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1. Introduction, A theorem of B. Jessen [5] asserts that for f(x)
of period one and Lebesgue integrable on [0, 1]

(1) lim 2-" 2Σ/(α + &2-n)==Γ f(t)dt almost everywhere .
w ^>oo k. = 0 JO

We show that the theorem of Jessen is a special case of a theorem
analogous to the Birkhoff ergodic theorem [1] but dealing with sums
of the form

(2) 2 ^ Σ 7 ( ^ / 2 V > .

In this form T is an operator on a ^-finite measure space such that
T1'2* exists as a one-to-one point transformation which is measure pre-
serving for 92=0, 1, ••• , and f(x) is integrable with f(x)=f(Tx). We
also obtain in § 3 the analogues for abstract Riemann sums of the
ergodic theorems of Hurewicz [4] and of Hopf [3].

We might remark that there is no use, due to the examples of
Marcinkiewicz and Zygmund [6] and Ursell [8], in considering sums of
the form

-Σ
n fc=

without further hypothesis on f(x). However we may replace 2n

throughout by m^m^ mn with πij integral and m3>!l without altering
any argument.

In § 4 necessary and sufficient conditions are obtained on a trans-
formation T in order that the sums (2) have a limit as n~>oo for
almost all x. These conditions are analogous to those of Ryll-Nardzew-
ski [7] in the ergodic case. We use the necessary conditions to establish
an analogue of a form of the Hurewicz ergodic theorem for two
operators [2].

2 Notation* Let (S, Γ2, //) be a fixed ^-finite measure space. We
consider throughout point transformations T which have measurable
square roots of all orders, that is,

(3.1) There exist one-to-one point transformations Tn so that
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To=T; Tl^Tn.λ rc=l, 2, . . . .

(3.2) If XeΩ, then TnXeΩ and Γ^IeΩ, rc=O, 1, ••• .

No requirement is made of the uniqueness of the sequence Tn . For
example in the theorem of Jessen, T is the identity transformation
while Tnx=x-\-2~n (mod 1). We also suppose throughout that T is
measure preserving

(3.3) μ(TX)=μ(X) for l e a

3. Limit theorems* Let Φ be a finite valued set function defined
on ί2 and absolutely continuous with respect to μ. Form the sums

( 4 ) iV

and

Then 07i is absolutely continuous with respect to μn and there exists
an averaging sequence of point functions fn(x) so that

( 2 ) Φn{X)A fniΦΛdx), n=0, 1, .
U

THEOREM 1. Let T be a transformation such that (3.1), (3.2) and
(3.3) are satisfied. Let Φ be a finite valued set function defined on ί2,
absolutely continuous with respect to μ and such that Φ(TX)=Φ(X). Then
for almost all x[μ] the averaging sequence of point functions defined by
(4), (5) and (6) has a limit as n-+co. The limit function F(x) has the
following properties:

( i ) F(Tnx)=F(x) almost everywhere [μ], n = 0 , 1 , •«« .
(ii) F(x) is integrable over S.

(iii) For any set X with TnX=X, n=0, 1, ••• and //(Z)<oo

F(x)μ(dx)=[ f(x)μ(dx).

Proof. Note first that since Φ(TX)=Φ(X),

( 7 )

Likewise
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( 8 ) μn{TnX) = μn{X).

Therefore for all X

\ fn(Tnx)μΛ(dx) = \ fn(x)μn(dx) = \ fn{x)μn{dx)
Jx Jτnx Jx

and consequently

(9) fn(Tnx) = fn(x) almost everywhere [μn].

Relation (3.1) then implies

( limfn(Tix)=limfn(x)

almost everywhere [//] i = l , ••• , 2 m —1
lim fn(TJ

mx) = lim /n(a?) ?w = 1, 2,
(10)

Let

(11)

It is asserted that

(12)

We define the following sets:

AN={x\ sup fn(x)^>0} i V = O , 1, •••

j=0, ••• , N.

Now (9) together with (3.1) imply that TkPj=Pj for k<,j. Con-

sequently

T}CN,^CN,} and

Therefore

and

2 ^ ( C ^ , ,) = ( fj(xMdx)ϊ>0 , i = 0 , , Λτ.
JGV, j

Since the C^, ό are disjoint for i = 0 , ••• , N, we have (^(^4zV)>0 and by
a limiting process we obtain (12).



864

Likewise

(13)

then

if
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B={x\iτιίfn(x)^O},

(14)

Inasmuch as the preceding argument made no use of the ίiniteness
of Φ, we may apply the result to the set function ψ = φ — cμ for any
real c. Since

we deduce that for

(15) A

we have

(16)

and for

we have

(18) Φ(A«)<dμ(A(l).

Let now for r^>s

(19) Lr

t = {x\lϊmfn(x)>r and lim fn{x)<s] .

From (10) we obtain

(20) TiLr

s=Ll i = 0 , 1, ••• , 2 m - l ; m = 0 , 1, ••• .

Since Lr

s is invariant under each Tm we may consider it as a new
space. The sets Ar and As relative to the new space are now the full
space Lζ. Hence if we apply (16) and (18) we obtain

Φ{I/s)>.rμ{I/s) Φ{U)<sμ{Us) .

The finiteness of Φ together with the assumption r > s implies μ(Lr

s) = ΰ.
Thus lim fn{x) exists almost everywhere [μ].

Property (i) of the limit function F{x) follows immediately from
(10). Utilizing (i) the proofs of (ii) and (iii) are now identical with



ABSTRACT RIEMANN SUMS 865

the corresponding proofs by Hurewicz [4, p. 201] in the ergodic case.
The theorem for abstract Riemann sums analogous to the Hopf

ergodic theorem is now deducible as a corollary.

COROLLARY 1. Let T be a transformation such that (3.1) and (3.2)
are satisfied and in addition

(21) μ(TnX) = μ(X) n=0, I , - . - .

Then for any integrable f(x) with f(Tx) = f(x) and any g(x)y>0 with
g(Tx)=g(x)

Σ
(22) lίm fc=°

n

exists for almost every x [μ]. The limit function h(x) is integrable,
satisfies h(Tnx)=h(x) for almost all x [μ], and for sets Y with
and TmY=Y, m=0, 1,

(23)

Proof. Introduce the measure

and the set function

The function F is absolutely continuous with respect to v and is finite
valued. Condition (21) implies that

and

Thus from the representation
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we deduce that

Σ almost everywhere [>].

The corollary is then an immediate consequence of Theorem 1.
The theorem of Jessen now follows from the version of Corollary

1 with g(x)=l with the Tn as noted in §2.

4. Invariant measure and two operators. It is possible for the
conclusion of Corollary 1 to hold when g(x)=l but T does not satisfy
(21). If we introduce

(24) Rn(A, Y)=-2-^μ{YΓ\TnkA)
fc=0

we obtain the following theorem.

THEOREM 2. // T is a transformation such that (3.1) and (3.2) are
satisfied, then the following statements are equivalent :

(25.1) For every integrάble f(x) with f{Tx)=f(x),

lim 2 - n * 7

exists for almost every x [μ],

(25.2) For each Y with μ(Y)<co, lim J2n(A, Y)<Kμ{A).

(25.3) For each Y with μ(Y)<oo, timRn(A, Y)^Kμ(A).
W-»oo

(25.4) For an increasing sequence of sets Y5 with \J Yj=S,

(25.5) There exists a countably additive measure \- with the

( i ) 0<u(X)^Kμ(X)

(ii) If A=TnA , n=l, 2, ••• , v(A)=μ(A)

(iii) v(A)=v(TnA), re=l, 2, . .

The proof is almost identical with that of Ryll-Nardzewski [7] in
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the ergodic case, and is omitted. The existence of an invariant measure
implies, as in the ergodic case [2], the following theorem with two
operators (or two sequences of roots of the same operator).

THEOREM 3. Let T and U each satisfy (3.1), (3.2), (3.3) and (25.1),
and let

Jfc-0

be absolutely continuous with respect to

= Σ

For any finite valued set function Φ absolutely continuous with respect
to μ and with Φ(TX) = Φ(X) form

Then in the representation

Φn{X) = \ fn(x)μn{dx),

the averaging sequence of point functions fn(x) tends to a limit as n~><^
for almost every x [μ].

As a consequence of Theorem 3 we obtain the following corollary
in the same fashion as Corollary 1 was derived from Theorem 1.

COROLLARY 2. Let T and U each satisfy (3.1) and (3,2), and in
addition

(26) μ(VnX) = μ(X) n = 0 , .••

for V=T and V=U. Then for any integrable f(x) with f(Tx)=f(x)
and any g(x)^>0 with g(Ux)=g(x)

Σf(
lim *=»

Σ g(U*X)
fcϋ

exists for almost all x [//].
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