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We establish the hyperstability of 𝑛-Jordan homomorphisms from a normed algebra to a Banach algebra, and also we show that an
𝑛-Jordan homomorphism between two commutative Banach algebras is an 𝑛-ring homomorphism.

1. Introduction

Let 𝐴, 𝐵 be two rings (algebras) and 𝑛 a positive integer
greater than 1. An additive mapping 𝑔 : 𝐴 → 𝐵 is called
an 𝑛-Jordan homomorphism if 𝑔(𝑎𝑛) = (𝑔(𝑎))𝑛 for all 𝑎 ∈ 𝐴
and an additive mapping ℎ : 𝐴 → 𝐵 is called an 𝑛-ring
homomorphism if ℎ(∏𝑛

𝑖=1
𝑎
𝑖
) = ∏

𝑛

𝑖=1
ℎ(𝑎
𝑖
) for all 𝑎

1
, 𝑎
2
, . . . ,

𝑎
𝑛
∈ 𝐴.
In 2009, Gordji et al. [1] showed the following theorems.

Theorem 1. Let 𝑛 ∈ {2, 3, 4, 5} be fixed. Suppose that 𝐴, 𝐵 are
two commutative algebras. Let ℎ : 𝐴 → 𝐵 be an 𝑛-Jordan
homomorphism. Then ℎ is an 𝑛-ring homomorphism.

Theorem 2. Let 𝑛 ∈ {2, 3, 4, 5} be fixed. Suppose that 𝐴, 𝐵 are
commutative Banach algebras. Let 𝛿 and 𝜀 be nonnegative real
numbers, and let 𝑝, 𝑞 be real numbers such that (𝑝−1)(𝑞−1) >
0, 𝑞 ≥ 0 or (𝑝 − 1)(𝑞 − 1) > 0, 𝑞 < 0, and 𝑓(0) = 0. Assume
that 𝑓 : 𝐴 → 𝐵 satisfies the system of functional inequalities:

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑎 + 𝑏) − 𝑓 (𝑎) − 𝑓 (𝑏)

󵄩
󵄩
󵄩
󵄩
≤ 𝜀 (‖𝑎‖

𝑝

+ ‖𝑏‖
𝑝

) ,

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑎
𝑛

) − 𝑓(𝑎)
𝑛󵄩
󵄩
󵄩
󵄩
≤ 𝛿‖𝑎‖

𝑛𝑞

,

(1)

for all 𝑎, 𝑏 ∈ 𝐴. Then, there exists a unique 𝑛-ring homomor-
phism ℎ : 𝐴 → 𝐵 such that

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑎) − ℎ (𝑎)

󵄩
󵄩
󵄩
󵄩
≤

2𝜀

|2 − 2
𝑝
|

‖𝑎‖
𝑝

, (2)

for all 𝑎 ∈ 𝐴.

The stability problem of group homomorphisms was for-
mulated by Ulam [2] in 1940. Bourgin [3] and Badora [4]
solved the stability problem of ring homomorphisms (see
[5]). The term hyperstability was used for the first time in
[6]. Some recent results on hyperstability of Cauchy or linear
equation can be founded in [5, 7, 8].

In this paper, we improveTheorems 1 and 2 intoTheorems
4 and 8, respectively. In particular, we prove the hyperstability
of 𝑛-Jordan homomorphisms between two commutative
Banach algebras.

2. Generalization of Theorem 1

Lemma 3. Let 𝑛, 𝑘 be fixed natural numbers with 𝑛 > 𝑘 ≥ 2.
Let 𝐴, 𝐵 be two commutative algebras, and let 𝑓 : 𝐴 → 𝐵

be an additive mapping. Assume that 𝑓 satisfies the following
equality:

𝑛−1

∑

𝑖
1
=𝑘−1

𝑖
1
−1

∑

𝑖
2
=𝑘−2

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)

× 𝑓 (𝑥
𝑛−𝑖
1

1
𝑥
𝑖
1
−𝑖
2

2
𝑥
𝑖
2
−𝑖
3

3
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘−1

𝑘
)

=

𝑛−1

∑

𝑖
1
=𝑘−1

𝑖
1
−1

∑

𝑖
2
=𝑘−2

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)𝑓(𝑥
1
)
𝑛−𝑖
1

× 𝑓(𝑥
2
)
𝑖
1
−𝑖
2

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘
)
𝑖
𝑘−1

,

(3)
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for all 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑘
∈ 𝐴. Then one gets

𝑛−1

∑

𝑖
1
=𝑘

𝑖
1
−1

∑

𝑖
2
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−1
−1

∑

𝑖
𝑘
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑘−1

𝑖
𝑘

)

× 𝑓 (𝑥
𝑛−𝑖
1

1
𝑥
𝑖
1
−𝑖
2

2
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘

𝑘+1
)

=

𝑛−1

∑

𝑖
1
=𝑘

𝑖
1
−1

∑

𝑖
2
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−1
−1

∑

𝑖
𝑘
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑘−1

𝑖
𝑘

)𝑓(𝑥
1
)
𝑛−𝑖
1

× 𝑓(𝑥
2
)
𝑖
1
−𝑖
2

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘+1
)
𝑖
𝑘

,

(4)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑘+1
∈ 𝐴.

Proof. Replacing 𝑥
𝑘
by 𝑥
𝑘+1

in (3), we obtain

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

𝑖
𝑘−1

)

× 𝑓 (𝑥
𝑛−𝑖
1

1
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘−2
−𝑖
𝑘−1

𝑘−1
𝑥
𝑖
𝑘−1

𝑘+1
)

=

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

𝑖
𝑘−1

)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘−1
)
𝑖
𝑘−2
−𝑖
𝑘−1

× 𝑓(𝑥
𝑘+1
)
𝑖
𝑘−1

,

(5)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑘−1
, 𝑥
𝑘+1

∈ 𝐴. In particular, the equality
(3) implies that

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

0
)

× 𝑓 (𝑥
𝑛−𝑖
1

1
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘−2
−𝑖
𝑘−1

𝑘−1
𝑥
𝑖
𝑘−1

𝑘
)

=

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

0
)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘−1
)
𝑖
𝑘−2
−𝑖
𝑘−1

𝑓(𝑥
𝑘
)
𝑖
𝑘−1

,

(6)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑘
∈ 𝐴. Recall that the equality,

(𝑥
𝑘
+ 𝑥
𝑘+1
)
𝑖
𝑘−1

=

𝑖
𝑘−1

∑

𝑖
𝑘
=0

(

𝑖
𝑘−1

𝑖
𝑘

)𝑥
𝑖
𝑘−1
−𝑖
𝑘

𝑘
𝑥
𝑖
𝑘

𝑘+1
, (7)

holds for all 𝑥
𝑘
, 𝑥
𝑘+1

∈ 𝐴. Replacing 𝑥
𝑘
by 𝑥
𝑘
+𝑥
𝑘+1

in (3), we
obtain

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

𝑖
𝑘−1

∑

𝑖
𝑘
=0

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

𝑖
𝑘

)

× 𝑓 (𝑥
𝑛−𝑖
1

1
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘−2
−𝑖
𝑘−1

𝑘−1
𝑥
𝑖
𝑘−1
−𝑖
𝑘

𝑘
𝑥
𝑖
𝑘

𝑘+1
)

=

𝑛−1

∑

𝑖
1
=𝑘−1

𝑖
1
−1

∑

𝑖
2
=𝑘−2

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)

× 𝑓 (𝑥
𝑛−𝑖
1

1
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘−2
−𝑖
𝑘−1

𝑘−1

× (𝑥
𝑘
+ 𝑥
𝑘+1
)
𝑖
𝑘−1

)

=

𝑛−1

∑

𝑖
1
=𝑘−1

𝑖
1
−1

∑

𝑖
2
=𝑘−2

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘
+ 𝑥
𝑘+1
)
𝑖
𝑘−1

=

𝑛−1

∑

𝑖
1
=𝑘−1

𝑖
1
−1

∑

𝑖
2
=𝑘−2

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

⋅ ⋅ ⋅ (𝑓 (𝑥
𝑘
) + 𝑓 (𝑥

𝑘+1
))
𝑖
𝑘−1

=

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

𝑖
𝑘−1

∑

𝑖
𝑘
=0

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

𝑖
𝑘

)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘
)
𝑖
𝑘−1
−𝑖
𝑘

𝑓(𝑥
𝑘+1
)
𝑖
𝑘

,

(8)

for all𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑘
, 𝑥
𝑘+1

∈ 𝐴. From (5), (6), and the above
equality, we get the desired equality:

𝑛−1

∑

𝑖
1
=𝑘

𝑖
1
−1

∑

𝑖
2
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−1
−1

∑

𝑖
𝑘
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑘−1

𝑖
𝑘

)

× 𝑓 (𝑥
𝑛−𝑖
1

1
𝑥
𝑖
1
−𝑖
2

2
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘

𝑘+1
)

=

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

𝑖
𝑘−1

∑

𝑖
𝑘
=0

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

𝑖
𝑘

)

× 𝑓 (𝑥
𝑛−𝑖
1

1
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘−2
−𝑖
𝑘−1

𝑘−1

× 𝑥
𝑖
𝑘−1
−𝑖
𝑘

𝑘
𝑥
𝑖
𝑘

𝑘+1
)

−

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

𝑖
𝑘−1

)

× 𝑓 (𝑥
𝑛−𝑖
1

1
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘−2
−𝑖
𝑘−1

𝑘−1
𝑥
𝑖
𝑘−1

𝑘+1
)

−

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

0
)

× 𝑓 (𝑥
𝑛−𝑖
1

1
⋅ ⋅ ⋅ 𝑥
𝑖
𝑘−2
−𝑖
𝑘−1

𝑘−1
𝑥
𝑖
𝑘−1

𝑘
)
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=

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

𝑖
𝑘−1

∑

𝑖
𝑘
=0

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

𝑖
𝑘

)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘
)
𝑖
𝑘−1
−𝑖
𝑘

× 𝑓(𝑥
𝑘+1
)
𝑖
𝑘

−

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

𝑖
𝑘−1

)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘−1
)
𝑖
𝑘−2
−𝑖
𝑘−1

× 𝑓(𝑥
𝑘+1
)
𝑖
𝑘−1

−

𝑛−1

∑

𝑖
1
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−2
−1

∑

𝑖
𝑘−1
=1

(

𝑛

𝑖
1

) ⋅ ⋅ ⋅ (

𝑖
𝑘−2

𝑖
𝑘−1

)(

𝑖
𝑘−1

0
)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘−1
)
𝑖
𝑘−2
−𝑖
𝑘−1

× 𝑓(𝑥
𝑘
)
𝑖
𝑘−1

=

𝑛−1

∑

𝑖
1
=𝑘

𝑖
1
−1

∑

𝑖
2
=𝑘−1

⋅ ⋅ ⋅

𝑖
𝑘−1
−1

∑

𝑖
𝑘
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑘−1

𝑖
𝑘

)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

𝑓(𝑥
2
)
𝑖
1
−𝑖
2

⋅ ⋅ ⋅ 𝑓(𝑥
𝑘+1
)
𝑖
𝑘

,

(9)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑘
, 𝑥
𝑘+1

∈ 𝐴.

The following theorem is the generalization ofTheorem 1.

Theorem 4. Let 𝐴, 𝐵 be two commutative algebras, and let 𝑓 :
𝐴 → 𝐵 be an 𝑛-Jordan homomorphism. Then 𝑓 is an 𝑛-ring
homomorphism.

Proof. Since 𝑓 is an 𝑛-Jordan homomorphism, together with
the additivity of 𝑓, we get

𝑛

∑

𝑖=0

(

𝑛

𝑖
)𝑓 (𝑥

𝑛−𝑖

1
𝑥
𝑖

2
) = 𝑓 ((𝑥

1
+ 𝑥
2
)
𝑛

) = 𝑓(𝑥
1
+ 𝑥
2
)
𝑛

= (𝑓 (𝑥
1
) + 𝑓 (𝑥

2
))
𝑛

=

𝑛

∑

𝑖=0

(

𝑛

𝑖
)𝑓(𝑥

1
)
𝑛−𝑖

𝑓(𝑥
2
)
𝑖

,

(10)

for all 𝑥
1
, 𝑥
2
∈ 𝐴. It is clear that 𝑓(𝑥𝑛

1
) = 𝑓(𝑥

1
)
𝑛 and 𝑓(𝑥𝑛

2
) =

𝑓(𝑥
2
)
𝑛, so we obtain

𝑛−1

∑

𝑖=1

(

𝑛

𝑖
)𝑓 (𝑥

𝑛−𝑖

1
𝑥
𝑖

2
) =

𝑛−1

∑

𝑖=1

(

𝑛

𝑖
)𝑓(𝑥

1
)
𝑛−𝑖

𝑓(𝑥
2
)
𝑖

, (11)

for all 𝑥
1
, 𝑥
2
∈ 𝐴. If 𝑛 = 2, then by (11) we have 𝑓(𝑥

1
𝑥
2
) =

𝑓(𝑥
1
)𝑓(𝑥
2
). Now let 𝑛 > 2. Together with Lemma 3 and (11),

we can say that the equality (4) holds for 𝑘 = 𝑛 − 1; that is,

𝑛−1

∑

𝑖
1
=𝑛−1

𝑖
1
−1

∑

𝑖
2
=𝑛−2

⋅ ⋅ ⋅

𝑖
𝑛−2
−1

∑

𝑖
𝑛−1
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑛−2

𝑖
𝑛−1

)

× 𝑓 (𝑥
𝑛−𝑖
1

1
𝑥
𝑖
1
−𝑖
2

2
𝑥
𝑖
2
−𝑖
3

3
⋅ ⋅ ⋅ 𝑥
𝑖
𝑛−1

𝑛
)

=

𝑛−1

∑

𝑖
1
=𝑛−1

𝑖
1
−1

∑

𝑖
2
=𝑛−2

⋅ ⋅ ⋅

𝑖
𝑛−2
−1

∑

𝑖
𝑛−1
=1

(

𝑛

𝑖
1

)(

𝑖
1

𝑖
2

) ⋅ ⋅ ⋅ (

𝑖
𝑛−2

𝑖
𝑛−1

)

× 𝑓(𝑥
1
)
𝑛−𝑖
1

𝑓(𝑥
2
)
𝑖
1
−𝑖
2

⋅ ⋅ ⋅ 𝑓(𝑥
𝑛
)
𝑖
𝑛−1

,

(12)

holds for all 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
∈ 𝐴. Notice that

𝑛 − 1 > 𝑖
1
> 𝑖
2
> ⋅ ⋅ ⋅ > 𝑖

𝑛−2
> 𝑖
𝑛−1

≥ 1 (13)

implies 𝑖
1
= 𝑛 − 1, 𝑖

2
= 𝑛 − 2, . . ., 𝑖

𝑛−2
= 2, 𝑖
𝑛−1

= 1 and so

𝑛 − 𝑖
1
, 𝑖
1
− 𝑖
2
, . . . , 𝑖

𝑛−1
− 𝑖
𝑛−2
, 𝑖
𝑛−1

= 1. (14)

Therefore we get the desired equality:

𝑓 (𝑥
1
𝑥
2
𝑥
3
⋅ ⋅ ⋅ 𝑥
𝑛
) = 𝑓 (𝑥

1
) 𝑓 (𝑥

2
) 𝑓 (𝑥

3
) ⋅ ⋅ ⋅ 𝑓 (𝑥

𝑛
) , (15)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
∈ 𝐴.

3. Generalization of Theorem 2

We need the following lemmas to prove the generalization of
Theorem 2.

Lemma 5 (see [9, Corollaries 2.5 and 3.5]). Let𝑉 be a normed
space, and let𝑊 be a Banach space. Assume that𝑓, 𝑔, ℎ : 𝑉 →

𝑊 are mappings such that

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥 + 𝑦) − 𝑔 (𝑥) − ℎ (𝑦)

󵄩
󵄩
󵄩
󵄩
≤ 𝜀 (‖𝑥‖

𝑝

+
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑝

) , (16)

for all 𝑥, 𝑦 ∈ 𝑉 \ {0}, where 𝑝 ̸= 1 and 𝜀 ≥ 0. Then there exists
a unique additive mapping 𝑇 : 𝑉 → 𝑊 such that

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) − 𝑇 (𝑥) − 𝑓 (0)

󵄩
󵄩
󵄩
󵄩
≤

󵄨
󵄨
󵄨
󵄨
4 (3 + 3

𝑝

)
󵄨
󵄨
󵄨
󵄨
𝜀

|2
𝑝
(3 − 3

𝑝
)|

‖𝑥‖
𝑝

, (17)

for all 𝑥 ∈ 𝑉 \ {0}. In particular, 𝑇 is given by

𝑇 (𝑥) = lim
𝑚→∞

𝑓 (3
𝑠𝑚

𝑥) − 𝑓 (0)

3
𝑠𝑚

, (18)

for all 𝑥 ∈ 𝑉 \ {0}, where 𝑠 := − sgn(𝑝 − 1).

Lemma 6. Let 𝑉,𝑊,𝑓, 𝑔, ℎ, 𝜀 be as in Lemma 5. If 𝑝 < 0 and
𝑓(0) = 0, then 𝑓 is an additive mapping.
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Proof. Let 𝑇 : 𝑉 → 𝑊 be the additive mapping satisfying
(17). Then we have
󵄩
󵄩
󵄩
󵄩
2𝑓 (𝑥) − 2𝑇 (𝑥)

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑓 (2 (𝑛 + 1) 𝑥) − 𝑇 (2 (𝑛 + 1) 𝑥)

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑓 (−2𝑛𝑥) − 𝑇 (−2𝑛𝑥)

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) − 𝑔 ((𝑛 + 1) 𝑥) − ℎ (−𝑛𝑥)

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥) − 𝑔 (−𝑛𝑥) − ℎ ((𝑛 + 1) 𝑥)

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑓 (2 (𝑛 + 1) 𝑥)

− 𝑔 ((𝑛 + 1) 𝑥) − ℎ ((𝑛 + 1) 𝑥)
󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑓 (−2𝑛𝑥) − 𝑔 (−𝑛𝑥) − ℎ (−𝑛𝑥)

󵄩
󵄩
󵄩
󵄩

≤ (

4 (3 + 3
𝑝

)

2
𝑝
(3 − 3

𝑝
)

+ 4) (𝑛 + 1)
𝑝

𝜀‖𝑥‖
𝑝

+ (

4 (3 + 3
𝑝

)

2
𝑝
(3 − 3

𝑝
)

+ 4) 𝑛
𝑝

𝜀‖𝑥‖
𝑝

,

(19)

for all 𝑥 ∈ 𝑉 \ {0} and 𝑛 ∈ N. Taking the limit as 𝑛 → ∞, we
get 𝑓(𝑥) = 𝑇(𝑥) as desired.

The following result has already been proved in [7] (see
also [8]). We show that it can also be derived from Lemma 6.

Lemma7. Let𝑉,𝑊, 𝜀 be as in Lemma 5 and𝑝 < 0. If𝑓 : 𝑉 →

𝑊 is a mapping such that
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥 + 𝑦) − 𝑓 (𝑥) − 𝑓 (𝑦)

󵄩
󵄩
󵄩
󵄩
≤ 𝜀 (‖𝑥‖

𝑝

+
󵄩
󵄩
󵄩
󵄩
𝑦
󵄩
󵄩
󵄩
󵄩

𝑝

)

∀𝑥, 𝑦 ∈ 𝑉 \ {0} ,

(20)

then 𝑓 is an additive mapping.

Proof. By Lemma 5, we can take an additive mapping 𝑇 :

𝑉 → 𝑊 satisfying (17). Observe that
󵄩
󵄩
󵄩
󵄩
𝑓 (0)

󵄩
󵄩
󵄩
󵄩
≤
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑛𝑥) − 𝑇 (𝑛𝑥) − 𝑓 (0)

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑓 (−𝑛𝑥) − 𝑇 (−𝑛𝑥) − 𝑓 (0)

󵄩
󵄩
󵄩
󵄩

+
󵄩
󵄩
󵄩
󵄩
𝑓 (0) − 𝑓 (𝑛𝑥) −𝑓 (−𝑛𝑥)

󵄩
󵄩
󵄩
󵄩

≤ (

8 (3 + 3
𝑝

)

2
𝑝
(3 − 3

𝑝
)

+ 2) 𝑛
𝑝

𝜀‖𝑥‖
𝑝

,

(21)

for all 𝑥 ∈ 𝑉 \ {0} and for all 𝑛 ∈ N. Taking the limit as 𝑛 →
∞, we get 𝑓(0) = 0. By Lemma 6, 𝑓 is an additive mapping.

Now we can prove the following theorem which is the
generalization of Theorem 2.

Theorem 8. Let 𝐴 be a commutative normed algebra and 𝐵 a
commutative Banach algebra. Assume that 𝑓, 𝑔, ℎ : 𝐴 → 𝐵

satisfy (16) and
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥
𝑛

) − 𝑓(𝑥)
𝑛󵄩
󵄩
󵄩
󵄩
≤ 𝛿‖𝑥‖

𝑛𝑞

, (22)

for all 𝑥 ∈ 𝐴 \ {0}, where 𝛿 ≥ 0 and (𝑝 − 1)(𝑞 − 1) > 0.
If 𝑓(0) = 0, then there exists a unique 𝑛-ring homomorphism
𝑇 : 𝐴 → 𝐵 satisfying (17).

Proof. By Lemma 5, there exists a unique additivemapping 𝑇
satisfying (17). ByTheorem 4, it suffices to show that 𝑇(𝑥𝑛) =
𝑇(𝑥)
𝑛. Put 𝑠 := − sgn(𝑞 − 1). From the equality below (17) in

Lemma 5, we have

𝑇 (𝑥) = lim
𝑚→∞

𝑓 (3
𝑠𝑚

𝑥)

3
𝑠𝑚

, (23)

for all 𝑥 ∈ 𝐴 \ {0}. It follows from (22) that

󵄩
󵄩
󵄩
󵄩
𝑇 (𝑥
𝑛

) − 𝑇(𝑥)
𝑛󵄩
󵄩
󵄩
󵄩
= lim
𝑚→∞

1

3
𝑠𝑚𝑛

{

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓 ((3
𝑠𝑚

𝑥)
𝑛

)−(𝑓 (3
𝑠𝑚

𝑥))
𝑛󵄩󵄩
󵄩
󵄩
󵄩
}

≤ lim
𝑚→∞

𝛿

3
𝑠𝑚𝑛

󵄩
󵄩
󵄩
󵄩
3
𝑠𝑚

𝑥
󵄩
󵄩
󵄩
󵄩

𝑛𝑞

= lim
𝑚→∞

(3
𝑠𝑚𝑛(𝑞−1)

) 𝛿‖𝑥‖
𝑛𝑞

= 0,

(24)

for all 𝑥 ∈ 𝐴 \ {0}. Hence 𝑇 is an 𝑛-Jordan homomorphism.
ByTheorem 4, 𝑇 is an 𝑛-ring homomorphism.

The following two corollaries give results on the hypersta-
bility of 𝑛-ring homomorphisms between Banach algebras.

Corollary 9. Let 𝐴, 𝐵, 𝑞, 𝛿, 𝑓, 𝑔, ℎ be as in Theorem 8. If
𝑓(0) = 0 and 𝑝 < 0, then 𝑓 is an 𝑛-ring homomorphism.

Proof. Let 𝑇 be the unique 𝑛-ring homomorphism satisfying
(17) in Theorem 8. By Lemma 6, 𝑓 is the unique additive
mapping satisfying (17). So 𝑓 is the unique 𝑛-ring homomor-
phism.

Corollary 10. Let 𝐴, 𝐵, 𝑝, 𝑞 be as in Corollary 9. Assume that
𝑓 : 𝐴 → 𝐵 satisfies the system of functional inequalities (20)
and (22) for all𝑥 ∈ 𝐴\{0}.Then𝑓 is an 𝑛-ring homomorphism.

Proof. The proof is analogous as for Corollary 9, with
Lemma 6 replaced by Lemma 7.
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