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We present two theorems describing the structure of the set of all regular points and the set of all
irregular points for a Brouwer homeomorphism which is embeddable in a flow. The theorems are
counterparts of structure theorems proved by Homma and Terasaka. To obtain our results, we use
properties of the codivergence relation.

1. Introduction

Throughout the paper, f will denote a Brouwer homeomorphism, that is, orientation preserving
homeomorphism of the plane onto itself which has no fixed points.

For any sequence of subsets (An)n∈Z+
of the plane, we define limes superior

lim supn→∞ An as the set of all points p ∈ R
2 such that any neighbourhood of p has common

points with infinitely many elements of the sequence (An)n∈N
. For any subset B of the plane,

we define the positive limit set ωf(B) as the limes superior of the sequence of its iterates
(fn(B))n∈N

and negative limit set αf(B) as the limes superior of the sequence (f−n(B))n∈N
.

Under the assumption that B is compact, Nakayama [1] proved that

ωf(B) =
{
q ∈ R

2 : there exist sequences
(
pj
)
j∈N

and
(
nj

)
j∈N

such that pj ∈ B, nj ∈ N, nj −→ +∞, fnj
(
pj
) −→ q as j −→ +∞

}
,

αf(B) =
{
q ∈ R

2 : there exist sequences
(
pj
)
j∈N

and
(
nj

)
j∈N

such that pj ∈ B, nj ∈ N, nj −→ +∞, f−nj
(
pj
) −→ q as j −→ +∞

}
.

(1.1)
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A point p is called positively irregular if ωf(B)/= ∅ for each Jordan domain B containing
p in its interior, and negatively irregular if αf(B)/= ∅ for each Jordan domain B containing p
in its interior, where by a Jordan domain we mean the union of a Jordan curve J and the
Jordan region determined by J (i.e., the bounded component of R

2 \ J). A point which is not
positively irregular is said to be positively regular. Similarly, a point which is not negatively
irregular is called negatively regular. A point which is positively or negatively irregular is
called irregular, otherwise it is regular.

We say that a set A ⊂ R
2 is invariant if f(A) = A. An invariant region M is said to be

parallelizable if there exists a homeomorphism ϕ : M → R
2 such that

f
∣∣
M = ϕ−1 ◦ T ◦ ϕ, (1.2)

where T is given by the formula T(t, s) = (t + 1, s). On account of the Brouwer Translation
Theorem, for each p ∈ R

2, there exists a parallelizable region M containing p (see [2]). This
implies that a Brouwer homeomorphism looks locally like a translation. However, its global
behaviour may be very complicated (cf. [3, 4]).

For any p ∈ R
2, one can construct an arc K with endpoints p and f(p) such that

f(K) ∩K = {f(p)} (see [5]). Such an arc is called a translation arc. The Brouwer Lemma says
that if K is a translation arc, then

⋃
n∈Z

fn(K) is a homeomorphic image of a straight line
(see [2]). The set

⋃
n∈Z

fn(K) is called a translation line. A translation line needs not be a
topological line, where by a topological line we mean a closed set which is a homeomorphic
image of a straight line.

Homma and Terasaka [6] proved two theorems describing the structure of a Brouwer
homeomorphism. The theorems can be formulated in the following way.

Theorem 1.1 (see [6], First Structure Theorem). Let f be a Brouwer homeomorphism. Then, the
plane is divided into at most three kinds of pairwise disjoint sets: {Oi : i ∈ I}, where I = N or
I = {1, . . . , n} for a positive integer n, {O′

i : i ∈ N} and F. The sets {Oi : i ∈ I} and {O′
i : i ∈ N} are

the components of the set of all regular points such that each Oi is a parallelizable unbounded simply
connected region, and each O′

i is a simply connected region satisfying the condition O′
i ∩ fn(O′

i) = ∅
for n ∈ Z \ {0}. The set F is invariant, closed, and consists of all irregular points.

Theorem 1.2 (see [6], Second Structure Theorem). Let f be a Brouwer homeomorphism. Then,
the plane is divided into at most three kinds of pairwise disjoint sets: {Oi : i ∈ I}, where I = N or
I = {1, . . . , n} for a positive integer n, {O′

i : i ∈ N} and F. The sets {Oi : i ∈ I} and {O′
i : i ∈ N} are

the components of the set of all negatively regular points such that each Oi is an invariant unbounded
simply connected region and can be filled with a family of translation lines which are closed sets inOi,
and each O′

i is a simply connected region satisfying the condition O′
i ∩ fn(O′

i) = ∅ for n ∈ Z \ {0}.
The set F is invariant, closed, and consists of all negatively irregular points.

The set F occurring in the theorems above is the union of sets called singular lines
and their cluster set. Homma and Terasaka [6] showed many properties describing mutual
relationships among singular lines. Moreover, they proved that the set of all singular lines is
at most countable. But the set F occurring in the theorems above can also contain the cluster
points of singular lines which do not belong to any singular line. Thus, to obtain the complete
description of the set F, the study of the set of these cluster points is needed. In the case of an
arbitrary Brouwer homeomorphism, the problem is still open.



Abstract and Applied Analysis 3

In this paper, we prove the counterparts of the structure theorems under the assump-
tion that f is embeddable in a flow. By a flow, we mean a group of homeomorphisms of the
plane onto itself {ft : t ∈ R} under the operation of composition which satisfies the following
conditions:

(1) the function φ : R
2 × R → R

2, φ(x, t) = ft(x) is continuous,

(2) f0(x) = x for x ∈ R
2,

(3) ft(fs(x)) = ft+s(x) for x ∈ R
2, t, s ∈ R.

We say that f is embeddable in a flow if there exists a flow {ft : t ∈ R} such that f = f1.

2. Codivergence Relation

In this section, we characterize the sets of regular and irregular points of any Brouwer
homeomorphism embeddable in a flow using the codivergence relation defined by Andrea
[7].

For any Brouwer homeomorphism f , the codivergence relation is defined in the follow-
ing way:

p ∼ q if p = q or p and q are endpoints of some arc K for which fn(K) −→ ∞
as n −→ ±∞.

(2.1)

By an arc K with endpoints p and q, we mean the image of a homeomorphism c : [0, 1] →
c([0, 1]) satisfying conditions c(0) = p, c(1) = q, where the topology on c([0, 1]) is induced by
the topology of R

2.
It turns out that the relation defined above is an equivalence relation and under

the assumption that f is embeddable in a flow each equivalence class of the relation is an
invariant simply connected set (see [7, 8]).

Proposition 2.1. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}.
Then, the set of all regular points is equal to the union of the interiors of all equivalence classes of the
codivergence relation.

Proof. First we prove that every point p belonging to the interior of an equivalence class G0

is regular. By the definition of the interior, there exists a Jordan curve J contained in G0 such
that the point p belongs to the Jordan region U whose boundary is equal to J . In the proof of
the main theorem of [8], it has been showed that for every Jordan domain B contained in an
equivalence class which does not consist of just one orbit we have fn(B) → ∞ as n → ±∞.
Thus, ωf(cl U) = ∅ and αf(cl U) = ∅.

Conversely, if a point p is regular, then there exists a Jordan regionU containing p such
that fn(cl U) → ∞ as n → ±∞. SinceU is arcwise connected, for each q ∈ U\{p} there exists
an arcK with endpoints p, q contained inU. Hence, K satisfies the condition fn(K) → ∞ as
n → ±∞. Thus, each point of the Jordan regionU belongs to the same equivalence class as p.
Consequently, p belongs to the interior of this equivalence class.

From the proposition above, we obtain immediately the following.
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Corollary 2.2. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Then,
the set of all irregular points is equal to the union of the boundaries of all equivalence classes of the
codivergence relation.

3. Structure of the Set of Regular Points

In this section, we show an application of properties of the codivergence relation to describe
the set of all regular points for a Brouwer homeomorphism f which is embeddable in a flow.

Proposition 3.1. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Let
p be a regular point. Then, each point of the trajectory Cp = {ft(p) : t ∈ R} is a regular point.

Proof. Let p be a regular point. Denote by G0 the equivalence class which contains p. By
Proposition 2.1, we have p ∈ intG0. Hence, the trajectory Cp is contained in intG0, since
the interior of each equivalence class is invariant under any element of the flow {ft : t ∈ R}
(see [9]). Using Proposition 2.1 once again, we obtain that each element of the trajectory is a
regular point.

In Theorem 1.1 describing the structure of any Brouwer homeomorphism, there are
three types of sets: Oi, O′

i, and F. Under the assumption that a Brouwer homeomorphism is
embeddable in a flow, we only have two types of sets: Oi and F. However, sets of type O′

i

cannot occur.

Theorem 3.2. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Then,
the plane is divided into at most two kinds of pairwise disjoint sets: {Oi : i ∈ I}, where I = N or
I = {1, . . . , n} for a positive integer n, and F. The sets {Oi : i ∈ I} are the components of the set of all
regular points such that each Oi is a parallelizable unbounded simply connected region. The set F is
closed and consists of all irregular points.

Proof. Suppose, on the contrary, that there exists a family of simply connected regions
{O′

i : i ∈ N} occurring in Theorem 1.1. Let us fix a point p ∈ O′
i for some i ∈ N. Then, by

Theorem 1.1, p is a regular point and there exists a j ∈ N, j /= i such that f(p) ∈ O′
j .

By Proposition 3.1, each point of the trajectory Cp is regular. In particular, all points
belonging to the arc with endpoints p and f(p) contained in this trajectory are regular. On the
other hand, the arc K has to contain an irregular point, since p and f(p) belong to different
components O′

i and O′
j of the sets of all regular points.

At the end of this section, let us note that the invariance of the set of all irregular points
(and the set of all regular points) under each element of a flow {ft : t ∈ R} such that f = f1

can also be obtained from the relation f = f−t ◦ f ◦ ft (see [10]).

4. Structure of the Set of Irregular Points

In this section, we proceed to study the structure of the set F of all irregular points for a
Brouwer homeomorphism f which is embeddable in a flow {ft : t ∈ R}.

For any irregular point p, the set P+ is defined as the intersection of all ωf(B) and
the set P− as the intersection of all αf(B)/= ∅, where B is a Jordan domain containing p in
its interior. An irregular point p is strongly positively irregular if P+ /= ∅, otherwise it is weakly
positively irregular. Similarly, p is strongly negatively irregular if P− /= ∅, otherwise it is weakly
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negatively irregular. We say that p is strongly irregular if it is strongly positively irregular or
strongly negatively irregular. Otherwise, an irregular point p is said to be weakly irregular.

Nakayama [10] has proved that for any Brouwer homeomorphism the subset of F
consisting of all strongly irregular points has no interior points. In the case where f is
embeddable in a flow, the set F is the union of a family of invariant topological lines, since
the boundary of each equivalence class is the union of trajectories of the flow {ft : t ∈ R}
(see [9]). But some of these trajectories are not singular lines in the sense of Homma and
Terasaka. The union of all singular lines is equal to the set of all strongly irregular points,
and, moreover, the cluster points of singular lines which do not belong to any singular line
are weakly irregular points (see [6]).

In the description of the set F, the notion of the first prolongational limit set can be
used. For any point p, we define the first prolongational limit set of p as J(p) = J+(p) ∪ J−(p),
where

J+
(
p
)
:=

{
q ∈ R

2 : there exist sequences
(
pn

)
n∈N

, (tn)n∈N

such that pn −→ p, tn −→ +∞, f tn
(
pn

) −→ q as n −→ +∞
}
,

J−
(
p
)
:=

{
q ∈ R

2 : there exist sequences
(
pn

)
n∈N

, (tn)n∈N

such that pn −→ p, tn −→ −∞, f tn
(
pn

) −→ q as n −→ +∞
}
.

(4.1)

For an H ⊂ R
2, we put

J(H) =
⋃
p∈H

J
(
p
)

(4.2)

(see [11]). From the definition above, we obtain that

p ∈ J+
(
q
) ⇐⇒ q ∈ J−

(
p
)

(4.3)

for all p, q ∈ R
2. Hence,

J
(
p
)
/= ∅ ⇐⇒ p ∈ J

(
R

2
)
. (4.4)

Proposition 4.1. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Let
p be a strongly irregular point. Then, J(p)/= ∅.

Proof. Without loss of generality, we assume that P+ /= ∅. We will show that P+ ⊂ J+(p). Let
q ∈ P+. For every positive integer n, we denote by Cn the ball with centre p and radius 1/n
and by Dn the ball with centre q and radius 1/n. Fix an n ∈ N. Then, q ∈ ωf(Cn). By the
definition of ωf(Cn), there exist sequences (pj)j∈N

and (mj)j∈N
such that pj ∈ Cn, mj ∈ N,

mj → +∞, fmj (pj) → q as j → +∞. Hence, there exists an i ∈ N such that mi > n and
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fmi(pi) ∈ Dn. Put qn = pi and tn = mi. Thus, we constructed sequences (qn)n∈N
and (tn)n∈N

such that

qn ∈ Cn, tn > n, ftn
(
qn
) ∈ Dn (4.5)

for every n ∈ N. Hence, qn → p, tn → +∞ and ftn(qn) → q as n → +∞. Consequently,
q ∈ J+(p).

From the proposition above, we obtain the following.

Corollary 4.2. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}. Then,
the set of all irregular points is equal to the closure of the first prolongational limit set of the plane.

Proof. By Proposition 4.1, if p is a strongly irregular point, then p ∈ J(R2). If p is a weakly
irregular point, then it belongs to the closure of the set of all strongly irregular points (see
[6]). Consequently, p ∈ cl J(R2). The closure of the first prolongational limit set of the plane
cannot contain any regular point, since for each p belonging to the interior of an equivalence
class we have p /∈ J(R2) (see [12]).

Using the main theorem of [13], we replace the regions Oi occurring in Theorem 3.2
by larger parallelizable unbounded simply connected regions Ui such that the union of all
these regionsUi contains the set of all weakly irregular points. A strongly irregular point can
belong either to a region Ui or to the set F. Moreover, for every singular line contained in
the boundary of a region Ui, there can exist at most one singular line contained in the region
(see [14]). Therefore, the counterpart of the Second Structure Theorem can be stated in the
following way.

Theorem 4.3. Let f be a Brouwer homeomorphism which is embeddable in a flow {ft : t ∈ R}.
Then, the plane is divided into at most two kinds of pairwise disjoint sets: {Ui : i ∈ I}, where I = N

or I = {1, . . . , n} for a positive integer n, and F. The sets {Ui : i ∈ I} are parallelizable unbounded
simply connected regions. The set F is closed, contained in J(R2), and is the union of at most countable
family of trajectories of the flow. Each of these trajectories is contained in the boundary of an region
Ui.

Using a decomposition described in the theorem above, we can obtain generalizations
of results concerning Reeb homeomorphisms given by Béguin and Le Roux in [15].

5. Final Remarks

Let us consider the one-point compactification of a plane into the sphere S2. Then, we can
extend any Brouwer homeomorphism f to a homeomorphism of the sphere by putting
f(∞) = ∞. Let us assume that f is embeddable in a flow. Then, all trajectories are closed
sets on the plane, since for all p ∈ R

2 we have ft(p) → ∞ as t → ±∞ (see [7]). Since the
closure of each trajectory contains the stationary point ∞ of the flow, the phase portrait of
the flow restricted to a Jordan region U containing ∞ is divided into sectors (see [16], pages
161–174).
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The index of ∞ is equal to

1 +
ne − nh

2
, (5.1)

where ne is the number of elliptic sectors and nh is the number of hyperbolic sectors (the
expression gives an integer, since the difference of the number of elliptic sectors and the
number of hyperbolic sectors is even). Applying the Lefschetz-Hopf Theorem to our case,
we obtain that the index of the stationary point ∞ equals 2, since the Euler characteristic of
the sphere equals 2. In the case where f is a translation, there are two elliptic sectors and
two parabolic sectors. In the case where f is a Reeb homeomorphism, there are three elliptic
sectors, one hyperbolic sector and four parabolic sectors.

If a Jordan domain B is contained in an elliptic sector of U, then fn(B) is contained in
this sector for each n ∈ Z. However, this property does not hold for parabolic and hyperbolic
sectors. In the case where f is a translation, for each Jordan region U containing ∞ and each
Jordan domain B contained in one of the parabolic sectors, there exists an n ∈ N such that
fn(B) is not contained in U. Thus even in case f is a translation, the fixed point ∞ is not
stable in the sense of the following definition: an invariant set C is called Lyapunov stable if
for any Jordan domain U containing C there is a Jordan domain V containing C such that
fn(V ) ⊂ U for all n ∈ N (see, e.g., [17]).

For a subset D of the set of all homeomorphisms of a metric space M equipped with
the topology of uniform convergence on compact subsets, we say that f ∈ D is structurally
stable if there exists a neighborhood U of f in D such that each g ∈ U is topologically
conjugate to f . If M = R

2 and D is the set of all Brouwer homeomorphisms, then there are
no f ∈ D which are structurally stable. Moreover, each of the topological conjugacy classes is
dense in D (see [18]).

Le Roux [19] gave a classification of the topological conjugacy classes of flows whose
orbits are leaves of a given Reeb foliation of the plane. It could be interesting to study the
structural stability of flows of Brouwer homeomorphisms. A flow {ft : t ∈ R} is said to be
structurally stable if for any flow {gt : t ∈ R} in a neighbourhood of {ft : t ∈ R} there is a
homeomorphism h : R

2 → R
2 that sends the orbits of {ft : t ∈ R} to the orbits of {gt : t ∈ R}

preserving the orientation of the orbits. This means that the phase portraits of the flows are
homeomorphic.
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