ABSTRACT RIEMANN SUMS

PAUL CIVIN

1. Introduction. A theorem of B. Jessen [5] asserts that for f(x) of period one and Lebesgue integrable on [0, 1]

(1)
$$\lim_{n\to\infty} 2^{-n} \sum_{k=0}^{2^n-1} f(x+k2^{-n}) = \int_0^1 f(t)dt \text{ almost everywhere }.$$

We show that the theorem of Jessen is a special case of a theorem analogous to the Birkhoff ergodic theorem [1] but dealing with sums of the form

(2)
$$2^{-n} \sum_{k=0}^{2^{n-1}} f(T^{k/2^{n}} x).$$

In this form T is an operator on a σ -finite measure space such that $T^{1/2^n}$ exists as a one-to-one point transformation which is measure preserving for $n=0, 1, \dots$, and f(x) is integrable with f(x)=f(Tx). We also obtain in §3 the analogues for abstract Riemann sums of the ergodic theorems of Hurewicz [4] and of Hopf [3].

We might remark that there is no use, due to the examples of Marcinkiewicz and Zygmund [6] and Ursell [8], in considering sums of the form

$$\frac{1}{n}\sum_{k=0}^{n-1}f(T^{k/n}x)$$

without further hypothesis on f(x). However we may replace 2^n throughout by $m_1m_2\cdots m_n$ with m_j integral and $m_j\geq 2$ without altering any argument.

In §4 necessary and sufficient conditions are obtained on a transformation T in order that the sums (2) have a limit as $n \to \infty$ for almost all x. These conditions are analogous to those of Ryll-Nardzewski [7] in the ergodic case. We use the necessary conditions to establish an analogue of a form of the Hurewicz ergodic theorem for two operators [2].

2. Notation. Let (S, Ω, μ) be a fixed σ -finite measure space. We consider throughout point transformations T which have measurable square roots of all orders, that is,

(3.1) There exist one-to-one point transformations T_n so that

Received June 2, 1954.

$$T_{n} = T; \quad T_{n}^{2} = T_{n-1}$$
 $n = 1, 2, \cdots$

(3.2) If
$$X \in \Omega$$
, then $T_n X \in \Omega$ and $T_n^{-1} X \in \Omega$, $n=0, 1, \cdots$.

No requirement is made of the uniqueness of the sequence T_n . For example in the theorem of Jessen, T is the identity transformation while $T_n x = x + 2^{-n} \pmod{1}$. We also suppose throughout that T is measure preserving

(3.3)
$$\mu(TX) = \mu(X) \quad for \quad X \in \Omega.$$

3. Limit theorems. Let ϕ be a finite valued set function defined on Ω and absolutely continuous with respect to μ . Form the sums

and

(5)
$$\mu_n(X) = \sum_{k=0}^{2^n-1} \mu(T_n^k X)$$
 $n=0, 1, \cdots$

Then Φ_n is absolutely continuous with respect to μ_n and there exists an averaging sequence of point functions $f_n(x)$ so that

(2)
$$\Phi_n(X) = \int_X f_n(x) \mu_n(dx), \qquad n = 0, 1, \cdots.$$

THEOREM 1. Let T be a transformation such that (3.1), (3.2) and (3.3) are satisfied. Let φ be a finite valued set function defined on Ω , absolutely continuous with respect to μ and such that $\varphi(TX) = \varphi(X)$. Then for almost all $x[\mu]$ the averaging sequence of point functions defined by (4), (5) and (6) has a limit as $n \to \infty$. The limit function F(x) has the following properties:

- (i) $F(T_n x) = F(x)$ almost everywhere $[\mu]$, $n=0, 1, \cdots$.
- (ii) F(x) is integrable over S.
- (iii) For any set X with $T_nX=X$, $n=0, 1, \cdots$ and $\mu(X) < \infty$

$$\int_x F(x)\mu(dx) = \int_x f(x)\,\mu(dx).$$

Proof. Note first that since $\phi(TX) = \phi(X)$,

Likewise

(8)
$$\mu_n(T_nX) = \mu_n(X) .$$

Therefore for all X

$$\int_{X} f_{n}(T_{n}x)\mu_{n}(dx) = \int_{T_{n}x} f_{n}(x) \ \mu_{n}(dx) = \int_{X} f_{n}(x) \ \mu_{n}(dx)$$

and consequently

(9)
$$f_n(T_n x) = f_n(x)$$
 almost everywhere $[\mu_n]$.

Relation (3.1) then implies

(10)
$$\begin{cases} \lim_{n \to \infty} f_n(T^j_m x) = \lim_{n \to \infty} f_n(x) \\ \lim_{n \to \infty} f_n(T^j_m x) = \lim_{n \to \infty} f_n(x) \end{cases} \text{ almost everywhere } [\mu] \ j=1, \cdots, 2^m - 1 \\ m=1, 2, \cdots \end{cases}$$

Let

(11)
$$A = \{x | \sup_{0 \le n} f_n(x) \ge 0\}.$$

It is asserted that

(12)
$$\int_{A} f_{0}(x)\mu(dx) \geq 0.$$

We define the following sets:

$$P_{j} = \{x | f_{j}(x) \ge 0\} \qquad j = 0, \ 1, \ \cdots$$

$$A_{N} = \{x | \sup_{0 \le n \le N} f_{n}(x) \ge 0\} \qquad N = 0, \ 1, \ \cdots$$

$$C_{N, \ j} = P'_{N} \cap \cdots \cap P'_{j+1} \cap P_{j} \qquad j = 0, \ \cdots, \ N.$$

Now (9) together with (3.1) imply that $T_k P_j = P_j$ for $k \leq j$. Consequently

$$T_{j}C_{N, j} = C_{N, j}$$
 and $\Phi(C_{N, j}) = \Phi(T_{j}^{k}C_{N, j})$.

Therefore

$$2^{j} \varphi(C_{N, j}) = \sum_{k=0}^{2^{j}-1} \varphi(T_{j}^{k} C_{N, j}) = \varphi_{j}(C_{N, j})$$

and

$$2^{j} arphi(C_{N,j}) = \int_{C_{N,j}} f_{j}(x) \mu_{j}(dx) \ge 0, \qquad j = 0, \cdots, N.$$

Since the $C_{N,j}$ are disjoint for $j=0, \dots, N$, we have $\Phi(A_N) \ge 0$ and by a limiting process we obtain (12).

Likewise if

(13)

 $B = \{x | \inf_{0 \le n} f_n(x) \ge 0\}$,

then

(14)
$$\int_{\scriptscriptstyle B} f_0(x) \mu(dx) \ge 0 \; .$$

Inasmuch as the preceding argument made no use of the finiteness of φ , we may apply the result to the set function $\Psi = \varphi - c\mu$ for any real c. Since

$$\Psi_n(X) = \int_X (f_n(x) - c) \mu_n(dx)$$

we deduce that for

(15) $A^{c} = \{x | \sup_{0 \leq n} f_{n}(x) \geq c\}$

we have

(16) $\varphi(A^c) \ge c \mu(A^c)$

and for

(17)
$$A_{a} = \{x | \inf_{0 \leq n} f_{n}(x) \leq d\}$$

we have

(18)
$$\varPhi(A_a) \leq d\mu(A_a).$$

Let now for r > s

(19)
$$L_s^r = \{x | \lim_{n \to \infty} f_n(x) > r \text{ and } \lim_{n \to \infty} f_n(x) < s\}$$
.

From (10) we obtain

(20)
$$T_m^j L_s^r = L_s^r$$
 $j=0, 1, \cdots, 2^m-1; m=0, 1, \cdots$

Since L_s^r is invariant under each T_m we may consider it as a new space. The sets A^r and A_s relative to the new space are now the full space L_s^r . Hence if we apply (16) and (18) we obtain

$$arphi(L^r_s){\ge}r\mu(L^r_s)$$
 ; $\hspace{0.1cm} arphi(L^r_s){\le}s\mu(L^r_s)$.

The finiteness of Φ together with the assumption r > s implies $\mu(L_s^r) = 0$. Thus $\lim f_n(x)$ exists almost everywhere $[\mu]$.

Property (i) of the limit function F(x) follows immediately from (10). Utilizing (i) the proofs of (ii) and (iii) are now identical with

864

the corresponding proofs by Hurewicz [4, p. 201] in the ergodic case.

The theorem for abstract Riemann sums analogous to the Hopf ergodic theorem is now deducible as a corollary.

COROLLARY 1. Let T be a transformation such that (3.1) and (3.2) are satisfied and in addition

(21)
$$\mu(T_n X) = \mu(X)$$
 $n = 0, 1, \cdots$

Then for any integrable f(x) with f(Tx)=f(x) and any g(x)>0 with g(Tx)=g(x)

(22)
$$\lim_{n \to \infty} \sum_{k=0}^{2^{n-1}} f(T_n^k x) \\ \sum_{k=0}^{2^{n-1}} \sum_{k=0}^{2^{n-1}} g(T_n^k x)$$

exists for almost every $x \ [\mu]$. The limit function h(x) is integrable, satisfies $h(T_n x) = h(x)$ for almost all $x \ [\mu]$, and for sets Y with $\mu(Y) < \infty$ and $T_m Y = Y$, $m = 0, 1, \cdots$

(23)
$$\int_{Y} h(x)g(x)\mu(dx) = \int_{Y} f(x)\mu(dx).$$

Proof. Introduce the measure

$$\nu(X) = \int_X g(x)\mu(dx),$$

and the set function

$$F(X) = \int_X f(x)\mu(dx).$$

The function F is absolutely continuous with respect to ν and is finite valued. Condition (21) implies that

$$F_n(X) = \int_{X} \sum_{k=0}^{2^{n-1}} f(T_n^k x) \mu(dx)$$

and

$$\nu_n(X) = \int_X \sum_{k=0}^{2^n-1} g(T_n^k x) \mu(dx).$$

Thus from the representation

$$F_n(X) = \int_X f_n(x) \nu_n(dx)$$

we deduce that

The corollary is then an immediate consequence of Theorem 1.

The theorem of Jessen now follows from the version of Corollary 1 with g(x)=1 with the T_n as noted in § 2.

4. Invariant measure and two operators. It is possible for the conclusion of Corollary 1 to hold when g(x)=1 but T does not satisfy (21). If we introduce

(24)
$$R_n(A, Y) = 2^{-n} \sum_{k=0}^{2^n - 1} \mu(Y \cap T_n^{-k} A)$$

we obtain the following theorem.

THEOREM 2. If T is a transformation such that (3.1) and (3.2) are satisfied, then the following statements are equivalent:

(25.1) For every integrable f(x) with f(Tx)=f(x),

$$\lim_{n\to\infty}2^{-n}\sum_{k=0}^{2^n-1}f(T_n^kx)$$

exists for almost every $x \ [\mu]$.

- (25.2) For each Y with $\mu(Y) \leq \infty$, $\lim_{n \to \infty} R_n(A, Y) \leq K \mu(A)$.
- (25.3) For each Y with $\mu(Y) \leq \infty$, $\lim_{n \to \infty} R_n(A, Y) \leq K \mu(A)$.
- (25.4) For an increasing sequence of sets Y_j with $\bigcup_{j=1}^{\infty} Y_j = S$,

$$\lim_{n\to\infty}R_n(A, Y_j)\leq K\mu(A) .$$

(25.5) There exists a countably additive measure \succ with the properties:

(i) $0 \le \nu(X) \le K \mu(X)$ (ii) If $A = T_n A$, $n = 1, 2, \dots, \nu(A) = \mu(A)$ (iii) $\nu(A) = \nu(T_n A)$, $n = 1, 2, \dots$.

The proof is almost identical with that of Ryll-Nardzewski [7] in

866

the ergodic case, and is omitted. The existence of an invariant measure implies, as in the ergodic case [2], the following theorem with two operators (or two sequences of roots of the same operator).

THEOREM 3. Let T and U each satisfy (3.1), (3.2), (3.3) and (25.1), and let

$$\sum_{k=0}^{2^n-1}\mu(T^k_nX)$$

be absolutely continuous with respect to

$$\mu_n(X) = \sum_{k=0}^{2^{n-1}} \mu(U_n^k X), \qquad n = 0, \ 1, \ \cdots.$$

For any finite valued set function Φ absolutely continuous with respect to μ and with $\Phi(TX) = \Phi(X)$ form

$$\varphi_n(X) = \sum_{k=0}^{2^n-1} \varphi(T_n X).$$

Then in the representation

$$\varphi_n(X) = \int_X f_n(x) \mu_n(dx),$$

the averaging sequence of point functions $f_n(x)$ tends to a limit as $n \to \infty$ for almost every $x \ [\mu]$.

As a consequence of Theorem 3 we obtain the following corollary in the same fashion as Corollary 1 was derived from Theorem 1.

COROLLARY 2. Let T and U each satisfy (3.1) and (3,2), and in addition

(26)
$$\mu(V_n X) = \mu(X) \qquad n = 0, \cdots$$

for V=T and V=U. Then for any integrable f(x) with f(Tx)=f(x)and any g(x)>0 with g(Ux)=g(x)

$$\lim_{n \to \infty} \frac{\sum\limits_{2^{n-1}}^{2^{n-1}} f(T_n^k X)}{\sum\limits_{k=0}^{2^{n-1}} g(U_n^k X)}$$

exists for almost all $x \ [\mu]$.

PAUL CIVIN

References

G.D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. Sci., 17 (1932), 650.
 P. Civin, Some ergodic theorems involving two operators, Pacific J. Math., 5 (1955), 869-876.

3. E. Hopf, Ergodentheorie, Berlin 1937.

4. W. Hurewicz, Ergodic theorem without invariant measure, Ann. Math., 45 (1944), 192-206.

5. B. Jessen, On the approximation of Lebesgue integrals by Riemann sums, Ann. Math., **35** (1934), 248-251.

6. J. Marcinkiewicz and A. Zygmund, *Mean values of trigonometric polynomials*, Fund. Math., **28** (1937), 131-166.

7. C. Ryll-Nardzewski, On ergodic theorems I, Studia Math., 12 (1951), 65-73.

8. H.D. Ursell, On the behavior of a certain sequence of functions derived from a given one, J. London Math. Soc., 12 (1937), 229-232.

UNIVERSITY OF OREGON AND THE INSTITUTE FOR ADVANCED STUDY