
THE USE OF FORMS IN VARIATIONAL CALCULATIONS

Louis AUSLANDER

Introduction* The purpose of this paper is to present a method
of calculating the first and second variation which is suitable for spaces
which have a Euclidean connection. I then use this method to calculate
the first and second variations along a geodesic in a Finsler space in
terms of differential invariants of the Finsler metric. In the special
case of Riemannian geometry, this calculation has been carried out by
Schoenberg in [4].

Indications as to how this calculation should be made are originally
due to E. Cartan [1]. I wish to thank Prof. S. S. Chern for the pri-
vilege of seeing his calculations on this matter for Riemann spaces.

1. Algebraic Preliminaries* Let /=[0, 1] and 0<ξu f,<l. Let Mn

be an n-dimensional C°° manifold. Assume we have a one parameter
family of mappings of / into Mn which we will denote by f(ξu &)>
where ξ2 is taken as the parameter along / and & parametrizes the
family of mappings. Then we may define a mapping η\ IxI->Mn by
the equation

We require that η shall also be a C~ mapping.
Let η^ denote the mapping induced by η on the tangent space to

Ixl into the tangent space to Mn. Let 37* denote the dual mapping
induced on the cotangent spaces. Then we define two vector fields Xι

and X2 over η{lxl) by

and X^

Then if ιv is any form in Mn we may write

where w8 and wd are defined by the equation.

LEMMA 1.1. // <X, wy denotes the value that X takes on the co-
vector w at each point, then

and
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Proof. wδ=<dldξu 2*(w)>=<7*(a/36), w>=<JSi, w} .
The proof is analogous for wd.

Let ί2 be any two form and let Xλ and Xz be any two vector
fields. It is well known that Λ\V) and ΛZ{V*) are dually paired. Let
this pairing be denoted by

<X/,X2, ί2> .

Then if 12 can be decomposed as wι/\W z, where wλ and w z are one
forms, we have that the pairing may be defined by the following ex-
pression :

THEOREM 1.1. <X^Xt, wι/κwty=-wnw%a---wιawu.

The proof of this theorem is straightforward.
We define the symbols δwd and dwδ by the following equations:

If / is any function of ξτ and ξ2, we define

where t=r + s. Define δrdsf similarly.

THEOREM 1.2. <XX^X2, dwy=δwd-dwδ.

Proof N o w , i n t e r m s of a l o c a l c o o r d i n a t e s y s t e m ( x u •••, x n ) ,

(X X d \ - y Γ d (a ^x±\ — —(a —Xi"
L 3

since

This and the definition of δwd and d^δ prove the theorem.

2. The First Variation. Consider the integral

(2.1) J

in a space Λf of 2n + l dimensions. Then in the cotangent space to
the manifold M define the form w by the equation
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(2.2)

Now let C be a curve in M2n+ι expressed by the equations

Assume further that dqildξ2=q/

i for all values of ξ2. Let X2 be the
image of 3/3f2 under the mapping described above. Then

dqt oξ2 cqi dt

a n d

ZVddξ2=F(q, q',t) d t .
(6-α)

Hence

(2.4) / = \ wddς2= \ FCqXt), , qn(t) q[{t)y , qn(t) ί)c?ί .
J 0 ja

Now consider a one parameter family of curves f(ξlf ζ2) each with
the property described above. For each curve in the family we get a
vector field which we will denote by X2(ξλ). We may consider the
variational problem for this family of curves. The crucial fact is that
the requirement that f(ξlt ?2) is a mapping of a fixed interval for each
fixed value of ξ1 enables us to treat the problem of variable end point
without the necessity of differentiating limits of integration. We
consider

and

(2.5) δl^p^
dξL Jo

If we add and subtract dwδ under the integral sign we get

(2.6) 3J = M + Γ (δwa-dwδ)dξ2
Jo

(2.7) =lwdl

where

(2.8) w'(d, d)
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and

w'(d, ^)=<X2/\Z1, dw>.

It may be noted that w'(δ, d)=—w'(d, δ). The term [wβ]J is called
the transversality term.

THEOREM 2.1. Assume [wδ]o=O. Then a necessary and sufficient
condition for δl=θ for all variations is that dw=0 along C.

Proof. The condition is clearly sufficient. An equivalent form of
the hypothesis is that

for all vector fields Xx along C. Assume dw does not equal zero along
C. Then there exists an X1 such that <XX^X, dwy^>0 for some open
interval α<f 2<δ. Then we may choose a new vector field Xx such that:

X1=Xι for α <

Xλ=0 for 0<£ 2 <α-ε or

where ε may be chosen arbitrarily small. Then

where εf depends on ε and limε /=0. Hence we may choose ε in such
ε-»o

a way that

This contradiction proves the theorem.
Remark : This is essentially the usual argument for the deriva-

tion of Euler's equation.

3 Application to Finsler Geometry* If we assume that our integral
is of the Finsler type then we may proceed to calculate the second
variation. For treating this special case we assume that the reader
has a familiarity with Euclidean connections and we will use the Eucli-
dean connection for a Finsler space as calculated by E. Cartan in [2]
and Chern [3].

Let M be an ^-dimensional differentiate manifold and let G be the
principal bundle over M with fiber and group the ^-dimensional ortho-
gonal groups, Om . Then in G, we have forms wi9 wiJ9 where w^Λ
Wji=0 and i,j=l, •••, n. The equations of structure are
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(3.1) dwt ^wj

\y ") dWij = Wats\Wkj -f- ίl.ιj ,

where a = l, •••, TZ — 1. (Henceforth we will assume that Greek indices
run from 1 to n — 1 and Latin indices run from 1 to n.) The γljΛ are
symmetric in all indices and zero if any index is n. Also

2t Λ,β l,oύ 2* l>k

Let C be any path in Mn. Choose any path in G with the pro-
perty that if elf •• ,ew represents a righthanded frame, that is, an
element of OCw), then en is in the tangent direction to C. Then arc
length along a path C is

/ =

This follows from equation (2.4) and the definition of wn (see [3]).
Now X2=en and X1=^ikiei. Therefore (wn)B = (sXlf wny=kn. Hence

if Xi is perpendicular to the curve C, then the transversality term is
zero. From equation (3.1), we have

Hence

(3.4) δl=[δ(wn)]l+ [ Σ {(^) δ (w r t M ) d - (wΛ)Λ{wΛn)h) dξ,,
J

where (w»)*=<w*, 0 = 0 .

It is clear from the last equation that the symbols <5 and d and
our indices make the notation awkward. Hence a wd will be written
as tv and a ^ ό̂ will be written as φ. In this notation equation (3.4)
becomes

(3.5) ^ W ί +

since wa=0 along the path C.
From Theorem 2.1 we have the following theorem.

THEOREM 3.1. The differential equations of a geodesic in Finsίer

geometry are

We will now compute the second variation along a geodesic. We
have
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Γ = l δwndξ.i9

Jo

and δ2l is the second variation. Hence we have to compute δ\wn)
along a geodesic. Now

(3.6) δ\wn) = δd{φn) 4- φj(wan)

since wan=0 along the geodesic. We have

(3.7) δ(ιυΛn) -diφ^

From equation (3.2) we obtain

By Theorem 1.1 and since C is a geodesic, we have

(3.8) dw«n-dφan-ιυaβφβn + φΛn,

Now by equation (3.2) and the facts that

we have

(3.9) <XX /vX2, Ωany = Σ PnanβWnφβn 4-

Therefore, from equations (3.6), (3.8) and (3.9), we obtain

(3.10) δ\Wn) = Sdφn + Σ Φldφan - ΦβnW*β + PnanβWnφβn + Rn*nβΦβWn\

Now,

5dφ«=d^φ ?, and d(φΛφm)=φΛn(dφΛ) + Φ«{dφΛn).

H e n c e

(3.11) o2(wn) = d[^φ ? i 4- φ Λ φ t f ?ι] - </wZφΛ

+ [ — ΦΛΦβuW«β + Pn»nβΦ»Φβn + Rn*nβΦ*φβ\Wn

But from equation (3.1) we have

(3.12) dφΛ=<ϊw

since

along the geodesic. Also £wΛ=0 along the geodesic, since wa>0 and
equals zero along the geodesic and hence wΛ must attain a minimum
along a geodesic.
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Hence

(3.13) 32Wn= d[δφn + Σ Φ«Φ«n} + ΣAΦ«nΦ«n + Pn*nβΦ«φβn + Rn«nβΦ»Φβ)Wn

Hence the integral form of the second variation becomes

(52/= [(5φn + Σ Φ«<*«»]θ + 1 Σ (φomΦαm + PnanβΦ*Φβn +RnanβΦ«Φβ)Wndξ* .
Jo

For Riemannian geometry we have Pijkl=0 and ΣΦ*Φ»n represents
the second fundamental form of the geodesic surface perpendicular to
the geodesic at the point.
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