is relatively 𝜏𝑝-compact. Given

𝑅 > 0, we denote

M𝑏,∞(𝑋, 𝐵𝑌)𝑅
= {Φ ∈ M𝑏,∞ (𝑋, 𝐵𝑌) :

󵄩󵄩󵄩󵄩Φ (𝑓)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩𝐵𝑋(0,𝑅)
∀𝑓 ∈ H𝑏 (𝑋)} .

(93)

Then, M𝑏,∞(𝑋, 𝐵𝑌)𝑅 is an equicontinuous set, and a sim-
ilar argument of one given in the proof of Proposition 12
implies that M𝑏,∞(𝑋, 𝐵𝑌)𝑅 is a 𝜏𝑝 compact set. Finally
M𝑏,∞(𝑋, 𝐵𝑌) = ⋃

∞

𝑛=1
M𝑏,∞(𝑋, 𝐵𝑌)𝑛.
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