ABSTRACT RIEMANN SUMS

Paul Civin

1. Introduction. A theorem of B. Jessen [5] asserts that for $f(x)$ of period one and Lebesgue integrable on $[0,1]$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 2^{-n^{2}} \sum_{k=0}^{n-1} f\left(x+k 2^{-n}\right)=\int_{0}^{1} f(t) d t \text { almost everywhere } \tag{1}
\end{equation*}
$$

We show that the theorem of Jessen is a special case of a theorem analogous to the Birkhoff ergodic theorem [1] but dealing with sums of the form

$$
\begin{equation*}
2^{-n} \sum_{k=0}^{2^{n}-1} f\left(T^{k / 2^{n}} x\right) \tag{2}
\end{equation*}
$$

In this form T is an operator on a σ-finite measure space such that $T^{1 / 2^{n}}$ exists as a one-to-one point transformation which is measure preserving for $n=0,1, \cdots$, and $f(x)$ is integrable with $f(x)=f(T x)$. We also obtain in §3 the analogues for abstract Riemann sums of the ergodic theorems of Hurewicz [4] and of Hopf [3].

We might remark that there is no use, due to the examples of Marcinkiewicz and Zygmund [6] and Ursell [8], in considering sums of the form

$$
\frac{1}{n} \sum_{k=0}^{n-1} f\left(T^{k / n} x\right)
$$

without further hypothesis on $f(x)$. However we may replace 2^{n} throughout by $m_{1} m_{2} \cdots m_{n}$ with m_{j} integral and $m_{j} \geq 2$ without altering any argument.

In § 4 necessary and sufficient conditions are obtained on a transformation T in order that the sums (2) have a limit as $n \rightarrow \infty$ for almost all x. These conditions are analogous to those of Ryll-Nardzewski [7] in the ergodic case. We use the necessary conditions to establish an analogue of a form of the Hurewicz ergodic theorem for two operators [2].
2. Notation. Let (S, Ω, μ) be a fixed σ-finite measure space. We consider throughout point transformations T which have measurable square roots of all orders, that is,
(3.1) There exist one-to-one point transformations T_{n} so that

[^0]$$
T_{0}=T ; \quad T_{n}^{2}=T_{n-1} \quad n=1,2, \cdots
$$
$$
\text { (3.2) If } X \in \Omega \text {, then } T_{n} X \in \Omega \text { and } T_{n}^{-1} X \in \Omega, \quad n=0,1, \cdots
$$

No requirement is made of the uniqueness of the sequence T_{n}. For example in the theorem of Jessen, T is the identity transformation while $T_{n} x=x+2^{-n}(\bmod 1)$. We also suppose throughout that T is measure preserving

$$
\begin{equation*}
\mu(T X)=\mu(X) \quad \text { for } \quad X \in \Omega \tag{3.3}
\end{equation*}
$$

3. Limit theorems. Let Φ be a finite valued set function defined on Ω and absolutely continuous with respect to μ. Form the sums

$$
\begin{equation*}
\Phi_{n}(X)=\sum_{k=0}^{2^{n-1}} \Phi\left(T_{n}^{k} X\right) \quad n=0,1, \cdots \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu_{u}(X)=\sum_{k=0}^{2^{n-1}} \mu\left(T_{n}^{k} X\right) \quad n=0,1, \cdots \tag{5}
\end{equation*}
$$

Then Φ_{n} is absolutely continuous with respect to μ_{n} and there exists an averaging sequence of point functions $f_{n}(x)$ so that

$$
\begin{equation*}
\Phi_{n}(X)=\int_{X} f_{n}(x) \mu_{n}(d x), \quad n=0,1, \cdots \tag{2}
\end{equation*}
$$

Theorem 1. Let T be a transformation such that (3.1), (3.2) and (3.3) are satisfied. Let Φ be a finite valued set function defined on Ω, absolutely continuous with respect to μ and such that $\Phi(T X)=\Phi(X)$. Then for almost all $x[\mu]$ the averaging sequence of point functions defined by (4), (5) and (6) has a limit as $n \rightarrow \infty$. The limit function $F(x)$ has the following properties:
(i) $\quad F\left(T_{n} x\right)=F(x)$ almost everywhere $[\mu], \quad n=0,1, \cdots$.
(ii) $F(x)$ is integrable over S.
(iii) For any set X with $T_{n} X=X, n=0,1, \cdots$ and $\mu(X)<\infty$

$$
\int_{X} F(x) \mu(d x)=\int_{X} f(x) \mu(d x)
$$

Pronf. Note first that since $\Phi(T X)=\Phi(X)$,

$$
\begin{equation*}
\Phi_{n}\left(T_{n} X\right)=\sum_{k=0}^{2^{n}-1} \Phi\left(T_{n}^{k+1} X\right)=\Phi(X) \tag{7}
\end{equation*}
$$

Likewise
(8)

$$
\mu_{n}\left(T_{n} X\right)=\mu_{n}(X)
$$

Therefore for all X

$$
\int_{X} f_{n}\left(T_{n} x\right) \mu_{n}(d x)=\int_{T_{n} X} f_{n}(x) \mu_{n}(d x)=\int_{X} f_{n}(x) \mu_{n}(d x)
$$

and consequently

$$
\begin{equation*}
f_{n}\left(T_{n} x\right)=f_{n}(x) \quad \text { almost everywhere }\left[\mu_{n}\right] \tag{9}
\end{equation*}
$$

Relation (3.1) then implies
(10) $\left\{\begin{array}{l}\lim _{n \rightarrow \infty} f_{n}\left(T_{m}^{j} x\right)=\lim _{n \rightarrow \infty} f_{n}(x) \\ \lim _{n \rightarrow \infty} f_{n}\left(T_{m}^{j} x\right)=\lim _{n \rightarrow \infty} f_{n}(x)\end{array}\right.$ almost everywhere [$\left.\mu\right] \begin{aligned} & j=1, \cdots, 2^{m}-1 \\ & m=1,2, \cdots\end{aligned}$

Let

$$
\begin{equation*}
A=\left\{x \mid \sup _{0 \leq n} f_{n}(x) \geq 0\right\} \tag{11}
\end{equation*}
$$

It is asserted that

$$
\begin{equation*}
\int_{A} f_{0}(x) \mu(d x) \geq 0 \tag{12}
\end{equation*}
$$

We define the following sets:

$$
\begin{array}{rlrl}
P_{j} & =\left\{x \mid f_{j}(x) \geq 0\right\} & j=0,1, \cdots \\
A_{N} & =\left\{x \mid \sup _{0 \leq n \leq N} f_{n}(x) \geq 0\right\} & N=0,1, \cdots \\
C_{N, j} & =P_{N}^{\prime} \cap \cdots \cap P_{j+1}^{\prime} \cap P_{j} & j=0, \cdots, N .
\end{array}
$$

Now (9) together with (3.1) imply that $T_{k} P_{j}=P_{j}$ for $k \leq j$. Consequently

$$
T_{j} C_{N, j}=C_{N, j} \text { and } \Phi\left(C_{N, j}\right)=\Phi\left(T_{j}^{k} C_{N, j}\right)
$$

Therefore

$$
2^{j} \Phi\left(C_{N}, j\right)=\sum_{k=0}^{2^{j}-1} \Phi\left(T_{j}^{k} C_{N},{ }_{j}\right)=\Phi_{j}\left(C_{N, j}\right)
$$

and

$$
2^{j} \Phi\left(C_{N}, \jmath\right)=\int_{C_{N}, j} f_{j}(x) \mu_{j}(d x) \geq 0, \quad j=0, \cdots, N
$$

Since the $C_{N},{ }_{j}$ are disjoint for $j=0, \cdots, N$, we have $\Phi\left(A_{N}\right) \geq 0$ and by a limiting process we obtain (12).

Likewise if

$$
\begin{equation*}
B=\left\{x \mid \inf _{0 \leq n} f_{n}(x) \geq 0\right\} \tag{13}
\end{equation*}
$$

then

$$
\begin{equation*}
\int_{B} f_{0}(x) \mu(d x) \geq 0 \tag{14}
\end{equation*}
$$

Inasmuch as the preceding argument made no use of the finiteness of Φ, we may apply the result to the set function $\Psi=\Phi-c \mu$ for any real c. Since

$$
\Psi_{n}(X)=\int_{X}\left(f_{n}(x)-c\right) \mu_{n}(d x)
$$

we deduce that for

$$
\begin{equation*}
A^{c}=\left\{x \mid \sup _{0 \leq n} f_{n}(x) \geq c\right\} \tag{15}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Phi\left(A^{c}\right) \geq c \mu\left(A^{c}\right) \tag{16}
\end{equation*}
$$

and for

$$
\begin{equation*}
A_{n}=\left\{x \mid \inf _{0 \leq n} f_{n}(x) \leq d\right\} \tag{17}
\end{equation*}
$$

we have

$$
\begin{equation*}
\Phi\left(A_{d}\right) \leq d \mu\left(A_{d}\right) \tag{18}
\end{equation*}
$$

Let now for $r>s$

$$
\begin{equation*}
L_{s}^{r}=\left\{x \mid \lim _{n \rightarrow \infty} f_{n}(x)>r \text { and } \lim _{n \rightarrow \infty} f_{n}(x)<s\right\} . \tag{19}
\end{equation*}
$$

From (10) we obtain

$$
\begin{equation*}
T_{m}^{j} L_{s}^{r}=L_{s}^{r} \quad j=0,1, \cdots, 2^{m}-1 ; m=0,1, \cdots . \tag{20}
\end{equation*}
$$

Since L_{s}^{r} is invariant under each T_{m} we may consider it as a new space. The sets A^{r} and A_{s} relative to the new space are now the full space L_{s}^{r}. Hence if we apply (16) and (18) we obtain

$$
\Phi\left(L_{s}^{r}\right) \geq r \mu\left(L_{s}^{r}\right) ; \quad \Phi\left(L_{s}^{r}\right) \leq s \mu\left(L_{s}^{r}\right)
$$

The finiteness of Φ together with the assumption $r>s$ implies $\mu\left(L_{s}^{r}\right)=0$. Thus $\lim _{n \rightarrow \infty} f_{n}(x)$ exists almost everywhere [μ].

Property (i) of the limit function $F(x)$ follows immediately from (10). Utilizing (i) the proofs of (ii) and (iii) are now identical with
the corresponding proofs by Hurewicz [4, p. 201] in the ergodic case.
The theorem for abstract Riemann sums analogous to the Hopf ergodic theorem is now deducible as a corollary.

Corollary 1. Let T be a transformation such that (3.1) and (3.2) are satisfied and in addition

$$
\begin{equation*}
\mu\left(T_{n} X\right)=\mu(X) \tag{21}
\end{equation*}
$$

$$
n=0,1, \cdots
$$

Then for any integrable $f(x)$ with $f(T x)=f(x)$ and any $g(x)>0$ with $g(T x)=g(x)$

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \sum_{k=0}^{\sum_{k=0}^{n}-1} f\left(T_{n}^{k} x\right) \tag{22}\\
\sum_{k=0}^{n-1} g\left(T_{n}^{k} x\right)
\end{array}
$$

exists for almost every $x[\mu]$. The limit function $h(x)$ is integrable, satisfies $h\left(T_{n} x\right)=h(x)$ for almost all $x[\mu]$, and for sets Y with $\mu(Y)<\infty$ and $T_{m} Y=Y, m=0,1, \cdots$

$$
\begin{equation*}
\int_{Y} h(x) g(x) \mu(d x)=\int_{Y} f(x) \mu(d x) \tag{23}
\end{equation*}
$$

Proof. Introduce the measure

$$
\nu(X)=\int_{X} g(x) \mu(d x)
$$

and the set function

$$
F(X)=\int_{X} f(x) \mu(d x)
$$

The function F is absolutely continuous with respect to ν and is finite valued. Condition (21) implies that

$$
F_{n}(X)=\int_{X} \sum_{k=0}^{2^{n}-1} f\left(T_{n}^{k} x\right) \mu(d x)
$$

and

$$
\nu_{n}(X)=\int_{X} \sum_{k=0}^{2^{n}-1} g\left(T_{n}^{k} x\right) \mu(d x)
$$

Thus from the representation

$$
F_{n}(X)=\int_{X} f_{n}(x) \nu_{n}(d x)
$$

we deduce that

$$
f_{n}(x)=\frac{\sum_{k=0}^{2^{n}-1} f\left(T_{n}^{k} x\right)}{\sum_{k=0}^{2^{n}-1} g\left(T_{n}^{k} x\right)} \text { almost everywhere }[\mu]
$$

The corollary is then an immediate consequence of Theorem 1.
The theorem of Jessen now follows from the version of Corollary 1 with $g(x)=1$ with the T_{n} as noted in $\S 2$.
4. Invariant measure and two operators. It is possible for the conclusion of Corollary 1 to hold when $g(x)=1$ but T does not satisfy (21). If we introduce

$$
\begin{equation*}
R_{n}(A, Y)=2^{-n} \sum_{k=0}^{2^{n}-1} \mu\left(Y \cap T_{n}^{-k} A\right) \tag{24}
\end{equation*}
$$

we obtain the following theorem.

Theorem 2. If T is a transformation such that (3.1) and (3.2) are satisfied, then the following statements are equivalent:
(25.1) For every integrable $f(x)$ with $f(T x)=f(x)$,

$$
\lim _{n \rightarrow \infty} 2^{-n^{2}} \sum_{k=0}^{n-1} f\left(T_{n}^{k} x\right)
$$

exists for almost every $x[\mu]$.
(25.2) For each Y with $\mu(Y)<\infty, \lim _{n \rightarrow \infty} R_{n}(A, Y) \leq K \mu(A)$.
(25.3) For each Y with $\mu(Y)<\infty, \varlimsup_{n \rightarrow \infty} R_{n}(A, Y) \leq K \mu(A)$.
(25.4) For an increasing sequencc of sets Y_{j} with $\bigcup_{j=1}^{\infty} Y_{j}=S$,

$$
\varlimsup_{n \rightarrow \infty} R_{n}\left(A, Y_{j}\right) \leq K \mu(A)
$$

(25.5) There exists a countably additive measure 2 with the properties:
(i) $0 \leq \nu(X) \leq K \mu(X)$
(ii) If $A=T_{n} A, \quad n=1,2, \cdots, \nu(A)=\mu(A)$
(iii) $\quad \nu(A)=\nu\left(T_{n} A\right), \quad n=1,2, \cdots$.

The proof is almost identical with that of Ryll-Nardzewski [7] in
the ergodic case, and is omitted. The existence of an invariant measure implies, as in the ergodic case [2], the following theorem with two operators (or two sequences of roots of the same operator).

Theorem 3. Let T and U each satisfy (3.1), (3.2), (3.3) and (25.1), and let

$$
\sum_{k=0}^{2^{n}-1} \mu\left(T_{n}^{k} X\right)
$$

be absolutely continuous with respect to

$$
\mu_{n}(X)=\sum_{k=0}^{2^{n}-1} \mu\left(U_{n}^{k} X\right), \quad n=0,1, \cdots
$$

For any finite valued set function Φ absolutely continuous with respect to μ and with $\Phi(T X)=\Phi(X)$ form

$$
\Phi_{n}(X)=\sum_{k=0}^{2^{n}-1} \Phi\left(T_{n} X\right)
$$

Then in the representation

$$
\varphi_{n}(X)=\int_{X} f_{n}(x) \mu_{n}(d x)
$$

the averaging sequence of point functions $f_{n}(x)$ tends to a limit as $n \rightarrow \infty$ for almost every $x[\mu]$.

As a consequence of Theorem 3 we obtain the following corollary in the same fashion as Corollary 1 was derived from Theorem 1.

Corollary 2. Let T and U each satisfy (3.1) and (3,2), and in addition

$$
\begin{equation*}
\mu\left(V_{n} X\right)=\mu(X) \tag{26}
\end{equation*}
$$

$$
n=0, \cdots
$$

for $V=T$ and $V=U$. Then for any integrable $f(x)$ with $f(T x)=f(x)$ and any $g(x)>0$ with $g(U x)=g(x)$

$$
\lim _{n \rightarrow \infty} \frac{\sum_{k=0}^{2^{n}-1} f\left(T_{n}^{k} X\right)}{\sum_{k=0}^{2^{n}-1} g\left(U_{n}^{k} X\right)}
$$

exists for almost all $x[\mu]$.

References

1. G.D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci., 17 (1932), 650.
2. P. Civin, Some ergodic theorems involving two operators, Pacific J. Math., 5 (1955), 869-876.
3. E. Hopf, Ergodentheorie, Berlin 1937.
4. W. Hurewicz, Ergodic theorem without invariant measure, Ann. Math., 45 (1944), 192-206.
5. B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. Math., 35 (1934), 248-251.
6. J. Marcinkiewicz and A. Zygmund, Mean values of trigonometric polynomials, Fund. Math., 28 (1937), 131-166.
7. C. Ryll-Nardzewski, On ergodic theorems I, Studia Math., 12 (1951), 65-73.
8. H.D. Ursell, On the behavior of a certain sequence of functions derived from a given one, J. London Math. Soc., 12 (1937), 229-232.

University of Oregon and
The Institute for Advanced Study

[^0]: Received June 2, 1954.

