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l Introduction. In this paper we shall be concerned with cubic
congruences of the form

(1.1) n=aγx\Λ -hasocξ (mod m),

where n is arbitrary, m ^ > l , and the a.t are integers prime to m. The
number of sets of solutions (xl9 •••, xs) of (1.1), distinct modulo m,
will be denoted by Ns(n, m). Our discussion of N8(n, m) is limited to
the cases s=2 and s=3; however, we emphasize that the method
involved can be extended to arbitrary s.

Suppose that m has the factorization m=p^, , pft as a product
of powers of distinct primes pl9 •••, pι . Then it follows easily that

(1.2) N8(n, m)=NJn, pϊή . N£n, pi1 ) .

Thus the determination of Ns(n, m) reduces to the problem of deter-
mining Ns(n, pλ) where p is a prime. We accordingly limit ourselves
to the case of a prime-power modulus pλ.

If we denote by t the largest integer <Lλ such that n=0 (mod?/),
then one may write

(1.3) n=p^, (ξ, p)=l, 0<,t^Λ.

We observe, in case λ>t, that ξ is uniquely determined (modp). Our
main goal will be to obtain exact formulas for the number of solutions

v\ t)=N>2 of

(1.4) n=ax'3 -f by3 (mod pλ),

and the number of solutions Na(n, p λ, t)=N9 of

(1.5) nΞΞΞax3 + by3 4- cz:i (mod p λ ) ,

where n is arbitrary of the form (1.3), and the following conditions
are satisfied:

(1.6) p = l (mod 3), abc φ 0 (mod p) .

The restriction p=l (mod 3) is natural, since other primes are special
in the case of cubic congruences.

The method of the paper is based on elementary properties of
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finite exponential sums. These are listed for the cubic case as pre-
liminary lemmas in §2. The principal formula for N2 is contained in
Theorem 1 (§3) and the corresponding result for N3 in Theorem 2 (§4).
Both results involve the pair of integers (A, B), determined uniquely
by the relations [7],

(1.7) 4p=A2 + 27B\ A=l (mod 3), 5 > 0 .

However, in the special case tφO (mod 3), the value of iV2 is given
explicity (§ 3, Corollary 2).

On the basis of these formulas, solvability criteria for (1.4) and
(1.5) are developed in §5. In fact, it is shown in Theorem 5 that
(1.5) is always solvable (iV3>0). As for N2, the following criterion is
established: If pφl, then (1.4) is insolvάble if and only if tφQ (mod
3), t<Cλ, and a and b belong to different cubic character classes (modp).
(For the exceptional case p=7, see the complete statement of the
criterion in Theorem 6). Approximations to iV2 and N-ά are also given
in § 5 (Theorems 3 and 4, respectively).

Regarding previous research on cubic congruences, we note the
work of Gauss who evaluated JV2 in the case of a prime modulus p
[4]. More recently, Dickson determined N3 for a prime modulus, with
α = 6 = c = l [3, p. 167]. In addition, Skolem [9] and Selmer [8] have
considered such congruences in their treatment of cubic Diophantine
equations. Some of these results were deduced by the author in an
earlier note anticipating the present paper [2].

2 Notation and preliminary lemmas. The cubic Gauss sum
G(n, m) is defined by

(2.1) G(n,m)= Σ e(n\ m),
μ(mod m)

where the summation is over a complete residue system (mod m), and e
is defined for integral a, by

(2.2) ε(μ, m)=e27ίi*!m.

Expansion of Ns(n, m) into a Fourier sum [1, §5] reveals immediately
the relation between N8(n, m) and the Gauss sum (2.1):

LEMMA 1. The number of solutions of (1.1) is given by

(2.3) Ns(nym)==1 Σ Φ> m) Π G(-atμ9 m).
m μCmod m) i = l

We next note two reduction formulas for G [6].
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LEMMA 2.

(2.4) G(nm', mn')=m> G(n, m).

LEMMA 3. // (P, p )=l , then

(2.5) G{v, p * ) = p'2JG(p, p)

Closely related to G(n, pk) are the two Gauss-Kummer sums defined

by

(2.6) τf\n)= Σ ZVM«, Pk) < (» = 1. 2) ,
v(mod pk)

(v, p) = l

where #(^) and #2(v) denote the two non-principal cubic characters
(modp), the summation being over a reduced residue system (mod?/).
In order to differentiate between the two non-principal characters, we
write

(2.7) 0χ= -1 (A + 3£-|/-3), θ,=¥λ , {0A=p),

where A and B are defined by (1.7). Then one may define χ(α), for
integers a prime to p, to be that cube root of unity satisfying

(2.8) χ(a)=aCp-»13 (mod θλ).

The relation (2.8) is the cubic extension of the Euler criterion [5, p.
455]. In our discussion, the primitive cube roots of unity will be
denoted by ω and ω2, with ω=J( —1 + τ/ —3).

We place further,

With this notation, we state the following reduction formula for τψ){n).

LEMMA 4. If k>l and i = l or 2, then

ro α\ αoΛwΛ —jP*- l ι"i(f) {n = pk-ιξ, (£, p) = l) ,
10 (otherwise)

The important relation connecting G(v, p), φ), and φ) is contain-
ed in the following lemma.

LEMMA 5. If (v, p)=l, then

(2.10) G(», p)=τ,(ι
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The sums τλ{y), r2(y) have the following fundamental properties [5],

(2.11) Φ) = f{v)τi, Φ) = χ{v)τ,, (v, p) = l ,

(2.12) τΛ = p,

(2.13) rl=pθ^ τl=pθ2,

θι and 02 being defined by (2.7).
Corresponding to the principal character (mod p), we have the

familiar (Ramanujan) sum,

(2.14) C(nfP*) = Σ *(n»,pk),
v(mod pk)

) l

w h i c h h a s t h e e v a l u a t i o n ( > )

p ' - ' ί p - l ) ( p * \ n ,

(2.15) C(n, pk) = -1 I n, pk \n),

0 (pk~ι X n).

Also of importance in this paper are the functions,

(2.16) T(a)= 1

V
( A

(2.17) J(α)=

where Λ(α:) is defined for cubic non-residues a (mod ??) by

(2.18) h(a) = l or - 1 ,

according as χ(a)=ω or ω2.
Application of (2.13) gives

LEMMA 6.

(2.19) T(a)=J(a).

The following notation will be needed.

where [/?] indicates the largest integer <β; and for i=0, 1, 2,

(2.22) L i ( ί ) = { 1 ( * - "(mod8), ί <-I).
10 (otherwise).
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3* The number of solutions of (1.4). In this section we use the
notation,

(3.1) ζ=abξ,

where ξ is defined by (1.3), and

(3.2) V=χ(a)X2(b) + χ(b)χ*(a) = 2 or - 1 ,

according as χ(a)=χ(b) or χ{a)Φχ{b).
The main result on (1.4) is contained in

THEOREM 1. The number of solutions of (1.4) is given by

(3.3)

where t is defined by (1.3), J by (2.17), q, r, s by (2.20), the L{(t) by
(2.22), and ζ, η by (3.1) and (3.2) respectively.

Proof. By Lemma 1 it follows immediately that

(3.4) N«= 1- Σ e(w//, pλ)G(-aμ, pλ)G(~bμ, pλ).
pλ (mod p λ)

The residue system //(mod pλ) may be assumed to be the set ιμ = vpκ~1c

where k ranges over the values 0<k<λ, and for each k, ψ ranges
over a reduced residue system (mod pk). Thus (3.4) becomes, using
(2.4),

(3.5) Ni=pλΣ ~ Σ e(vn, p*)G(-a», pk)G(-bv, pk).
A=o p v(mod p f c)

We now break up the k summation according as &ΞΞΞ1, 0, or 2 (mod 3),
and apply Lemma 3 to obtain

(3.6) N.^Uι + U.i + U.s,

where

(3.7) ί 7 i = p λ " 2 Σ -1-" Σ e(^> piJ+ι)G(-av, p)G(-bv, p) ,

(3.8) U2 = p* Σ -1,, C(w, ^ ) , Z7 3 =p λ - a Σ ^ C(n,Σ
j=o

Applying Lemma 5 and (2.11) to (3.7), and expanding, U1 may be
written
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(3.9) U^^+Un+Un,

where

Σ \ «^Y(ab)τi Σ -

Σ

Application of (2.11) and Lemmas 4 and 6 to Un and Z712 gives

(3.10) Un + Un=p^+rj(ζ)LQ(t),

while Z713 becomes, on the basis of (2.12) and (2.15),

(3.11) f71 3=pλ-^{^+ 1(l-L0(ί))-l} .

Also, using (2.15) and summing, we get

(3.12) t/ 2 =p λ -(l-L 2 (*)), U^p^ip^a-

The theorem follows on combining (3.6), (3.9), (3.10), (3.11), and (3.12).
Three main cases of Theorem 1 are distinguished according as, (i)

λ>t, t = 0 (mod 3), (ii) Λ>£, tφO (mod 3), or (iii) λ=t (n=0). Cor-
responding to these cases, one may deduce the following corollaries
from (3.3).

COROLLARY 1. // ; > £ = 3 e , then

(3.13) N%(n, p\ 3e) = pλ-1{p«(J(ζ) + p + l)-V-l} .

COROLLARY 2. If λ>tφθ (mod 3), then

(3.14) Nt(n, p\ t)=pλ~\p*+ι-l){η + l) ,

where t=3e+1 or 3β4-2, according as t = l or 2 (mod 3).

COROLLARY 3. (n=0). If λ=t=3e+jy (j=0, 1, 2), then

(3.15) Nt(n, p\ λ) = pλ-ι{(τ] + l)(pe+i-l)-{-pe+j+1-2'<} ,

where ^ = 0 or 1 according as £ = 0 or tφO (mod 3).

4. The number of solutions of (1.5). The elements of the set
(α, by c, ξ)=H may be distributed among the three cubic character
classes (mod p) in essentially four different ways. These four distribu-
tions, denoted by Hu H z, H3, and H4, are defined as follows:
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Every class contains at least one element of H (H2) One class contains
two elements of H and a second class contains the other two (Hό)
One class contains three elements of H but not all four (Ht) All four
elements lie in the same class.

Using this notation we define the function,

(4.1) δ(H) = 0, 3, - 3 , or 6,

according as the elements of H have a distribution of type Hu H,, H3,
or # 4 .

We will also make use of the following notation :

(4.2) θ^abc Vι==rίl(^ *>, c)=χ(a

7jx denoting the complex conjugate of rjτ:

(4.3) JW-TjaW + ηrfiξ).

On the basis of the above notation, one may deduce

LEMMA 7.

(4.4) J(H)=δ(H).

We now state the main theorem for N3(n, p\ t).

THEOREM 2. The number solutions rf (1.5) is given by

(4.5)

where δ(H) is defined by (4.1), θ by (4.2), and the rest of the notation
has the same meaning as in Theorem 1.

Proof. As in the proof of Theorem 1, we may express N3 as a
Fourier sum and apply Lemmas 2 and 3 to obtain

(4.6) i V s = F 1 + F 2 + F 3 ,

where

(4.7) V^p^Σ \ Σ <vn9 p^)G(-av, p)G(-bv, p)G(-cv, p)y
•J-o PJ v(mod p3j+i)

(v,p) = l

(4.8) Vz = p^ Σ -\-C(n, p^), V,=-p^ Σ Λ C(n> ̂ " )

Application of Lemma 5 and (2.11) to (4.7) yields

(4.9) Vλ = Vn + VvΛVV6j



884 ECKFORD COHEN

where

Using (2.15) and Lemma 6 in case of Vn, one obtains

(4.10) Vn^

Vu and F13 may be transformed by (2.11), (2.12), and Lemmas 4 and
7, to give

(4.11) Vu + Vv,=

As for Fa and V3, application of (2.15) gives

(4.12) Vi=tfλ-*{p'

(4.13) V^jF-'ϋp

Combination of the results in (4.6) and formulas (4.10) through (4.13)
leads to the theorem.

Corresponding to the corollaries of Theorem 1, we may deduce the
following results as special cases of Theorem 2.

COROLLARY 1. If λ>t=3e, then

(4.14) N9(n, p\ Se) = pzλ-2{(pe-e-l)J(θ)-he(p

COROLLARY 2. If λy>tφθ (mod 3), then

(4.15) Ns(n, p\ t) = p*λ-

where t=3e + l or 3e-f2.

COROLLARY 3 (rc=0). // λ=t, then

(4.16) N*(n, p\ λ)=-p"λ-H(p

where μL=μ2=0 i / ί = 3 e > 0 ; ^i = l, μ2 = 0 if t = 3e + l, and μλ=μ%=l if

5. Solvability criteria* First we establish some bounds for iV2 and
N3. To do this, note by Definition (1.7) that |A|<2τ/"p~, and by a
simple process of maximalization, that \9h(a)B—A\<Ck\/~p, (h(a)=±l).
Thus we have



THE NUMBER OF SOLUTIONS OF CERTAIN CUBIC CONGRUENCES 885

LEMMA 8.

(5.1) !«/(«)!< 2 τ / p .

By means of this Lemma and Corollary 1 of § 3, we get the fol-
lowing estimate for N2(n, pλ, 3e).

THEOREM 3. If λ>t = 3e, then

(5.2) p\p +1 -2V^p) -V-l<~~<

Similarly, we may deduce bounds for N3 on the basis of Corollaries
1 and 2 of §4.

THEOREM 4. If λy>t, then in case t=3e,

Vz + e(j?-1)-2(pe-e - l)V~v + pS(H) < p*ι-»N3
( 5 3 ) V

< > (p> - 1 ) 4 - 2(pe - β -

and in case £ = 3e + l or

(5.4) , + 1

We are now in a position to establish precise criteria for the
solvability of (1.4) and (1.5).

THEOREM 5. The congruence (1.5) has a solution for every integer n.

Proof. To prove this theorem it suffices to show that the lower
bounds in (5.3) and (5.4) are positive. This follows immediately in the
case of (5.4). Rewriting the lower bound in (5.3) in the form,

and remembering that the minimal values of p, δ{H), and e are p=-Ί ,
S=—Sf and e=0, we see that iy"3>0 also in the case Λ>£ΞΞΞO (mod 3).

THEOREM 6. The congruence (1.4) has no solution if and only if
either tφO (mod 3), £<Λ, and χ(a)φχ{b), or if p=7, t = 0, χ(a)=χ(b)
and ζ=abξ=±S (mod 7).

Proof. If λytφO (mod 3), it follows directly from Corollary 2 of
§3, that iV2 = 0 if and only if 3?=-l(χ(α)^χ(δ)). In the remainder of
the proof we suppose, therefore, that ; > £ = 0 (mod 3). Now the
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lower bound in (5.2) is positive in case ΎJ=—1 and also in case ^=2,
e > 0 . In the remaining case {*η=2, e=0), the lower bound is p — 2 —
2]/p, which is positive if p>7. But if p=7, e=0, η=2, then substi-
tution in (3.13) shows that iV2 = 0 if and only if χ(ζ) = co'\ which implies
that C = ±3 (mod 7).

As a corollary of Theorem 6, we have the following result [8], [9]:

COROLLARY (Skolem-Selmer). // pγabc, then the congruence

(5.5) ax3 4- by3 -ί- cz3 = 0 (mod pλ)

always has a non-trivial solution (x, y, z not all = 0 (mod p)).

Proof. With 2=1, c=—n, Theorem 6 shows that (5.5) has a non-
trivial solution (X, Y, 1) unless p=7, χ(α)=χ(δ). In the latter case,
however, there exists a solution (X, 1,0), because an integer α is a
cubic residue (mod pλ) if and only if it is a residue (mod p).
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