
MULTIPLICITY RESULTS FOR ASYMMETRIC BOUNDARY
VALUE PROBLEMS WITH INDEFINITE WEIGHTS

FRANCESCA DALBONO

Received 21 October 2003

We prove existence and multiplicity of solutions, with prescribed nodal properties, to a
boundary value problem of the form u′′ + f (t,u)= 0, u(0)= u(T)= 0. The nonlinearity
is supposed to satisfy asymmetric, asymptotically linear assumptions involving indefinite
weights. We first study some auxiliary half-linear, two-weighted problems for which an
eigenvalue theory holds. Multiplicity is ensured by assumptions expressed in terms of
weighted eigenvalues. The proof is developed in the framework of topological methods
and is based on some relations between rotation numbers and weighted eigenvalues.

1. Introduction and statement of the main result

This paper is devoted to the study of the existence and multiplicity of solutions to an
asymmetric, “asymptotically linear” two-point boundary value problem of the form

u′′(t) + f
(
t,u(t)

)= 0,

u(0)= 0= u(T),
(1.1)

where T > 0 is fixed and f : [0,T]×R→R satisfies the Carathéodory conditions.
By a solution to (1.1) we mean an absolutely continuous function u : [0,T]→R satis-

fying (1.1) and such that its derivative u′ is absolutely continuous.
Before describing the asymptotically linear assumptions, we need to introduce some

notation. We first define g+(t) :=max{g(t),0} for any given function g ∈ L1([0,T],R).
Moreover, for every i∈ {1,2} and for every ϕi,ψi ∈ L1([0,T],R), by (ϕ1,ψ1)≥ (ϕ2,ψ2) we
mean that ϕ1(t)≥ ϕ2(t) and ψ1(t)≥ ψ2(t) for a.e. t ∈ [0,T]. According to the notation of
[53], we write (ϕ1,ψ1)� (ϕ2,ψ2) if (ϕ1,ψ1)≥ (ϕ2,ψ2) and ϕ1(t) > ϕ2(t), ψ1(t) > ψ2(t) on
a common subset of [0,T] of positive measure.

In what follows, we assume the following asymmetric conditions.

(H±) There exist a+∞,a−∞,b+∞,b−∞ ∈ L1([0,T],R) with ((a+∞)+,(a−∞)+) � (0,0) on (0,T)
such that
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a+
∞(t)≤ liminf

x→+∞
f (t,x)
x

≤ limsup
x→+∞

f (t,x)
x

≤ b+
∞(t),

a−∞(t)≤ liminf
x→−∞

f (t,x)
x

≤ limsup
x→−∞

f (t,x)
x

≤ b−∞(t)
(1.2)

uniformly a.e. in t ∈ [0,T].
(K±) There exist a+

0 ,a−0 ,b+
0 ,b−0 ∈ L1([0,T],R) with ((a+

0 )+,(a−0 )+)� (0,0) on (0,T) such
that

a+
0 (t)≤ liminf

x→0+

f (t,x)
x

≤ limsup
x→0+

f (t,x)
x

≤ b+
0 (t),

a−0 (t)≤ liminf
x→0−

f (t,x)
x

≤ limsup
x→0−

f (t,x)
x

≤ b−0 (t)
(1.3)

uniformly a.e. in t ∈ [0,T].

Our main result will be achieved by using a topological degree approach on the lines of
[16]. A relation between the notions of rotation number and of weighted eigenvalues will
be crucial. Multiplicity will be achieved through some information about the number of
zeros of the solutions to (1.1).

In the literature, many authors have studied existence and multiplicity of solutions
with prescribed nodal properties of problem (1.1) in an asymptotically linear setting.

The first references we wish to quote rely on asymptotically linear problems character-
ized by the presence of constant bounds in assumptions analogous to (H±) and (K±). The
particular case when a+∞ ≡ a−∞ and b+∞ ≡ b−∞ in (H±) is usually called “symmetric.” In this
context, we quote the work [49] by Ubilla where the p-Laplacian operator is considered
and the work [26] by Garcı́a-Huidobro and Ubilla where extensions for a wider class of
nonhomogeneous differential operators are treated.

In the more general asymmetric context, we refer, among others, to the paper [20]
by Dinca-Sanchez. A detailed comparison between our result and the one attained in
[20] is developed in the last part of this work (cf. Remark 3.7). We point out that all the
articles we have quoted above are written in the spirit of the shooting method and are
in the framework of continuous functions. We wish also to mention the paper by Castro
and Lazer [11] and the recent contribution attained by Li and Zhou in the work [37],
devoted to study with variational methods the existence of multiple nontrivial solutions
of p-Laplacian-type PDEs. An interesting result is also provided by Esteban in [22].

In the framework of topological methods, we refer to [9], dealing with asymptotically
linear asymmetric systems. It is worth noticing that if we restrict ourselves to the scalar
symmetric case with constant weights, then [9, Corollary 4.4] and our main result coin-
cide (for a detailed comparison, see [15]).

Other contributions in the symmetric setting are contained in [4, 6, 10, 23, 29, 39, 40]
(for PDEs) and in [38, 54] (for ODEs).

Multiplicity of solutions of asymptotically, asymmetric semilinear elliptic problems
has been widely investigated in the literature. A classical result in this setting is provided
by Fučı́k in [24]. In this direction, we quote, among others, [14, 17, 28, 36] and (for a
brief survey) [41].
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The list of results available in the literature as far as multiplicity of solutions for asymp-
totically linear problems with weights is concerned is definitely shorter.

Before quoting some recent contributions achieved in this context, we wish to remark
that a wider number of authors have studied asymmetric, asymptotically linear problems
characterized by assumptions involving indefinite weights in order to get existence of
solutions. This kind of problems is usually solved by comparing the given equation in
(1.1) with prescribed half-linear problems (which reduce to linear ones in the symmetric
case).

This procedure has been adopted in the search for positive solutions to elliptic asymp-
totically linear or semilinear BVPs (cf., among others, [3, 8, 13, 18, 30, 34, 43]). In this
framework, results have been given on the existence of at least one solution (not neces-
sarily positive) for semilinear boundary value problems both in the symmetric case (see,
e.g., [19] by de Figueiredo and Miyagaki as well as [51, 52] by Zhang) and in the asym-
metric case (see, e.g., [5] by Arias et al., [21] by Dong, [44] by Reichel and Walter, and
[46] by Rynne). We remark that the theory of weighted eigenvalues has been employed in
most of the papers quoted above. It is also worth noticing that both in [19] and in [51]
additional assumptions are formulated in order to achieve the nontriviality of solutions.

As far as multiplicity of solutions for asymptotically linear problems with weights is
concerned, we first mention the works by Sadyrbaev [48] and by Klokov and Sadyrbaev
[32] (both generalizing the results in [33]). In these papers the study of an asymmet-
ric boundary value problem is developed through the study of some variation equation.
More regularity is required on the nonlinearities. In the asymmetric setting, we wish also
to quote the interesting contribution [47] by Rynne. Remarks 3.8 and 3.9 provide more
details about these results. Finally, we refer to [16] which handles an asymptotically linear
problem of the form (1.1) under symmetric assumptions. For the periodic problems, an
analogous result has been attained by Zanini in [50].

It is important to note that the approach used to achieve our result follows the same
lines of the one employed in [16]. The present paper extends the results in [16] in two
directions: an asymmetric situation is treated and indefinite weights are considered.

In order to present our main result, we now introduce the notion of two-weighted
eigenvalues. More precisely, for functions ϕ,ψ ∈ L1([0,T],R) such that (ϕ+,ψ+) � 0 in
(0,T) and for every ν ∈ {<,>}, we consider positively homogeneous asymmetric prob-
lems of the form

u′′(t) + λ
(
ϕ(t)u+(t)−ψ(t)u−(t)

)= 0,

u(0)= 0= u(T), u′(0)ν0,
(1.4)

where u+ := max{u,0}, u− := max{−u,0}. We denote by λν(ϕ,ψ) the values of λ for
which (1.4) admits a solution not identically zero.

In the literature the equation in (1.4) is called half-linear, being positively homoge-
neous and linear in the cones u > 0 and u < 0. A generalized version of the classical Sturm
comparison theorems to the half-linear setting will be proved in the following section (see
Lemma 2.2). According to this generalization, the existence of a sequence of eigenvalues
for problems (1.4) will be ensured. More precisely, the following result (which might be
considered of independent interest) will be achieved.
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Theorem 1.1. For every fixed ν ∈ {<,>}, problem (1.4) admits a positive monotone in-
creasing sequence of eigenvalues

0 < λν
1(ϕ,ψ) < λν

2(ϕ,ψ) < ··· < λν
j(ϕ,ψ) < ··· . (1.5)

Moreover, the half-eigenfunction corresponding to λν
j(ϕ,ψ) has exactly j− 1 zeros on (0,T).

An eigenvalue theory for (1.4) has been developed by Alif in [1] and Alif and Gossez
in [2] when ϕ,ψ ∈ C([0,T],R) and (ϕ+,ψ+) � 0 in (0,T). We stress the fact that the re-
sults achieved in [2] deal with a more general problem, where Fučı́k-like curves (instead
of eigenvalues) are treated. Such results are extended in [1] to the case of p-Laplacian
operators.

In [15, Chapter 4] we treated the hypotheses (H±) and (K±) in the particular case
where, instead of L1-functions, C1-functions are considered. In this framework, we used
the eigenvalue theory developed in [1, 2].

Now, we are in position to state our main theorem.

Theorem 1.2 (main theorem). Assume that f : [0,T]×R→R satisfies the Carathéodory
conditions and the assumptions (H±) and (K±).

Moreover, suppose that there exist ν∈ {<,>} and n,m∈N (m≤ n) such that either

λν
n

(
a+

0 ,a−0
)
< 1 < λν

m

(
b+
∞,b−∞

)
(1.6)

or

λν
n

(
a+
∞,a−∞

)
< 1 < λν

m

(
b+

0 ,b−0
)
. (1.7)

Then, for every h ∈ N with m ≤ h ≤ n problem (1.1) has at least a solution uh,ν having
exactly h− 1 zeros in (0,T), with u′h,ν(0)ν0.

Clearly, if (1.6) or (1.7) is satisfied for every ν ∈ {<,>}, then, for every h ∈ N with
m ≤ h ≤ n, Theorem 1.2 guarantees the existence of at least two solutions uh and vh of
problem (1.1) with u′h(0) > 0 and v′h(0) < 0 having exactly h− 1 zeros in (0,T).

This work is organized as follows. Section 2 is devoted to present some preliminary
results. More precisely, we first state the abstract topological theorem (Theorem 2.1) pro-
viding a first multiplicity result. In the central part of the section, we prove the gen-
eralizations of the Sturm theory to the half-linear case. As a consequence, we obtain
Theorem 1.1 and a relation between rotation numbers and two-weighted half-eigenvalues
(see Lemma 2.6). We conclude Section 2 by recalling the statements of the so-called Elas-
tic lemma. Finally, in Section 3 we obtain the estimates on the rotation numbers which
will lead to proving our main theorem. Some comparisons with multiplicity results in the
literature are developed in the last part of the paper.

Throughout this paper, we denote by R
+
0 and R+ = R

+
0 ∪{0} the sets of positive and

nonnegative real numbers, respectively. Moreover, we define v< := (0,−1) and v> := (0,1).
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2. Preliminary results

In this section, we introduce the notion of “rotation number” and explain its role when
dealing with multiplicity problems.

We consider polar coordinates (ϑ,ρ), where the angles are counted in the clockwise
sense starting from the positive y-axis, so that x = ρ sinϑ, y = ρcosϑ. For any contin-
uous curve γ : [0,T] → R2 \ {0}, we can consider a lifting γ̃ : [0,T] → R×R

+
0 to the

(ϑ,ρ)-plane. Setting γ̃(t) = (ϑγ(t),ργ(t)), we have that ϑγ and ργ are continuous func-
tions (ρ(t)= |γ(t)|) and, moreover, ϑγ(t)− ϑγ(0) is independent of the lifting of γ which
has been considered. Hence, for each t ∈ [0,T], we can define the rotation number

Rot(t;γ) := ϑγ(t)− ϑγ(0)

π
(2.1)

which counts the number of half-turns of the vector
−−−→
0γ(s) as s moves from 0 to t.

If the curve γ(t)= (u(t),u′(t)) represents a solution u(·) of

u′′(t) + f
(
t,u(t)

)= 0, (2.2)

defined on [0,T] and such that u(t)2 +u′(t)2 > 0 for every t ∈ [0,T], then we can define
the corresponding rotation number. To denote it, we will use the notation Rot(2.2)(t;u).
Observe that

Rot(2.2)(t;u)= 1
π

∫ t
0

u′(t)2 + f
(
t,u(t)

)
u(t)

u′(t)2 +u(t)2
dt. (2.3)

We will now show how some estimates on the rotation number lead to a multiplicity re-
sult. The proof of our main result is based on the following theorem which comes from an
application of the modified version of the Leray-Schauder continuation theorem stated
in [42].

Theorem 2.1. Let f : [0,T]×R→R be a Carathéodory function with

f (t,0)≡ 0 (2.4)

and such that u(·)≡ 0 is the unique solution of (2.2) satisfying u(t0)= u′(t0)= 0 for some
t0∈R. Assume also that for each z0∈R2 \ {0}, all the solutions of (2.2) with (u(0),u′(0))=
z0 can be defined on [0,T].

Suppose that there are a positive integer j and two positive numbers r < R such that

Rot(2.2)(T ;u) > j (resp., < j) (2.5)

for each solution u of (2.2) with u(0)= 0, |u′(0)| = r, u′(0)ν0, as well as

Rot(2.2)(T ;u) < j (resp., > j) (2.6)

for each solution u of (2.2) with u(0) = 0, |u′(0)| = R, u′(0)ν0. Then, there exists at least
one solution uj of (1.1) with u′j(0)ν0 having exactly j− 1 zeros in (0,T).
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For the proof, we refer to [16].
In order to prove our main result, we are first interested in providing a generalization

of the Sturm comparison theorems for half-linear asymmetric two-weighted equations
of the form

u′′(t) + λ
(
ϕ(t)u+(t)−ψ(t)u−(t)

)= 0, (2.7)

where ϕ,ψ ∈ L1([0,T],R) and λ∈R
+
0 .

We introduce now a simpler notation for rotation numbers of solutions to (2.7). Con-
sidering v ∈ S1 and k ∈R, it is well known that the Cauchy problem

u′′(t) + λϕ(t)u+(t)− λψ(t)u−(t)= 0,(
u(0),u′(0)

)= kv (2.8)

admits a unique solution, denoted by u(·;kv). Furthermore, the rotation number of
u(·;kv) is well defined whenever k 
= 0, since in this case it is easy to show that u(t;kv)2 +
u′(t;kv)2 > 0 for every t ∈ [0,T]. As u(t;kv)= ku(t;v), one can also see that the rotation
number is independent on k for k 
= 0. Hence, it is not restrictive to work with k = 1.

For this reason, we will set

Rotλϕ,λψ(t;v) := Rot(2.7)

(
t;u(·;v)

)
. (2.9)

In order to discuss the dependence of the rotation numbers upon the coefficients of
(2.7), we rewrite problem (2.7) in the equivalent form

u′(t)= λz(t), z′(t)=−ϕ(t)u+(t) +ψ(t)u−(t). (2.10)

We introduce now the polar coordinates (θ,r) ∈ R×R
+
0 by setting u(t) = r(t)sinθ(t),

z(t)= u′(t)/λ= r(t)cosθ(t). In particular, the angular coordinate θ := θλ;ϕ,ψ satisfies

θ′(t)=

λcos2 θ(t) +ϕ(t)sin2 θ(t) if sinθ(t)≥ 0,

λcos2 θ(t) +ψ(t)sin2 θ(t) if sinθ(t) < 0.
(2.11)

As a first step, we generalize the classical Sturm comparison theorem to the asymmetric,
indefinite case. This is of fundamental importance for the proof of the existence of a
sequence of weighted eigenvalues for (1.4). We refer to Theorem 2.5 for more details.

Lemma 2.2. Let ϕi,ψi ∈ L1([0,T],R), λi ∈ R
+
0 (i = 1,2) such that (ϕ1,ψ1) ≥ (ϕ2,ψ2) for

a.e. t ∈ [0,T] and λ1 ≥ λ2. According to the notation θi := θλi;ϕi,ψi , it is supposed that θ1(0)=
θ2(0). Then,

θ1(t)≥ θ2(t) ∀t ∈ [0,T]. (2.12)

Moreover, if (ϕ1,ψ1)� (ϕ2,ψ2) or if cosθ1(0) 
= 0 and λ1 > λ2, then

θ1(0)= θ2(0)=⇒ θ1(T) > θ2(T). (2.13)
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Slight variants of the first part of this lemma have been proved in [21, 44]. In what
follows, we develop a complete proof, using different arguments.

Proof. Following a classical procedure (see [12]), we consider θ := θ2 − θ1. It is easy to
show that

θ′ = (sin2 θ2− sin2 θ1
)(
g1− λ1

)
+ cos2 θ2

(
λ2− λ1

)
+ sin2 θ2

(
g2− g1

)
, (2.14)

where

gi(t) :=

ϕi(t) if sinθi(t) > 0,

ψi(t) if sinθi(t) < 0.
(2.15)

Notice that the right-hand side of (2.14) is defined almost everywhere, since from (2.11)
the function sinθi has only isolated zeros in t.

We first assume that (ϕ1,ψ1)≥ (ϕ2,ψ2) for a.e. t ∈ [0,T] and λ1 ≥ λ2.
We first prove the nonpositivity of (g2− g1) a.e. in a subinterval of [0,T]. From (2.11),

we obtain that θi crosses each line kπ only from below, when k ∈ Z and i∈ {1,2}. Thus,
taking into account that θ1(0) = θ2(0), one can deduce the existence of S ∈ (0,T) such
that sinθ1(t) · sinθ2(t) > 0 for every t ∈ (0,S). This means that g1 and g2 are comparable
in the interval I= (0,S) and, precisely, (g2(t)− g1(t))≤ 0 for a.e. t ∈ I.

Thus, by assumptions and from equality (2.14), we get

θ′(t)− f (t)θ(t)≤ 0 for a.e. t ∈ I, where f :=
(

sin2 θ2− sin2 θ1
)

θ2− θ1

(
g1− λ1

)
. (2.16)

Note that f ∈ L1([0,T],R). If we define F(t) := ∫ Tt f (s)ds, we obtain

eF(t)θ(t)≤ eF(0)θ(0)= 0 ∀t ∈ I := [0,S]. (2.17)

In particular, θ1(t)≥ θ2(t) for all t ∈ I.
We are now interested in extending the above inequality in the whole interval [0,T].

We assume, by contradiction, that there exists R̃∈ (S,T) such that θ1(R̃) < θ2(R̃). By the
continuity of θ(·), it is possible to find a constant R∈ [S, R̃) such that θ(R)= 0 and θ(t) >
0 for every t ∈ (R, R̃]. Arguing exactly as before, we can infer the existence of a nonempty
interval of the form [R,S∗] where the function θ is nonpositive, a contradiction.

Assume now that either (ϕ1,ψ1)� (ϕ2,ψ2) or cosθ1(0) 
= 0 and λ1 > λ2.
The previous step of the proof guarantees that θ1(t)≥ θ2(t) for every t ∈ [0,T].
We first claim that the existence of a constant P ∈ (0,T] such that θ1(P) > θ2(P) implies

that θ1(t) > θ2(t) for every t ∈ [P,T].
By contradiction, assume that there exists R ∈ (P,T] such that θ(R) = 0 and θ(t) < 0

for every t ∈ [P,R). In particular, sinθ1(s) · sinθ2(s) > 0 for every s∈ [R,R), for a suitable
R∈ [P,R). As before, we can verify that

eF(t)θ(t)≤ eF(R)θ(R) < 0 ∀t ∈ [R,R
]
, (2.18)

a contradiction with θ(R)= 0.
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Consider now the case λ1 > λ2 and cosθ1(0)= cosθ2(0) 
= 0. From (2.14), we immedi-
ately get the existence of an interval J = (0,P∗] where θ′ − f θ is a.e. negative. This implies
that (

eF(t)θ(t)
)′
< 0 for a.e. t ∈ J (2.19)

and, consequently, θ1(t) > θ2(t) for every t ∈ J . The thesis follows by the previous claim.
Finally, consider the case (ϕ1,ψ1) � (ϕ2,ψ2). By assumption, there exists a nonempty

interval I = [a,b] ⊂ [0,T] such that ϕ1(t) > ϕ2(t) and ψ1(t) > ψ2(t) for a.e. t ∈ I . We
suppose, by contradiction, that θ1(T) = θ2(T). Hence, by an application of the previ-
ous claim, we deduce that θ1(t) = θ2(t) for every t ∈ [0,T]. From a suitable choice of
the constants a, b, we can also show that sinθ1(t) · sinθ2(t) > 0 for every t ∈ I and, conse-
quently, θ′(t)− f (t)θ(t) < 0 a.e. in I . Arguing as above, we can conclude that θ1(t) > θ2(t)
for every t ∈ I , a contradiction. �

Consider a constant c 
= (1 + 2k)π/2, for all k ∈ Z. Lemma 2.2 ensures that the function
θλ;ϕ,ψ(T) is strictly increasing with respect to λ, under the initial condition θλ;ϕ,ψ(0)= c.
We remark that the proof of Theorem 2.5 is based on this monotonicity result.

Now, we state a corollary of Lemma 2.2, which follows from the monotonicity of θ
with respect to the weights.

Lemma 2.3. Let ϕi,ψi ∈ L1([0,T],R) (i = 1,2) such that (ϕ1,ψ1) ≥ (ϕ2,ψ2) for a.e. t ∈
[0,T]. Then,

Rotϕ1,ψ1 (t;v)≥ Rotϕ2,ψ2 (t;v), ∀t ∈ [0,T], ∀v ∈ S1. (2.20)

If, moreover, (ϕ1,ψ1)� (ϕ2,ψ2), then

Rotϕ1,ψ1 (T ;v) > Rotϕ2,ψ2 (T ;v), ∀v ∈ S1. (2.21)

For an analogous result we refer to [53, Lemma 2.1].
By an application of Lemma 2.3, we obtain the following.

Lemma 2.4. Let ϕ,ψ ∈ L1([0,T],R) and v ∈ S1. For each ε > 0, there is δ > 0 such that, for
all the functions ϕ∗,ψ∗ ∈ L1([0,T],R) satisfying

ϕ∗(t)≥ ϕ(t)− δ, ψ∗(t)≥ ψ(t)− δ, for a.e. t ∈ [0,T], (2.22)

it follows that

Rotϕ∗,ψ∗(t;v) > Rotϕ,ψ(t;v)− ε, ∀t ∈ [0,T]. (2.23)

Analogously, for each ε > 0 there is δ > 0 such that, for all the functions ϕ∗,ψ∗ ∈ L1([0,T],R)
satisfying

ϕ∗(t)≤ ϕ(t) + δ, ψ∗(t)≤ ψ(t) + δ, for a.e. t ∈ [0,T], (2.24)

it follows that

Rotϕ∗,ψ∗(t;v) < Rotϕ,ψ(t;v) + ε, ∀t ∈ [0,T]. (2.25)
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We remark that this lemma extends [16, Lemma 3.3] to the half-linear context. Hence,
to prove Lemma 2.4 it is possible to use an argument similar to the one used in [16].

Proof. In what follows, we will provide a proof only of the first part of the lemma. The
second part can be proved in an analogous way (just reverse the inequalities).

Let ε > 0 be fixed and suppose that ϕ, ψ, ϕ∗, ψ∗ satisfy (2.22) for some δ > 0. By Lemma
2.3, we know that Rotϕ∗,ψ∗(t;v)≥ Rotϕ−δ,ψ−δ(t;v) for every t ∈ [0,T]. Hence, to prove the
result, it will be sufficient to check that for a suitable choice of δ > 0 (sufficiently small),
it follows that

Rotϕ−δ,ψ−δ(t;v) > Rotϕ,ψ(t;v)− ε ∀t ∈ [0,T]. (2.26)

Assume, by contradiction, that for each n there is tn ∈ [0,T] such that

Rotϕ−1/n, ψ−1/n
(
tn;v

)≤ Rotϕ,ψ
(
tn;v

)− ε. (2.27)

Without loss of generality, we can also suppose that tn→ τ ∈ [0,T], so that

limsup
n→+∞

Rotϕ−1/n, ψ−1/n
(
tn;v

)≤ Rotϕ,ψ(τ;v)− ε. (2.28)

Let un(·), u(·) be, respectively, the solutions of

u′′ +
(
ϕ(t)− 1

n

)
u+(t)−

(
ψ(t)− 1

n

)
u−(t)= 0 (2.29)

and of (2.7), with

(
un(0),u′n(0)

)= (u(0),u′(0)
)= v. (2.30)

By the continuous dependence of the solutions from the equations data, which is valid
also in case of Carathéodory assumptions [27], we know that un → u in the C1-norm,
uniformly on [0,T]. Hence,

Rotϕ−1/n,ψ−1/n
(
tn;v

)

= 1
π

∫ tn
0

u′n(t)2 +
(
ϕ(t)− 1/n

)
u+
n(t)un(t)− (ψ(t)− 1/n

)
u−n (t)un(t)

u′n(t)2 +un(t)2
dt

−→ 1
π

∫ τ
0

u′(t)2 +
(
ϕ(t)u+(t)−ψ(t)u−(t)

)
u(t)

u′(t)2 +u(t)2
dt = Rotϕ,ψ(τ;v),

(2.31)

which is a contradiction with (2.28). Then, (2.26) is achieved and the proof is complete.
�

Our aim consists now in generalizing the comparison results contained in Lemma 2.4
to asymptotically linear equations (see Lemma 3.1). To this purpose we need to exhibit a
relation between weighted eigenvalues and rotation numbers of solutions to the following
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half-linear Cauchy problems:

u′′(t) + λ
(
ϕ(t)u+(t)−ψ(t)u−(t)

)= 0,(
u(0),u′(0)

)= vν,
(2.32)

where ν ∈ {<,>} and ϕ,ψ ∈ L1([0,T],R) with (ϕ+,ψ+) � (0,0) on (0,T). According to
the notation previously introduced, we recall that v< := (0,−1) and v> := (0,1).

We first prove that there exists a positive sequence of weighted eigenvalues for half-
linear problems of the form (1.4). More precisely, we have the following.

Theorem 2.5. For every fixed ν ∈ {<,>}, problem (1.4) admits a positive monotone in-
creasing sequence of eigenvalues

0 < λν
1(ϕ,ψ) < λν

2(ϕ,ψ) < ··· < λν
j(ϕ,ψ)−→ +∞ as j −→ +∞. (2.33)

Moreover, the half-eigenfunction corresponding to λν
j(ϕ,ψ) has exactly j− 1 zeros on (0,T).

Idea of the proof. We omit the details of the proof since the procedure followed is classical
(see, e.g., [12]).

To represent a solution (u(t),u′(t)) of (2.32), we use the polar coordinates (ϑν
λ(t),ρν

λ(t))=
(ϑ,ρ) adopted in order to define the rotation numbers, so that u = ρ sinϑ, u′ = ρcosϑ.
Without loss of generality, we assume the validity of the initial condition ϑν

λ(0) = ϑ0
ν,

where ϑ0
> = 0 and ϑ0

< = π.
It is possible to deduce the continuity of the function λ �→ ϑν

λ(T), defined on R. More-
over, one can show that

lim
λ→+∞

ϑν
λ(T)= +∞, ϑν

0(T)∈
(
ϑ0

ν,ϑ0
ν +

π

2

)
. (2.34)

Hence, for every j ∈N there exists at least a positive value of λ for which ϑν
λ(T)= ϑ0

ν + jπ.
We denote such an eigenvalue by λν

j .
It only remains to prove its uniqueness.
This will be achieved by applying Lemma 2.2, where another angular function θλ;ϕ,ψ

(different from ϑν
λ) is treated. We denote by θλ;ϕ,ψ;ν = θλ;ν the solution of (2.11) satisfying

the initial condition θλ;ν(0)= ϑ0
ν.

Lemma 2.2 guarantees that the map λ �→ θλ;ν(T) is strictly increasing in R
+
0 .

It is then sufficient to prove the validity of the following relations for k ∈N:

ϑν
λ(t)= ϑ0

ν +
kπ

2
⇐⇒ θλ;ν(t)= ϑ0

ν +
kπ

2
,

ϑν
λ(t)− ϑ0

ν ∈
(
kπ

2
,
(k+ 1)π

2

)
⇐⇒ θλ;ν(t)− ϑ0

ν ∈
(
kπ

2
,
(k+ 1)π

2

)
.

(2.35)

Indeed, by combining these relations with Lemma 2.2, we can deduce that also ϑν
(·)(T)

crosses each line ϑ0
ν + jπ exactly once. The uniqueness of the jth eigenvalue λν

j = λν
j(ϕ,ψ)

is consequently ensured. Moreover, the corresponding half-eigenfunction has exactly j−
1 zeros on (0,T).
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To complete the proof, we observe that the validity of (2.35) easily follows from the
definition of the angular functions and, in particular, from the equalities

ρν
λ(t)sinϑν

λ(t)= u(t)= rλ;ν(t)sinθλ;ν(t),

ρν
λ(t)cosϑν

λ(t)= u′(t)= λrλ;ν(t)cosθλ;ν(t),
(2.36)

where (u(t),u′(t)) represents a solution of (2.32) and λ,ρν
λ(·),rλ;ν(·)∈R

+
0 . �

Taking into account Lemma 2.2, the angular relations (2.35), and the characterization
of the eigenvalues established by Theorem 2.5, we immediately deduce the validity of the
following relation between rotation numbers and weighted eigenvalues.

Lemma 2.6. Consider the Cauchy problem (2.32) where, as usual, ν ∈ {<,>} and ϕ,ψ ∈
L1([0,T],R) with (ϕ+,ψ+)� (0,0) on (0,T). Then,

Rotλϕ,λψ
(
T ;vν

)= j ⇐⇒ λ= λν
j(ϕ,ψ),

Rotλϕ,λψ
(
T ;vν

)
> j ⇐⇒ λ > λν

j(ϕ,ψ),

Rotλϕ,λψ
(
T ;vν

)
< j ⇐⇒ λ < λν

j(ϕ,ψ).

(2.37)

Under continuous assumptions on the weights, Lemma 2.6 consists of a reformulation
of some results achieved in [2] in terms of the rotation number.

The last part of this section is devoted to recalling the well-known result called Elastic
lemma (cf. [25]). We consider the problem

v′′ +h
(
t,v(t)

)= 0, (2.38)

where h : [t1, t2]×R→R satisfies the Carathéodory conditions and there exist two func-
tions C,m∈ L1([t1, t2],R+) such that

∣∣h(t,x)
∣∣≤ C(t)|x|+m(t) (2.39)

for every x ∈R and for a.e. t ∈ [t1, t2], with t1, t2 ∈R such that t1 < t2.

Lemma 2.7. For every R1 > 0, there exists R2 > R1 such that for every solution v of the prob-
lem (2.38) with

min
t∈[t1,t2]

∣∣(v(t),v′(t)
)∣∣≤ R1 (2.40)

it follows that

∣∣(v(t),v′(t)
)∣∣≤ R2 ∀t ∈ [t1, t2

]
. (2.41)

Consider again the problem (2.38), where h : [0,T]×R→R satisfies the Carathéodory
conditions. Suppose now the existence of a function C ∈ L1([0,T],R+) and of a constant
δ > 0 such that

∣∣h(t,x)
∣∣≤ C(t)|x| ∀|x| ≤ δ, for a.e. t ∈ [0,T]. (2.42)
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Under these hypotheses, a dual situation with respect to Lemma 2.7 occurs at zero and it
can be expressed by the following lemma.

Lemma 2.8. For every ρ1 > 0 there exists ρ2 < ρ1 such that for every solution v of the problem
(2.38) with

max
t∈[0,T]

∣∣(v(t),v′(t)
)∣∣ > ρ1 (2.43)

it follows that

∣∣(v(t),v′(t)
)∣∣ > ρ2 ∀t ∈ [0,T]. (2.44)

This lemma can be seen as a consequence of Lemma 2.7.

3. The main result

As a first step, we establish a relation between the rotation number of solutions to equa-
tion (2.2) and the rotation number of solutions to suitable half-eigenvalue problems, in
the spirit of extending the comparison Lemma 2.4 to the framework of nonlinear equa-
tions. In Lemma 3.1, we will implicitly assume that the solutions of (2.2) we consider are
defined in [0,T] and are such that (u(t),u′(t)) 
= 0, for all t ∈ [0,T]. In the sequel, we will
confine our applications to nonlinear equations which are asymptotically linear at zero
and at infinity and, therefore, all the solutions (but the trivial one) of (2.2) will satisfy
such assumptions.

Lemma 3.1. Let f : [0,T]×R→R be a Carathéodory function and let ϕ, ψ ∈ L1([0,T],R)
be such that

liminf
x→+∞

f (t,x)
x

≥ ϕ(t), liminf
x→−∞

f (t,x)
x

≥ ψ(t), for a.e. t ∈ [0,T], (3.1)

hold uniformly in t. Then, for each ε > 0, there is Rε > 0 such that for each solution u(·) of
(2.2) with |(u(t),u′(t))| ≥ Rε for all t ∈ [0,T], it follows that

Rot(2.2)(t;u)≥ Rotϕ,ψ(t;v)− ε, ∀t ∈ [0,T], with v =
(
u(0),u′(0)

)∣∣(u(0),u′(0)
)∣∣ . (3.2)

Analogously, if

limsup
x→+∞

f (t,x)
x

≤ ϕ(t), limsup
x→−∞

f (t,x)
x

≤ ψ(t), for a.e. t ∈ [0,T], (3.3)

hold uniformly in t, then, for each ε > 0 there is Rε > 0 such that for each solution u(·) of
(2.2) with |(u(t),u′(t))| ≥ Rε for all t ∈ [0,T], it follows that

Rot(2.2)(t;u)≤ Rotϕ,ψ(t;v) + ε, ∀t ∈ [0,T], with v =
(
u(0),u′(0)

)∣∣(u(0),u′(0)
)∣∣ . (3.4)
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Furthermore, if it is assumed that

liminf
x→0+

f (t,x)
x

≥ ϕ(t), liminf
x→0−

f (t,x)
x

≥ ψ(t), for a.e. t ∈ [0,T], (3.5)

hold uniformly in t, then, for each ε > 0 there is rε > 0 such that for each solution u(·) of
(2.2) with 0 < |(u(t),u′(t))| ≤ rε for all t ∈ [0,T], it follows that

Rot(2.2)(t;u)≥ Rotϕ,ψ(t;v)− ε ∀t ∈ [0,T], with v =
(
u(0),u′(0)

)∣∣(u(0),u′(0)
)∣∣ . (3.6)

Analogously, if

limsup
x→0+

f (t,x)
x

≤ ϕ(t), limsup
x→0−

f (t,x)
x

≤ ψ(t), for a.e. t ∈ [0,T], (3.7)

hold uniformly in t, then, for each ε > 0 there is rε > 0 such that for each solution u(·) of
(2.2) with 0 < |(u(t),u′(t))| ≤ rε for all t ∈ [0,T], it follows that

Rot(2.2)(t;u)≤ Rotϕ,ψ(t;v) + ε ∀t ∈ [0,T], with v =
(
u(0),u′(0)

)∣∣(u(0),u′(0)
)∣∣ . (3.8)

The above lemma represents a generalization of [16, Lemma 3.4] to the asymmetric
setting.

Proof. Assume (3.1) and let ε > 0 be fixed. By Lemma 2.4, there is δ > 0 such that

Rotϕ−δ,ψ−δ(t;v)≥ Rotϕ,ψ(t,v)− ε

2
, ∀t ∈ [0,T], ∀v ∈ S1. (3.9)

For such a δ, using (3.1) and the Carathéodory assumptions, we can find a function
� = �δ ∈ L1([0,T],R+) such that

f (t,x)x ≥ (ϕ(t)− δ)x+x− (ψ(t)− δ)x−x− �(t), ∀x ∈R, for a.e. t ∈ [0,T], (3.10)

where x+ := max{x,0} and x− := max{−x,0}. Now, assume by contradiction that the
claimed consequence of (3.1) is not true. This means that for each n there is a solution un
of (2.2) defined on [0,T] with ρn(t)= |(un(t),u′n(t))| ≥ n for all t ∈ [0,T] and such that,
for some tn ∈ [0,T],

Rot(2.2)

(
tn;un

)
< Rotϕ,ψ

(
tn;vn

)− ε, (3.11)

where

vn =
(
un(0),u′n(0)

)∣∣(un(0),u′n(0)
)∣∣ = (sin

(
αn
)
, cos

(
αn
))
. (3.12)

Without loss of generality, it is also possible to assume that tn→ τ ∈ [0,T] and vn→ w =
(sin(α),cos(α))∈ S1 with αn→ α. Then, passing to the upper limit on the above equation
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and using the continuity of Rotϕ,ψ(·;·) in [0,T]× S1, we obtain

limsup
n→∞

Rot(2.2)

(
tn;un

)≤ Rotϕ,ψ(τ;w)− ε. (3.13)

Next, we use the polar coordinates (ϑn(t),ρn(t)) to represent (un(t),u′n(t)). We obtain that

ϑ′n(t)= u′n(t)2 +un(t) f
(
t,un(t)

)
u′n(t)2 +un(t)2

≥cos2 ϑn(t)+
(
ϕ(t)−δ)(sinϑn(t)

)+
sinϑn(t)−(ψ(t)− δ)(sinϑn(t)

)−
sinϑn(t)− �(t)

ρ2
n(t)

≥cos2 ϑn(t)+
(
ϕ(t)−δ)(sinϑn(t)

)+
sinϑn(t)−(ψ(t)−δ)(sinϑn(t)

)−
sinϑn(t)− �(t)

n
(3.14)

holds for almost every t ∈ [0,T]. By a result on differential inequalities [35] we know that

Rot(2.2)

(
t;un

)= ϑn(t)− ϑn(0)
π

= ϑn(t)−αn
π

≥ θn(t)−αn
π

, (3.15)

where θn is the solution of

θ′ = cos2 θ +
(
ϕ(t)− δ)(sinθ)+ sinθ− (ψ(t)− δ)(sinθ)− sinθ− �(t)

n
,

θ(0)= αn.
(3.16)

By continuous dependence (with respect to L1-perturbations of the vector field), we know
that, as n→∞, θn→ θ̄, uniformly on [0,T], θ̄(·) being the solution of

θ′(t)= cos2 θ(t) +
(
ϕ(t)− δ)(sinθ(t)

)+
sinθ(t)− (ψ(t)− δ)(sinθ(t)

)−
sinθ(t),

θ(0)= α. (3.17)

In particular, by uniform convergence, we have that θn(tn)→ θ̄(τ) for n→∞. Thus, we
can conclude that

liminf
n→∞ Rot(2.2)

(
tn;un

)≥ θ̄(τ)−α
π

= θ̄(τ)− θ̄(0)
π

. (3.18)

Finally, recalling (3.13) and the definition of Rotϕ−δ,ψ−δ(τ;w), we have

Rotϕ−δ,ψ−δ(τ;w)≤ Rotϕ,ψ(τ;w)− ε. (3.19)

This, clearly, contradicts (3.9).
We have thus proved the first claim in Lemma 3.1. The proof of the other three parts

of the statement follows precisely the same steps (even with some simplification for the
case of rotations near zero) and therefore it is omitted. �
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In order to apply Theorem 2.1, we will now state four propositions (analogous to the
ones described in [16]) which provide the needed estimates on the rotation number of a
solution to the initial value problem

u′′(t) + f
(
t,u(t)

)= 0,

u(0)= 0, u′(0)= z0,
(3.20)

with z0 ∈R suitably chosen.
The first proposition provides a bound from below on the rotation number for all the

solutions of (3.20) having z0 “large enough.”

Proposition 3.2. Suppose that f satisfies the hypothesis (H±) and the Carathéodory con-
ditions. Moreover, assume that there exists j ∈N, ν∈ {<,>} such that λν

j(a
+∞,a−∞) < 1. Then,

there exists � > 0 such that for every z0 ∈R with z0ν0, |z0| >�, every (possible) solution u
of (3.20) is such that Rot(2.2)(T ;u) > j.

Proof. We take z0 ∈ R, z0ν0, and a solution u of (3.20). Moreover, we define v :=
(0,z0/|z0|). Since λν

j(a
+∞,a−∞) < 1, Lemma 2.6 implies that Rota+∞,a−∞(T ;v) > j. Thus, it is

possible to choose a positive constant ε satisfying

Rota+∞,a−∞(T ;v)− ε > j. (3.21)

We note that from hypothesis (H±) the continuous functions a+∞ and a−∞ satisfy, respec-
tively, the assumptions (3.1) in Lemma 3.1. Hence, by applying such a lemma, we deduce
the existence of a constant R = R(ε) > 0 such that if |(u(t),u′(t))| ≥ R for all t ∈ [0,T],
then

Rot(2.2)(t;u)≥ Rota+∞,a−∞(t;v)− ε, ∀t ∈ [0,T], (3.22)

and, in particular, Rot(2.2)(T ;u) > j.
In order to determine a lower bound on |z0| which leads to |(u(t),u′(t))| ≥ R for ev-

ery t ∈ [0,T], we will apply Lemma 2.7, since its hypotheses are verified. Indeed, by com-
bining the assumption (H±) with the Carathéodory conditions, for σ > 0, we can find
a function C = C(a±∞,b±∞,σ) ∈ C([0,T],R+) and a function � = �σ ∈ L1([0,T],R+) such
that ∣∣ f (t,x)

∣∣≤ C(t)|x|+ �(t), ∀x ∈R, for a.e. t ∈ [0,T]. (3.23)

Thus, setting R1 = R in Lemma 2.7, we infer that there exists � > R such that if |z0| >�,
then |(u(t),u′(t))| > R for every t ∈ [0,T]. This completes the proof. �

The following proposition guarantees a bound from above on the rotation number
of all the (possible) solutions to (3.20) for which z0 is taken sufficiently large. Since the
corresponding proof follows the same steps of Proposition 3.2, we will omit the details.

Proposition 3.3. Suppose that f satisfies the hypothesis (H±) and the Carathéodory con-
ditions. Moreover, assume that there exists j ∈ N and ν ∈ {<,>} such that λν

j(b
+∞,b−∞) > 1.

Then, there exists �∗ > 0 such that for every z0 ∈R with z0ν0 and |z0| >�∗, every (possi-
ble) solution u of (3.20) is such that Rot(2.2)(T ;u) < j.
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Finally, the last two propositions provide lower and upper estimates, respectively, for
the rotation number of all the solutions of (3.20) characterized by a sufficiently small z0.
Both their proofs are similar to the one of Proposition 3.2. The only difference consists in
the fact that Lemma 2.8 (instead of Lemma 2.7) is used in order to achieve the result. For
this reason, we will prove only the following.

Proposition 3.4. Suppose that f satisfies the hypothesis (K±) and the Carathéodory con-
ditions. Moreover, assume that there exists i ∈ N and ν ∈ {<,>} such that λν

i (a
+
0 ,a−0 ) < 1.

Then, there exists δ > 0 such that for every z0 ∈ R with z0ν0 and |z0| < δ, every (possible)
solution u of (3.20) is such that Rot(2.2)(T ;u) > i.

Proof. We take z0 ∈R with z0ν0 and a solution u of (3.20). Since λν
i (a

+
0 ,a−0 ) < 1, Lemma

2.6 implies that Rota+
0 ,a−0 (T ;v) > i, where v := (0,z0/|z0|). Thus, it is possible to choose a

positive constant ε satisfying

Rota+
0 ,a−0 (T ;v)− ε > i. (3.24)

Hypothesis (K±) ensures that conditions in (3.5) are satisfied by a+
0 , a−0 , respectively.

Hence, by Lemma 3.1, we deduce the existence of a constant r = r(ε) > 0 such that if
0 < |(u(t),u′(t))| ≤ r for all t ∈ [0,T], then

Rot(2.2)(T ;u)≥ Rota+
0 ,a−0 (T ;v)− ε > i. (3.25)

We observe that the hypotheses of Lemma 2.8 are verified, since from the assumption
(K±), fixed η> 0, we can find a constant σ = σ(η)> 0 and a continuous function D=
D(a±0 ,b±0 ,η) : [0,T]→R+ such that

∣∣ f (t,x)
∣∣≤D(t)|x|, ∀x ∈R : |x| < σ , for a.e. t ∈ [0,T]. (3.26)

Lemma 2.8 guarantees that whenever z0 is different from zero, then |(u(t),u′(t))| > 0 for
every t ∈ [0,T].

In order to determine an upper bound on |z0| which leads to |(u(t),u′(t))| ≤ r for
every t ∈ [0,T], we use again Lemma 2.8. In particular, setting ρ1 = r, we conclude that
there exists δ ∈ (0,r) such that if |z0| ≤ δ, then |(u(t),u′(t))| ≤ r for every t ∈ [0,T]. This
completes the proof. �

Proposition 3.5. Suppose that f satisfies the hypothesis (K±) and the Carathéodory con-
ditions. Moreover, assume that there exists i ∈ N and ν ∈ {<,>} such that λν

i (b
+
0 ,b−0 ) > 1.

Then, there exists δ∗ > 0 such that for every z0 ∈R with z0ν0 and |z0| < δ∗, every (possible)
solution u of (3.20) is such that Rot(2.2)(T ;u) < i.

Remark 3.6. We note that Proposition 3.3 holds independently on the sign of a±∞, pro-
vided we assume the less restrictive condition ((b+∞)+,(b−∞)+)� (0,0) on (0,T).

A symmetric observation could be written for Proposition 3.5.
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Now we prove our main result, Theorem 1.2. Theorem 1.2 can be easily proved com-
bining the previous propositions with Theorem 2.1.

Proof. We take ν∈{<,>} and h∈N with m≤h≤ n. First of all, assume that λν
n(a+

0 ,a−0 ) <
1 < λν

m(b+∞,b−∞). In particular, by Proposition 3.3, we can find a positive constant �∗ such
that for every y0 ∈R with y0ν0 and |y0| >�∗, every (possible) solution u of

u′′(t) + f
(
t,u(t)

)= 0,

u(0)= 0, u′(0)= y0
(3.27)

is such that Rot(2.2)(T ;u) < m ≤ h. Moreover, from Proposition 3.4 it follows that there
exists δ > 0 such that for every y0 ∈ R with y0ν0 and |y0| < δ, every (possible) solution
u of (3.27) is such that Rot(2.2)(T ;u) > n≥ h. It is not restrictive to suppose that δ <�∗.
Taking into account Lemmas 2.7 and 2.8 and fixing r ∈ (0,δ) and R ∈ (�∗,+∞), we
observe that all the hypotheses of Theorem 2.1 are satisfied. Thus, Theorem 1.2 is proved
in this first case.

If λν
n(a+∞,a−∞) < 1 < λν

m(b+
0 ,b−0 ), we use Propositions 3.2 and 3.5 in order to obtain the

estimates on the rotation number. Hence, following exactly the previous steps, from an
application of Theorem 2.1 we easily achieve the thesis. �

Now, we provide two comparison remarks with the multiplicity results obtained in an
asymmetric, asymptotically linear setting by Dinca and Sanchez in [20] and by Sadyrbaev
in [48], respectively.

Remark 3.7. The paper [20] deals with the existence and multiplicity of solutions for
an asymmetric problem with constant weights of the form (1.1) satisfying the following
asymptotically linear assumptions.

There exist ε0 > 0, R > 0, and positive constants a±0 , b±0 , a±∞, b±∞ with 0 < a±0 ≤ b±0 , 0 <
a±∞ ≤ b±∞, such that

a+
0 ≤

f (t,u)
u

≤ b+
0 ∀(t,u)∈R× ]0,ε0

[
,

a−0 ≤
f (t,u)
u

≤ b−0 ∀(t,u)∈R× ]− ε0,0
[
,

a+
∞ ≤

f (t,u)
u

≤ b+
∞ ∀(t,u)∈R× ]R,+∞[,

a−∞ ≤
f (t,u)
u

≤ b−∞ ∀(t,u)∈R× ]−∞,R
[
.

(3.28)

A Lipschitz condition on f is required as well. In order to achieve the multiplicity result,
in [20] a shooting argument is developed based on the notion of “variation index” (see
also [31]) and the implicit function theorem is applied. We point out that [20, Theorem
3(a) and (c)] follow from Theorem 1.2, while, in some situations, [20, Theorem 3(b) and
(d)] might provide an extra solution.
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The gap condition (analogous to our assumptions (1.6) or (1.7)) between the behavior
of the nonlinearity in zero and near infinity is written in terms of the number of zeros
kν(λ,µ) in (0,π) of the solution of

u′′ + λu+−µu− = 0, u(0)= 0,
∣∣u′(0)

∣∣= 1, u′(0)ν0, (3.29)

where λ, µ are positive constants and ν∈ {<,>}.
Statements (a) and (c) in [20, Theorem 3] ensure the existence of kν(a+

0 ,a−0 )− kν(b+∞,
b−∞) solutions, under the further hypotheses

kν
(
a+

0 ,a−0
)
> kν

(
b+
∞,b−∞

)
(3.30)

and

Rotb+∞,b−∞
(
π;vν

) 
∈N, v> := (0,1), v< := (0,−1). (3.31)

We now compare the assumption (1.6) with the assumptions of [20, Theorem 3(a) and
(c)]. To this aim, we rewrite them in terms of the rotation numbers Rotb+∞,b−∞(π;vν) and
Rota+

0 ,a−0 (π;vν).
By Lemma 2.6 our hypothesis (1.6) is equivalent to the following:

∃n,m∈N,m≤ n : Rota+
0 ,a−0
(
π;vν

)
> n≥m> Rotb+∞,b−∞

(
π;vν

)
. (3.32)

We recall that Theorem 1.2 guarantees the existence of n−m + 1 solutions whenever
(3.32) holds.

On the other hand, the number of zeros kν can be equivalently defined by the following
expression:

kν
(
a+

0 ,a−0
)=max

{
m∈N :m< Rota+

0 ,a−0
(
π;vν

)}
,

kν
(
b+
∞,b−∞

)=max
{
m∈N :m< Rotb+∞,b−∞

(
π;vν

)}
.

(3.33)

Thus, inequality (3.30) implies that

Rota+
0 ,a−0

(
π;vν

)
> kν

(
a+

0 ,a−0
)
> kν

(
b+
∞,b−∞

)
, (3.34)

which, combined with (3.31), leads to

Rota+
0 ,a−0
(
π;vν

)
> kν

(
a+

0 ,a−0
)≥ kν

(
b+
∞,b−∞

)
+ 1 > Rotb+∞,b−∞

(
π;vν

)
. (3.35)

Such inequalities guarantee that conditions (3.32) and, equivalently, (1.6) in Theorem 1.2
are satisfied. In particular, our Theorem 1.2 provides the existence of kν(a+

0 ,a−0 )− kν(b+∞,
b−∞) solutions to problem (1.1). Hence, we can conclude that [20, Theorem 3(a) and (c)]
follow from our main result.

On the other hand, [20, Theorem 3(b) and (d)], dealing with multiplicity of solutions
to problem (1.1) whenever a gap condition involving the constants a±∞ and b±0 holds, are
more general than the ones we have analyzed above, since a condition symmetric to (3.31)
is not assumed.



Francesca Dalbono 975

Remark 3.8. In [48], Sadyrbaev has given a multiplicity result for a scalar equation of the
form

u′′ + f (t,u)= g(t,u,u′), (3.36)

where g is sublinear and f is asymptotically linear at infinity. More precisely, it is sup-
posed that limx→+∞( f (t,x)/x)= c+∞(t) and limx→−∞( f (t,x)/x)= c−∞(t) uniformly in t.

The argument in [48] is developed through the study of some variation equation (cf.
[48, (1.5)]) associated to (3.36) and assumptions are given relatively to the number of ze-
ros of the solutions of this auxiliary equation and of the two-weighted, half-linear equa-
tion

u′′(t) + c+
∞(t)u+(t)− c−∞(t)u−(t)= 0,

(
u(0),u′(0)

)= vν. (3.37)

For this approach, it is required that the functions f and g be of class C1. No explicit sign
condition is assumed on the continuous functions c±∞.

It is possible to compare our main result with the one of Sadyrbaev provided that
we assume g ≡ 0, (c+∞)+ · (c−∞)+ 
≡ 0, and limx→0( f (t,x)/x) = c0(t) uniformly in t, where
c+

0 
≡ 0. In this particular situation, the variation equation studied in [48] becomes

u′′(t) + c0(t)u(t)= 0, u(0)= 0, u′(0)= 1. (3.38)

Arguing as in Remark 3.7, one can transform the hypotheses in [48] involving the num-
ber of zeros of the solutions to the Cauchy problems (3.37) and (3.38) into hypotheses
involving the weighted eigenvalues. More precisely, the assumptions of [48, Corollary 4.1]
can be rewritten as follows: for each ν∈ {<,>} there exist hν,k ∈N (which represent the
number of zeros of the solutions to (3.37) and (3.38), resp.) such that

λν
hν

(
c+
∞,c−∞

)
< 1 < λν

hν+1

(
c+
∞,c−∞

)
, λν

k

(
c0,c0

)
< 1 < λν

k+1

(
c0,c0

)
. (3.39)

In this setting, [48, Corollary 4.1] provides the existence of at least |h> − k| + |k − h<|
nontrivial solutions to problem (1.1). It is easy to show that such a corollary follows from
Theorem 1.2.

Remark 3.9. Rynne in [47] has studied multiplicity of solutions for asymmetric prob-
lems involving superlinear nonlinearities. Multiplicity is achieved by using an alternative
approach. Instead of an eigenvalue problem of the form (1.4), [47] considers the half-
eigenvalues problem

u′′ +µu(t) +ϕ(t)u+(t)−ψ(t)u−(t)= 0,

u(0)= 0= u(T), u′(0)ν0,
(3.40)

where ϕ,ψ ∈ L∞([0,T],R) and ν∈ {<,>}. The corresponding eigenvalue theory is devel-
oped, among others, in [7, Theorem 2], where ϕ, ψ are continuous functions on [0,T],
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and, more recently, in [45, Theorem 5.1] for ϕ,ψ ∈ L∞([0,T],R). In particular, [45, The-
orem 5.1] is the analog (in this alternative setting) of Theorem 1.1 and provides a mono-
tone increasing sequence of half-eigenvalues

µν
1(ϕ,ψ) < µν

2(ϕ,ψ) < ··· < µν
j(ϕ,ψ) < ··· (3.41)

for problem (3.40). The half-eigenfunction corresponding to µν
j(ϕ,ψ) has exactly j − 1

zeros on (0,T).
By taking into account the nodal properties of the half-eigenfunctions, the Sturm com-

parison Lemma 2.3, and the relations in Lemma 2.6, it is immediate to deduce the validity
of the following equivalences between the half-eigenvalues µν

j(ϕ,ψ) and λν
j(ϕ,ψ):

µν
j(ϕ,ψ) < 0⇐⇒ Rotϕ,ψ

(
T ;vν

)
> Rotµν

j (ϕ,ψ)+ϕ,µν
j (ϕ,ψ)+ψ

(
T ;vν

)= j

⇐⇒ λν
j(ϕ,ψ) < 1.

(3.42)

Analogous relations are satisfied whenever we reverse the inequalities.
According to (3.42), we infer that Theorem 1.2 holds true even if we replace assump-

tions (1.6) and (1.7) with the equivalent conditions

µν
n

(
a+

0 ,a−0
)
< 0 < µν

m

(
b+
∞,b−∞

)
(3.43)

and

µν
n

(
a+
∞,a−∞

)
< 0 < µν

m

(
b+

0 ,b−0
)
, (3.44)

respectively.
Rynne in [47] proves the existence of solutions with specified nodal properties to some

asymmetric problem by studying the sign of the eigenvalues µν
j(ϕ,ψ) associated to the

two-weighted, half-linear problem (3.40). The result in [47] is not directly comparable
with ours, since in [47] a superlinear assumption near +∞ is considered.

We point out that sign conditions like µν
j(ϕ,ψ) < 0 implicitly contain some hypothesis

on the sign of the weights ϕ, ψ.
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[16] F. Dalbono and F. Zanolin, Multiplicity results for asymptotically linear equations, using the
rotation number approach, preprint, 2002.

[17] E. N. Dancer, On the ranges of certain weakly nonlinear elliptic partial differential equations, J.
Math. Pures Appl. (9) 57 (1978), no. 4, 351–366.

[18] D. G. de Figueiredo, Positive solutions of semilinear elliptic problems, Differential Equations (São
Paulo, 1981), Lecture Notes in Math., vol. 957, Springer, Berlin, 1982, pp. 34–87.

[19] D. G. de Figueiredo and O. H. Miyagaki, Semilinear elliptic equations with the primitive of the
nonlinearity away from the spectrum, Nonlinear Anal. 17 (1991), no. 12, 1201–1219.

[20] G. Dinca and L. Sanchez, Multiple solutions of boundary value problems: an elementary approach
via the shooting method, NoDEA Nonlinear Differential Equations Appl. 1 (1994), no. 2,
163–178.

[21] Y. Dong, On the solvability of asymptotically positively homogeneous equations with Sturm-
Liouville boundary value conditions, Nonlinear Anal. 42 (2000), no. 8, 1351–1363.

[22] M. J. Esteban, Multiple solutions of semilinear elliptic problems in a ball, J. Differential Equations
57 (1985), no. 1, 112–137.

[23] D. Fortunato, Morse theory and nonlinear elliptic problems, Progress in Elliptic and Parabolic
Partial Differential Equations (Capri, 1994), Pitman Res. Notes Math. Ser., vol. 350, Long-
man, Harlow, 1996, pp. 163–172.
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