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We give a unified generalization of the generalized Muirhead means and the generalized Heronian means involving three para-
meters. The Schur-convexity of the generalized Muirhead-Heronian means is investigated. Our main result implies the sufficient
conditions of the Schur-convexity of the generalized Heronian means and the generalized Muirhead means.

1. Introduction

In what follows, we denote the set of real numbers by R, the
set of nonnegative real numbers by R, and the set of positive
real numbers by R, ,.

Let (x, y) € R

. the classical Heronian means is defined
by (see [1])

H () = S0 0

In 1999, Mao [2] gave the definition of dual Heronian
means; that is,

— X+ 4+/xy +
H,(x,y) = % 2)

In 2001, Janous [3] considered the unified generalization
of Heronian means H,(x, y) and H,(x, y) and presented a
weighted generalization of the above-mentioned Heronian-
type means, as follows:

+ +
%’ 0Sw<oo)
H, (x,y) = w+2 (3)
NESD w = 00.

Jia and Cao [4] investigated the exponential generaliza-
tion of Heronian means

1/p
X+ (xp)P? 4 yP

H,(x y) = (4)

VP p=0,
and they established some related inequalities. The mono-
tonicity and Schur-convexity of the Heronian means H, (x, y)
were discussed by Li et al. in [5].

Shi et al. [6] discussed the Schur-convexity of a further
generalization of the Heronian means given by

1/
)\
w+2 > P70

Hp,w(x>y) = <
VXY p=0,

(5)

and they obtained a significant result asserted by Theorem A
below.
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Theorem A. For fixed (p,w) € R?,

D) if(p,w) € {(pyw) | p=2,0<w <2}, then Hp,w(x, ¥)
is Schur-convex for (x, y) € R%.

@ If(pw) e {(pw) | p<Lw>0Uf(pw) | 1<
p<3/2,w=11U{(p,w)|3/2<p<2w=2} then
H,,(x, y)is Schur-concave for (x, y) € Ri.

As a further investigation of Theorem A, Fu et al. [7] gave
the necessary and sufficient condition for the Schur-convexity
of the generalized Heronian means H,, ,(x, y), which is stated
in the following theorem.

Theorem B. For fixed (p,w) € R?, the generalized Heronian
means H,, ,(x, y) is Schur-convex for (x, y) € R?, if and only
if
(pw)e{(pw)lp=2,0sw<2(p-1)}
uf{(pw) | 1< p<2,w=0}.

Furthermore, H p’w(x, y) is Schur-concave for (x, y) € Ri N
if and only if
(pw) e{(pw) | p<2,max{0,2(p- 1} <w}.  (7)

Remark 1. 1t is easy to observe that, for p = 1, w = 0,
H, 4(x, y) = (x+y)/2is Schur-convex and Schur-concave for
(x,y) € IRL. In addition, we note that {(p,w) | p = 2,w =
0} c {(p,w) | p=2,0<w < 2(p-1)}. Thus, the conditions of
Schur-convexity of H, ,(x, y) in Theorem B can be rewritten
as

(pw)e{(pw)|p=20<w<2(p-1)}
U{(pw)l1<p<2,w=0}.

(8)

The Schur-power-convexity of H,,(x, y) was investi-
gated by Yang [8].

In 2006, Trif [9] considered the following generalized
Muirhead means, defined by

P.4 q.p\ Hp+tg)
M) , )

M(p,qsxsy)=< 5

wherex,y € R,,, p,ge R, p+q #0.

Gong et al. [10] investigated the Schur-convexity of
generalized Muirhead means M(p, g; x, y) and obtained the
following results.

Theorem C. For fixed (p,q) € R, the generalized Muirhead
means M(p,q; x, y) is Schur-convex for (x, y) € R, if and
only if

(pa) e {(p9) | (p-9)" 2 p+q>0,pg<0}. (10)

Furthermore, M(p, q; x, ) is Schur-concave for (x, y) €
R?, if and only if

(p-9) €{(pa) 1 p=0.920.(p-q) " <p+q

(p9) # (0,0} U{(p.q) | p+q <0}

(11)
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Remark 2. If we define, for p = 0, g = 0, the generalized
Muirhead means by M(0,0;x,y) = +/xy, we can easily
find that M(0,0;x, y) is Schur-concave for (x,y) € [R{i +;
thereby, the conditions of Schur-concave of M(p, g; x, y) in
Theorem C can be rewritten as

(pq) € {(p.g) | p=0.920,(p-q)* < p+q}
u{(p.q) | p+q<0}.

(12)

The Schur-geometric-convexity and Schur-harmonic-
convexity of the generalized Muirhead means M(p, g; x, y)
were studied by Xia and Chu in [11, 12].

In this paper we generalize the generalized Muirhead
means M(p,q;x, y) and the generalized Heronian means
H,,(x,y) in a unified form. For this purpose we define
a generalized Muirhead-Heronian means %, ., (x, y), as
follows:

H g (%, 9)
1/(p+q)
xPy1 + w(xy) PV 4 xayp -
= 2+w > Prat0
VXY p=q=0,
(13)

where (p,q) € R%, (x, y) € R%_.

The paper is organized as follows. Section 2 intro-
duces several definitions and lemmas; Section 3 discusses
the Schur-convexity of the generalized Muirhead-Heronian
means; Section 4 provides some remarks on the results given
in Theorem 9 and it is shown that the sufficient condi-
tions of Schur-convexity of the generalized Heronian means
H,,(x, y) and the generalized Muirhead means M(p, g; x, y)
can be deduced from Theorem 9 as special cases.

2. Definitions and Lemmas

We introduce and establish several definitions and lemmas,
which will be used in the proofs of the main results in
Section 3.

Definition 3 (see [13, page 7]). For any x = (x;,%,,...,X,,),
Y=y yy) € Rlet xpyy = x5 2 -+ 2 xp,; and
Yy 2 Ypag 2 2 Yy denote the components of x and y in
decreasing order, respectively.

The n-tuple y is said to majorize x (or x is to be majorized
by y), in symbols x < y, if

k k
me S Zym
i=1 i=1

holdsfork =1,2,...,n—1, (14)
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Definition 4 (see [13, page 54]). For any x = (x1,%,,...,X,),
Y=YV €EQQCRY), ¢: Q — Rissaid to be
a Schur-convex function on Q if x < y on Q implies ¢(x) <
¢(y) and ¢ is said to be a Schur-concave function on Q if and
only if —¢ is a Schur-convex function.

Lemma 5 (see [13, page 57]). Let Q(c R") be a symmetric
convex set with nonempty interior Q° and ¢ : Q — Ra
continuous symmetric function on Q. If ¢ is differentiable on
Q°, then ¢ is the Schur-convex (Schur-concave) function on Q
if and only if

(xl—xz)(a—“b—a—‘b)zo (<0) (15)

0x, 0x,

holds for all (x|, x,,...,x,) € Q°.

Lemma 6. Suppose that p,q € R, p > g, A > 1and

_ P w(P+4), (p-qr
gA)=pAT+g+ 5 A

(16)

_ q/lp—qﬂ _ p/\ _ w (p + q) A((p—q)/2)+1'
2

Suppose also that
B, ={(pgw) |l p+q>0,p-qg-220,w=0},
B,={(pgw) I p+q>0,p-q-2<0,w=0},
E, =B,
n{(p.qw)lq<o,
2p-q)° - +w)(p+q) 20},
Ey, =B,

17)

n{(p.qw) 19<0,
2(p-q) - 2+w)(p+q) =0,
(p+a)(p-q-2)w
-8q(p-q+1)=0}.
Then (p +q)g(A) = 0 for (p,q,w) € E;; UE,,.
Proof. Differentiating g(A) with respect to A gives
g W) =pp-g)A" "

N w(p+ 614) (p-9q) A(-9/2-1

_q(p_q"'l)/\p_q_p (18)

_w (p+q)(p-q+2) AP/
4 b

2(P—q)2—(2+w)(p+q)'

g ()= 5

3
Let f(A) = A77*24"(}), then
fM=pp-a)(p-q-1)
L wpra)(p -Sq) (P=4-2) 4pr2
-q(p-q+1)(p-q)A (19)
~w(pt+q)(p —8q +2)(p-q) Aaprom

fm =21 0p-' -+ w(p+a).
Differentiating f(A) with respect to A yields
“w(p+q)(p-q) (p-q-2) (@pr2)-1
16
-q(p-q+1)(p-9)

L wpra)(p-a+2)(p-9)(P-a-2),qpn
16 ’

o=

f =22 (pra)(p-g-2)w-8q9(p-q+1)).
f”(A)

_wlp+q)(p-a)’(p-9-2)(p-q+2)
32

x (A — I)A((G—P)/Z)—Z_

(20)

In order to prove Lemma 6, we need to consider the two
cases below.

Case 1 ((p,q,w) € E;;). In view of (p,q,w) € E,;, we have
f”()t) < 0 for A > 1. Hence f'(/\) is decreasing on [1, +00),
by which, together with

ffa>o,

, (21)
Jim ) =-q(p-q+1)(p-9) >0,

we deduce that f'(1) > 0 for A > 1. This means that () is
increasing on [1, +00). Thus, we have, for A > 1,

FU=f(1)20

f )
Aoz 20 (22)

— gu ) =

=g M=2g 1020
= g()=g(1)=0.

This leads to (p + q)g(A) = 0.



Case 2 ((p,q,w) € E,). By (p,q,w) € E;,, we have f"(/\) >
0 for A > 1. Thus f'(/\) is increasing on [1, +00), by which,
together with

fr>o

(23)
-q(p-q+1)(p-q) >0,

lim f'(A) =
A — 400

we obtain f'(/\) > 0 for A > 1. It follows that f(A) is
increasing on [1, +00). Thus, we have, for A > 1,

fzfm=0

o,
Ad-pt2 (24)

N gu ) =

=4 N=2g41=0
=gAW)=2g(1)=0

This implies that (p + g)g(A) > 0. The proof of Lemma 6
is complete. O

Lemma 7. Suppose that p,q € R, p>q, A > 1 and

- w(p+q) (p-9)/2
A) = pAP1 AP
gA)=pAtT+q+ 5

(25)
- q,\P*q“ —pA- M/\((p*q)ﬂ)ﬂ
Suppose also that
B, —{(P’q, w)lp+q>0,p-q-2>0,w>0},
={(pgw) |l p+q>0p-g-2<0,w=>0},
={(P,q, w) | p+q<0,p-q-2=0,w>0},
By={(pgw) | p+q<0,p-q-2<0,w>0},
Ey =B n{(pgw)lq>0,
2p-q) - @+w)(p+q) <0,
(p+a)(p-q-2)w
-8q(p-q+1)<0},
(26)

E,, =B,n{(p,qw)q>0,
2(p-q)’ -2 +w)(p+q) <0},

{(pgw)lg<o,

20p-q) -Q@+w)(p+q)>0
(p+a)(p-q-2)w
-8q(p-q+1) 20},

E,; =B;N

E,, :B4r‘|{(p,q,w) lgq <0,
2(p—q)2—(2+w)(p+q) > 0}.
Then (p+q)g(A) <0 for (p,q,w) € E, UE,, UE,; UE,,.
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Proof. Using the differential expressions obtained in
Lemma 6, one has

g N =plp-g) A" 1"+

-q(p-q+1)\

_w(p+q)(p-q+2) (-2
4 bl

w(p+q)(p-q) (-1
4

20p-q)’ -2 +w)(p+q)
= :

_ Aq—p+2g!l (/\) ,

g )=

f
=pp-q9)(p-q9-1)

. w(p+q)(p-9)(p-9q ‘Z)A(qu)/z
8

-q(p-q+1)(p-9)A
~w(p+q)(p-q+2) (P_q)A((q—p)/Z)H
8 b

(2(17 9’ -2+w) (p+9q)),

F

=

_w (p+ Q) (r-a) (p-aq- Z)A((q—p)/Z)—l
16

-q(p-q+1)(p-q)

w(P+q)(P—q+2)(p—q)(P—q—2)A<q7p)/2
16 ’

o=

£ =2 ((p+a)(p-q-2)w-8q(p-q+1),
w(p+a)(p-a)' (P-q-2)(p-q+2)

) =- 2

x(A-1) A((Q—P)/Z)—Z.

(27)

We divide the proof of Lemma 7 into four cases.

Case 1. If (p, g, w) € E,;, then

ffy<o,  f<o, (V) <o0.

(28)

g (1) <o,

Thus we have, for A € [1, +00),
"M <o

= f'(A) is decreasing
= () <0
= f (A) is decreasing = f (1) <0 (29)
= 4"V <0
= g’ (A) is decreasing = g' (A) <0
= g (A) is decreasing = g(1) < g(1) =0

= (p+q9)gA) <0.
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Case 2. If (p,q,w) € E,,, then
<o,
Jim f' ) =-q(p-q+1)(p-q) <0,
fm<o, g@<o,
"y =o.
Thus we have, for A € [1, +00),
"M =0
= f ") is increasing
= () <0
= f(A) is decreasing = f (1) <0
=g M=o
= g’ (A) is decreasing = g’ (1) <0
= g (A) is decreasing = g (1) < g(1) =0
= (p+q)g(M) 0.

Case 3.1f (p,q,w) € E,3, then

(30)

(31)

ffay=o0  f@>o0 4gm>o0  f'M=o.

Thus we have, for A € [1, +00),
") =0

= f'(A) is increasing
= f' (A) 20 = f (A) is increasing
= fAN>0=4"L)>0
= g' (A) is increasing = g’ (1) > 0
= g (A) is increasing = g (1) > g(1) =0
= (p+q)g () <0.

Case 4.1t (p,q, w) € E,,, then

ffays>o  f@>o,

Alirgmf’(k) =—q(p-q+1)(p-9q) >0,

gm>o0  f"<o.

(33)

(34)

Thus we have, for A € [1, +00),
") <o
= f' () is decreasing = f' (1) >0
= f (A) is increasing = f (1) > 0
(35)
= g” A)>0= g' (A) is increasing
= g () >0 = g(A) is increasing
= gM)2g(1)=0=(p+q)g() <0.

This completes the proof of Lemma 7. O
Lemma 8. Suppose that p,q € R, p > g, A > 1 and

- w(p+q) (p-q)/2
) = pAP1 AP
gA)=pA T +q+ 5

(36)

ety WD) (mgin
qA pA-—>—4 :

Suppose also that
B, ={(p.qw) | p+q>0,p—q-22=0,w=0},
By={(pqw) | p+q<0,p-g-220,w20},
E; =B n{(p.gw)lq>0,
(p+a)(p-q-2)w-89(p-q+1)>0,
2(p-q)’ - 2+w)(p+q) <0}
n{(p.gw) | (p-a)° -3 (p+q)+2 <0},
Eyp =B;n{(p.qw) 1 q<0,(p+q)(p-q-2)w

-8q(p-q+1)<0}.
(37)
Then (p + q)g(A) < 0 for (p,q, w) € E3; U Esy.

Proof. Based on the differential expressions g'()t), g"(/\),
g'(l), f'()t), f”()t), f'(l) obtained in the proof of Lemma 6,
in order to prove Lemma 8, we need to consider the two cases
below.

Case 1. If (p,q, w) € E;}, then

ff=o flay>o,
o (8)
Jim ) =-q(p-gq+1)(p-q) <0.

Hence, we deduce that there exists A; € (1, +00) such that
f'(Al) = 0, satisfying f'(A) >0forA e [l,A;)and f'(/\) <0
for A € (A, +00).



Further, we conclude that f(A) is increasingon [1,A,) and
decreasing on (A, +00); thereby, we get f(A) < f(A,)for A €
[1, +00).

From f'(/ll) = 0 we have

<w(p+q)(P—q+2)(p-q)(p—q—2)
16

w(p+q)(p-9)(p-q-2) yapr 3
161, !
=q(p-q+1)(p-9q);
this yields
/\(lq—P)/Z
16q(p-q+1)\ @0
(p+a)(p-g+2)A +q-p)(p-q-2)w’

we thus have

fA)=plp-a)(p-q-1)
-q(p-q+1)(p-a9)A
+(w(P+q)(P—q)(p—q—2)

8

“w(p+q)(p-q+2)(p-q)A )A(q—p)/Z
) 1

(P_Q)zGl (A1)
(p-a-2)((p-q+2) A, +q-p)

(41)
where
G (M) =-q(p-q+2)(p-q+1) (A, -1)
+((p-a)'-3(p+q)+2) (42)
x(2+(p-gq+2)(A,-1))<0.
Note that (p, q, w) € E;, implies p—g—2 > 0and
(p-q+2)A +q-p
>(p-q+2)+q-p=2

we conclude that f(A) < f(A;) < 0for A € [1,+00).
Hence, from g'(l) < 0, one has, for A € [1, +00),

fA) <0

(43)

= g" (\) <0 = g’ (M) is decreasing
(44)
= g (A) <0 = g(A) is decreasing

=gM<g)=0=(p+q)gA) <0.
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Case 2.If (p, g, w) € Es,, then

"fwy=o0,  fl(<o,

, (45)
Jim ) =-q(p-q+1)(p-q)>0.

Thus, we deduce that there exists A, € (1, +00) such that
f'()tz) = 0, satisfying f'()t) <0forAe([l,A,)and f'(/\) >0
for A € (A,,+00).

It follows that f(A) is decreasing on [1, A,) and increasing
on (A,, +00), therefore, we obtain

f=f@A,)

From f'()tz) = 0, we have

(w(P+q)(p—q+2)(P—q)(P—q—2)

for A € [1,+00). (46)

16

wprd(p-9 (P-4-2)\ gpr @)
161, 2
=q(p-q+1)(p-49);
that is,
A(zq—P)/Z
~ 16q(p-q+1)A, ‘ (48)
(p+a)((p-q+2)A,+q-p)(p-q-2)w’
we thus have
fA)=p(p-a)(p-q-1)
-q(p-q+1)(p-q)),

+(w(p+61)(10—61)(P—61—2)
8

w(p+q)(p-q+2)(p-9) Az)A(qp)/Z
8 2

(P“J)ZGz (A,)
(p-a-2)((p-q+2) A, +q-p)

(49)
where
G, (L) =-q(p-q+2)(p-q+1) (A, -1)°
+((p-a)-3(p+q)+2) (50)
x(2+(p-q+2)(A,-1))>0.
Note that (p, q, w) € E;, implies p—g—2 > 0and

(p-a+2)A+q-p

(51)

>(p-q+2)+q-p=2,
which yields that f(A) > f(A,) > 0for A € [1, +00).
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Therefore, from g'(l) > 0, one has, for A € [1, +00),
fA)>0

= g" AN)>0= g’ (M) is increasing

(52)
= g' (A) > 0= g(A) is increasing
=g =2g1)=0=(p+q)g) <0.
The proof of Lemma 8 is completed. O

3. Main Result
The main result of this paper is given by Theorem 9 below.
Theorem 9. For fixed (p,q,w) € R?, let

A ={(pgw)lp-9-220,9<0}
u{(pgw) I p-q-2<0,g<0,
(p+a)(p-q-2)w
-8q(p-q+1)=20},

A, ={(pgw)lg-p-220,p=<0}
u{(pgw)lg-p-2<0,p=<0,
(pta)(@-p-2)w
-8p(q-p+1)20},

A;={(pgw)lp-9-220,q>0,
(p+a)(p-q-2)w
-89(p-q+1) <0}
u{(pgw)lp>qp-q-2<0,9>0},

A, ={(pgw)lg-p-220,p>0,
(Pta)(g@-p-2)w
-8p(q-p+1) <0}
u{(p.qw)lg>p.q-p-2<0,p>0},

As={(pgw)lp-9-220,q<0,
(p+a)(p-q-2)w
-89(p-q+1) =20}
u{(pgw)lp>qp-q-2<0,9<0},

Ag={(pgw)lg-p-220,p<0,
(pta)(@-p-2)w
-8p(q-p+1) 20}
u{(pgw)lg>p.q-p-2<0,p<0},

A;={(p.qw) I p-9-220,9>0,
(p+a)(p-gq-2)w
-8q(p-q+1)>0},

Ag={(p.qw) 1 q-p-220,p>0,
(p+a)(q-p-2)w
-8p(q-p+1)>0},

Ag={(p.qw) I p-9-220,9<0,
(p+a)(p-q-2)w
-8q(p-q+1) <0},

Ay ={(pgw)lqg-p-220,p<0,
(p+a)(q-p-2)w

-8p(qg-p+1)<0},
(53)

and let
S, ={(p.gw) | p+q>0.2(p-q)’
~@2+w)(p+q)=0,w=0}
N(A,UA,),
S, ={(p.gw) | p=qw=>0}
U{(pgw) | p<2,q=0max{0,2(p-1)} < w}
U{(pqw) g <2 p=0max{0,2(q-1)} < w}
u[{(pgw)lp+q>0w=0,
2p-q) - 2+w)(p+q) <0}n(A;UA,)]
ul[{(paw)lp+a<ow=o0,
2(p-q) - 2+w)(p+q) >0} n(A;UA)]
u[{(pgw)lp+q>0w=0,
(p-a)-3(p+q)+2<0,
2(p-g)* -2 +w)(p+q) <0}
N(A;UAy) ]

U{(p.gw) p+q<0w=0in(AgUdy)].
(54)

The following assertions holds true.

(1) If (p, g, w) € S, then the generalized Muirhead-Hero-

ni;m means F 4., (X, y) is Schur-convex for (x, y) €
R:,.



(2) If (p, g, w) € S,, then the generalized Muirhead-Hero-
nian means  ,, , ,(x, ) is Schur-concave for (x, y) €

) pgw
RZ,.

Proof. Note that the expression #, ; ,(x, y) is of symmetry
between x and y and without loss of generality we assume
that x > y.

Case 1. If p = g, then 7, , , (x, y) = /xy. Define

pon ()T

ox 9y 2./xy
Hence, # P,q,w(x, y) is Schur-concave for (x, y) € IRfr e

Case 2. If g = 0, we have the following known results (see
Theorem B and Remark 1 in Section 1).

I 4, 0.0(%, ) is Schur-convex for (x, y) € Ri , if and only

p.Ow
if

(pw)e{lpw)lpz2,0<w<2(p-1)}
(56)
U{(pw) 1< p<2,w=0};

I 0.0(%, y) is Schur-concave for (x, y) € R?, ifand only

pOw
if

(pw) e {(pw) | p<2,max{0,2(p-1)} <w}. (57)

Case 3.1f q # 0, then

()

ay
(58)
=) H g (6 ) F(xy)
xPyd + w(xy)(‘wq)/2 + x1yP )
where
F(x,y)

) o)
= —_ + —
pt+q P y 1 y

N w(p +q)(f>((1?+q)/2)l
y

A5 A2

W (P2+ q) (;)wq)/z)
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yp+q—1
= PAPT 4 AT
pP+q
+ w (P2+ Q) /\((p+q)/2)—1 _ q/\P _ p)tq
w (p+9q) Apra2
2
2971 Pt
L A ( M1y q
ptq
L v (P2+ D -0z _ APt
Y (P+4) ; p-qy
2
291 Pl
AN AR g,
ptq

(59)
where A = x/y > 1;in addition, the definition of 7', ; , (x, ¥)

implies that p + g # 0.
Using Lemma 6 gives

(p+q)g(M) =0 for (p,qw) € E;; UE,, (60)

where

En =Blﬂ{(p,q,w)|q<0,
2(p-q) - @+w)(p+q) 20},
Ep=B,n{(p.gqw)lg<0,
Ap-a) -Crw(pra)20
(p+a)(p-q-2)w
-8q(p-q+1) 20}
B, ={(pqw) | p+g>0,p—q-2=0,w=>0},
B, ={(pqpw) | p+q>0,p—q—-2<0,w=0}.

On the other hand, we deduce from the symmetry of
 pq0(%, y) with respect to p and q that

(p+9)g(V) 20 for (p,qw) € Ey; UE},,  (62)

where

!

Ell

=B n{(p.qw)lp<0,

2(p-q)’ -2 +w)(p+q) =0},
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Ey,
=B,n{(p.qw) | p<0,
2(p-q) - Q2+w)(p+q) 20,
(p+a)(q-p-2)w-8p(g-p+1)20},
={(pgw)lp+q>0,
-p-220,w>0},

={(p.qgw) I p+q>0,

q-p-2<0,w=>0}.
(63)

Now, by using Lemma 5 and combining the result stated
in Case 2, we deduce that 7,  , (x, y) is Schur-convex under
the conditions below:

(p.qw)

€ B, UE, UE UE],
ul{lpgw)lq=0p=220<w<2(p-1)}
u{(pgw)lq=01<p<2,w=0}
U{(pgw)lp=0g220<w<2(q-1)} (64
u{(pgw) |l p=0,1<g<2,w=0}

={(p.gw) I p+q>0,
2(p—q)2—(2+w)(p+q) 20,w20}
n(A,UA,)=S,.

This proves the validity of the first assertion in Theorem 9.
It is easy to find that

E,  UE,y,
=A;n{(pgw) | p+q>0w=0, (65)
2(p—q)2—(2+w)(p+q)g0}.

In view of the symmetry of #, , , (x, y) between p and g,

utilizing a positional exchange between p and g in the above
expression gives
Ey UE,,
=A4ﬂ{(p,q,w)|p+q>0,w20, (66)
2(p-q) -2+ w)(p+q) <0}

Hence, we deduce from Lemma 7 that

(p+q)g(A) <0 for E, UEy, UE, UE), (67)

where

! !
E21 U E22 U E21 U E22

= {(P%w) lp+g>0,w=0,
(68)

2(p-q)’ - 2+w)(p+q) <0}
N(A;UA,).
By using the same method as above, we can deduce that
(p+q)gM) <0
for (Ey; U Eyy U Ejy UES,) (69)
U(E; UE;, ) U (E;y UES,),
where
E,; UE, UE,, UE,,
= {(p,q,w) |p+q<0,w=>0,
2(p-q)’ -2 +w)(p+q) >0}
N(AsUAy),
E; UEL,
= qw) | p+g>0,w=>0,
{(pgw)|p+q 0
(p-q)°-3(p+q)+2<0,
2(p-q)° - @+w)(p+q) <0}
N(A,UA;y),
E;, UEL,
={(p.qw) | p+q<0,w=>0}
N(AgUA,).

Therefore, we deduce from Lemma5 and the results
stated in Cases 1 and 2 that #, , ,(x, y) is Schur-concave
under the following conditions:

(pgw)
€ (Ey UE,, UE, UE)))
U (Ey3 UEy UEy; UE,y,)
U(E;5; U E31) (E32 U Egz)

(

u{(p.gw) | p=qw =0}

U{(pgw) | p<2,9=0max{0,2(p-1)} < w}
{

U{(p.qw) 1 9<2,p=0,max{0,2(q-1)} < w}
S,

(71)
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This proves the validity of the second assertion in
Theorem 9. The proof of Theorem 9 is thus completed. [

4. Some Remarks on the Results of Theorem 9

In this section, we provide some remarks on the results given
in Theorem 9; we show that the sufficient conditions of Schur-
convexity of the generalized Heronian means H,,(x, y)
and the generalized Muirhead means M(p,g; x, y) can be
deduced from Theorem 9 as special cases.

Remark 10. If we take ¢ = 0 in Theorem 9, we have
Z pquw(%:y) = Hp (x, y). Furthermore, we have

S ={(p.qw) 1 p>0,g=00<w<2(p-1)}
n[{(pgw)lp=2,9=0,w=0}
u{(pgw) | p<2,9=0w=0}] (72)
={(pgw) | p22,9=00<w=2(p-1)}

u{(p.gw) | 1<p<2,g=0w=0},

which are the sufficient conditions of Schur-convex of the
generalized Heronian means H,, , (x, y) asserted by Theorem
B.

On the other hand, we note that, for g = 0,

{(p.aw)lp+qg>0w=0,
2(P—q)z—(2+w)(p+q)so}
N(A;UA,) =0,

{(Pa%w)|p+q<0,w20,
2p-q)' - C+w)(p+aq) >0}
N(AsUAg)
={(pgw)|p<0,9=0,w=0}

n[{(pgw) I p<-2.9=0,
(-p-2)w<8(-p+1)}
u{(pgw)l-2<p<0,g=0w=0}],

{(paw) p+a>0(p-a-3(p+q)+2<0,
2(p-q)’ -2 +w)(p+q) <0}

N(A,UAg) =0,

Abstract and Applied Analysis

{(p.gw) | p+q<0,w=0}
N(AgUA)
={(p,qw) | p < 0,9 =0,w =0}
n{(pgw)lp<-29=0,

(-p-2)w>8(-p+1)}.
(73)

Hence, the set S, given in Theorem 9 reduces to the
following form:

$,={(p.qw) I p=0g=0w>0}
u{(p.gw) | p<2,q=0,max{0,2(p-1)} < w}
u{(p.gw)lq=0,p=0,w>0}
u{(pgw) I p<0,q=0,w=>0}

={(pgw) | p<2,9=0max{0,2(p-1)} < w}.
(74)

These are the sufficient conditions of Schur-concave of the
generalized Heronian means H,, , (x, y) stated by Theorem B.

Remark 11. If we put w = 0 in Theorem 9, we have

Z pq0(%:y) = M(p, gq; x, y). Furthermore, we have

S = {(P,%w) lp+q>0,(p-q)° 2p+q,w:0}
n({(p.qw)|q<0,w=0}
u{(p.qw) | p<0,w=0}) (75)
= {(p.gw) I p+q>0,pg<0,
(p-a) = p+qw=0},

which are the sufficient conditions of Schur-convex of the
generalized Muirhead means M(p, g; x, y) given by Theorem
C.

In addition, for w = 0, we have

{(P’Q»w)|p+q>0,wzo,

2(p-q)* - @+w)(p+q) <0}

N(A;UAy)
={(paw) | p>04q>0,p+gq,

(p-a) <p+qw=0},
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{(P>q’w)|P+q<0,w20,

2(p-q)’ - 2+w)(p+q) >0}
N(AsUAg)
={(p.qw) | p+q<0,p#qw=0},
{(p.aw) I p+q>0,(p-q)-3(p+q)+2<0,

2(p-q)° - 2+w)(p+q) <0}
N(A,UAg) =0,

{(pgw) | p+g<0,w=0N(AgUA,) =0.
(76)
Thus, the set S, given in Theorem 9 reduces to the follow-
ing form:
S, ={(p.gw) | p=qw=0}
u{(p.gw) | p<1,q=0w=0}
u{(pgw)lg<1,p=0,w=0}

u{(pgw)|p>0,g>0,p+#q,
2 77)
(p-a) <p+qw=0}

U{(pgw) | p+q<0,p#qgw=0}
={(p.qw) 1 p=20,420,(p-q)° < p+quw=0}

u{(pgw) | p+q<0,w=0}.

These are the sufficient conditions of Schur-concave of
the generalized Muirhead means M(p, g; x, y) asserted by
Theorem C.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research was supported by the Natural Science Founda-
tion of China under Grants 11171307 and 61374086, the Nat-
ural Science Foundation of Zhejiang Province under Grant
LY13A010004, the Natural Science Foundation of Fujian
province under Grant 201201014, and the Foundation of Sci-
entific Research Project of Fujian Province Education Depart-
ment under Grants JK2013051 and JK2012049.

References

(1] J. C. Kuang, Applied Inequalities, Shandong Science and Tech-
nology Press, Jinan, China, 4th edition, 2010.

[2] Q.]. Mao, “Dual means, logarithmic and Heronian dual means
of two positive numbers,” Journal of Suzhou College of Educa-
tion, vol. 16, pp. 82-85, 1999.

1

[3] W.Janous, “A note on generalized Heronian means,” Mathemat-
ical Inequalities & Applications, vol. 4, no. 3, pp. 369-375, 2001.

[4] G.Jiaand]. Cao, “A new upper bound of the logarithmic mean,”
Journal of Inequalities in Pure and Applied Mathematics, vol. 4,
no. 4, article 80, 4 pages, 2003.

[5] D. M. Li, C. Gu, and H. N. Shi, “Schur convexity of the power-
type generalization of Heronian means,” Journal of Mathematics
in Practice and Theory, vol. 6, no. 9, pp. 387-390, 2006.

[6] H. Shi, M. Bencze, S. Wu, and D. Li, “Schur convexity of
generalized Heronian means involving two parameters,” Journal
of Inequalities and Applications, vol. 2008, Article ID 879273, 9
pages, 2008.

[7] L. L. Fu, B. Y. Xi, and H. M. Srivastava, “Schur-convexity of the
generalized Heronian means involving two positive numbers,”
Taiwanese Journal of Mathematics, vol. 15, no. 6, pp. 2721-2731,
2011.

[8] Z. H. Yang, “Schur power convexity of the Dardczy means,”
Mathematical Inequalities & Applications, vol. 16, no. 3, pp. 751-
762, 2013.

[9] T. Trif, “Monotonicity, comparison and Minkowski’s inequality
for generalized MUIrhead means in two variables,” Mathemat-
ica, vol. 48(71), no. 1, pp. 99-110, 2006.

[10] W. M. Gong, H. Shen, and Y. M. Chu, “The Schur convexity
for the generalized Muirhead mean,” Journal of Mathematical
Inequalities. In press.

[11] W. Xia and Y. Chu, “The Schur multiplicative convexity of the
generalized Muirhead mean values,” International Journal of
Functional Analysis, Operator Theory and Applications, vol. 1, no.
1, pp. 1-8, 2009.

[12] Y. M. Chu and W. E Xia, “Necessary and sufficient conditions
for the Schur harmonic convexity of the generalized Muirhead
mean,” Proceedings of A Razmadze Mathematical Institute, vol.
152, pp. 19-27, 2010.

[13] A.W.Marshall and L. Olkin, Inequalities: Theory of Majorization
and Its Applications, vol. 143 of Mathematics in Science and
Engineering, Academic Press, New York, NY, USA, 1979.



