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ON THE NUMBER OF POLYNOMIALS OF
AN IDEMPOTENT ALGEBRA I

G. GRATZER AND J. PLONKA

This paper deals with the number p,(%) of essentially n-
ary polynomials of an idempotent universal algebra 2. Under
the condition that there is a commutative binary polynomial - it
is proved that p,.,(%) = p,(%) + (n — 1), provided p,(¥) = 1. If
- is also associative this inequality is improved to

DPa+1(¥) = pa(¥) + 1 + max {p,A), n + 1} .

A sequence p = <{py, P, +--) is called representable (see [6]) if for
some algebra U, p, = »,(A) for all » = 0. The basic problem is the
characterization of representable sequences. Earlier results on repre-
sentability (see [5] and [6]) were of the type that sequences satisfy-
ing some very mild condition (e.g., p, > 0) are all representable, and
so the p; are independent.

In this paper we make a first attack on the idempotent case
(po = ., = 0, in other words, f(x, ---,2) = « for every operation f).
We conjecture that for idempotent algebras the p,() are not indepen-
dent. In fact, we think that with one exception the sequence <{p,(20)>
is tncreasing from some m. Our general conjecture is the following:

Congecture. Let 2 be an idempotent algebra different from the
idempotent reduct of a Boolean group.® Then there exists an integer
m such that 1 < p,(A) < N, implies that »,() < p,+.(A) for every
n > m.

To verify this conjecture one should make use of K. Urbanik’s
[9] classification of idempotent algebras using the set

ZQA) = {n|n = 2, p,(A) = 0} .

The structure of A is quite well determined by Z(A) except if Z(A) =
@, or Z() = {2}. In this paper we take up part of the case Z(2) =
@. If ZQ) = @, then p,(A) = 0, hence there exist binary polynomials;
we shall discuss the case when there exist commutative binary poly-
nomials.

THEOREM 1. Let U be an idempotent algebra having a commuta-
tive binary polynomial. Then p,(N) #= 1 tmplies that

1 Let <G; +> be an abelian group; it is called Boolean if 2x = 0 for all xt€G. The
algebra <G;g)>, where g is a ternary operation defined by g(x,y,2) =2 +y + 2z is
called the tdempotent reduct of <G; +>.
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693 G. GRATZER AND J. PLONKA
(1) D) = 2, (A) + (v — 1) .

The commutative binary polynomial that is assumed to exist is
either associative or nonassociative. Accordingly, the proof of Theorem 1
splits into two completely different cases. In the nonassociative case
one observes that for » > 2 the assumption ,(X) == 1 is superfluous
(since p,(A) = 3). In the associative case we can prove a result that
is much sharper:

THEOREM 2. Let U be an idempotent algebra having a commuta-
tive and assoctative binary polynomial. Then p,(A) = 1(n = 2) im-
plies that

(2) Do) = Pu(A) + 1 + max {p,(A), n + 1} .

The example given in §2 will show that the two inequalities making
up (2) are sharp.

Many conclusion can be drawn from Theorems 1 and 2.

Let us call a sequence <{p;> conditionally strictly imcreasing if
1 < p; < W, implies p; < Piyi-

COROLLARY 1. Let U be an idempotent algebra having a com-
mutative and associative binary polynomial. If the sequence

<pn(§~)1)y pn+1(s‘)’{)y M '>

s mot conditionally strictly increasing for any n = 2, then A s
equivalent to a semilattice.

COROLLARY 2. The only representable sequence 0,0, p,, ps, «++>
satisfying p, = 1, p, < 2 for which {P,, Dyp+i, +++» s not conditionally

strictly increasing for any n = 2 1s {0,0,1, «++, 1, --->.

The last condition of Corollary 2 is satisfied if the sequence <{p,>
is assumed to be bounded. Under this assumption the conclusion of
Corollary 2 is the same as the conclusion of the Theorem in [4] (however,
the other assumptions in [4] are weaker than those in Corollary 2).

COROLLARY 3. Let U be a commutative idempotent groupoid (i.e.,
an algebra with a single binary operation). If A 1s not equivalent
to a semilattice, then for n = 3

(3) pmgm—lgn—zuz.

Since 2 is not equivalent to a semilattice the binary polynomial
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is not associative. Hence p,(20) = 3. Thus by (1):

. ZP W+ m—2) = =2m—2)+ - +2+3

_ (m—1n —2) +2.
2

A weaker result, namely »,(2) > n was proved by J. Dudek [1].
A stronger result, namely

P (2) = %(2” — (=1

is proved in [3].
A rather unexpected application of Theorem 2 is given in [3].
For the notation and basic concepts used in this paper see [2].
In §2 we present some facts concerning binary operations. Con-
structions of (n + 1)-ary polynomials from n-ary ones are given in §3.
The inequality 9,4, = 2p, + 1 is proved in §4, while p,, =9, +7 +2

is proved in §5, concluding the proof of Theorem 2. Finally, Theorem
1 is verified in §6.

2. Binary operations. Let us consider an algebra % = {4; -, o>
with two binary operations - and o satisfying the following set of
identities:

(4) X =0, Y = Y&, X (YR) = (XY)-2

(5) Lok =, Xo(Yor) = (Loy)or, Lo (Yor) = xo(Roy)
(6) @Yoz = (xor):(Yor), xo(y:2) = (Woy):(xor)
(7) @y ex =2y,

that is <{4;-) is a semilattice and o is a partition function in the
sense of J. Plonka [8]. It follows from the identities (4) — (7) (and
more directly from Theorem 1 of [8]) that for n = 2 this algebra has
exactly 2* — 1 essentially n-ary polynomials. These can be described
as follows: Let {w;,---, %}, {%;,, -+, @ _} be a partitioning of
{2, +++, x,_,} into two nondisjoint sets; then

(8) (x“o.xﬁ' e 'x«:k)°(90ik+1' e .xin—1)

is an essentially n-ary polynomial, and every essentially n-ary poly-
nomial excepting «,- --- +2,_, has a unique representation in this form,
yielding »,() = 2" — 1.

Since 2"** — 1 = 2(2" — 1) + 1, the inequality p,., = 2p, + 1 cannot
be improved. Also, for n = 2 we get p, = 8, », = 7, that is », = p, +
2 + 2. Hence p,., = p, + n + 2 cannot be sharpened to P, = 9. +
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n + k for any k > 2.
All polynomials of the form (8) can be proved distinet under
rather mild conditions:

LEmMMA 1. Let <{A; -> be a semilattice and let o be an idempotent
essentially binary operation which is moncommutative, and satisfies

(9) (®-y)oz =x-(yo2).

Then all the polynomials given in (8) are distinct, essentially n-ary,
and different from xy +-+ -2, ..

Proof. If (8) does not depend on x;; then by symmetry, (8) does
not depend on any variable in the same group. By identifying the
variables in the same group we get that x oy is not essentially binary.
The first group of variables can be distinguished from the second by
the fact that by (9) they can be brought outside. This cannot be
done by any variable in the second group because it would imply the
commutativity of o. This also shows that (8) is distinct from z,- ---
2., completing the proof of Lemma 1.

Another lemma we need deals with commutative binary operations.

LEMMA 2. Let - and + be distinct idempotent binary commuta-
tive operations, and let - be assoctative. Then the polynomials

@+y)+zy+2+a@+)+y @+ Y-z @Y+ 2)-,

(10)
(z+2)y, (xy) +2 Y2+ Er)+y

are all essentially ternary and at least seven of them are distinct.
The polynomial x-y-z cannot equal any one of these.

The proof is a straightforward combination of Lemmas 1-4 of [7],
including the statements made in the proofs of the same.

3. Constructions of polynomials. In this section we deal with
an idempotent algebra having a fixed binary commutative and associa-
tive polynomial -; for brevity, we sometimes write 2y for x.y. Let
p be an w-ary polynomial. We define n + 1 constructions: M, ---,
M, , and S:

(11) pMi = 20(900, sy Wiy Wy Ly =00y xn—-l)
12) S =p-x, .

Let P, denote the set of all essentially n-ary polynomials.
The next six lemmas describe the behaviour of the M; and of S.
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LEMMA 3. M; 1s a one-to-one map of P, into P,.,.

Proof. We prove the statement for ¢ = 0. Let peP,. Then
oM, = p(x,, ©, +-+, %,_,) = q. Since the substitution z, =z, in ¢
yields p we get immediately that (i) M, is one-to-one; (ii) pM, depends
on %, -+, %, ,, and on at least one of x, and «,. Since x, and x, are
symmetric in ¢, ¢ depends on both, completing the proof.

LeEmMMA 4. S is a one-to-one map of P, into P,...

Proof. Let peP,. Substituting z, = --- = 2,_, in pS = px, we
get x,x, depending on x, and z,; thus px, depends on x,. If px, does
not depend on x; (0 < ¢ <m), then p(xy, +++, o) PWoy **+, ¥n_.) depends
neither on x; nor on y; by the commutativity of -, contradicting the fact
that after the substitution z; = y,;, 0 < j < n, the polynomial depends
on z,. Now let »,geP,, pS = ¢S, that is px, = qx,. Substituting
xz, = p, then x, = ¢ we get

P=pP0P=q¢pP=pq=4q-9=4¢,

completing the proof.

REMARK. Note that Lemmas 3 and 4 do not use the associativity
of .. These lemmas are applied in these more general forms in [3].

LEMMA 5. Let © +# 3, p,q€P,. Then vM; = qM; implies p = q.

Proof. To simplify the notation let ¢ = 0,7 = 1. Then
(13) p(xoxm Lyy =, xn-—l) = Q(xoy Lilpy =, wn—l) .
Compute:

DT Yoy Ty Tay =0 *y Tys) = Q(Xoy BY Yoy ***) = D( Xy, YoYiy ** ) «

Hence

(14) (X, Xy » 0 0) = P(LEL, Loy =0 2) o
Similarly,

15) Q(Toy Tyy ++0) = Q(XToTy Ty =) &

Substituting x,, #, and z, by 2z, (13) yields

D(Xe1, Ty =) = DTy Toyy By *+ )

(16)
= Xy, Ty Toyy + 0 0) = QBT Ty =+ +) &

(14)-(16) give p = ¢, as required.
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LEMMA 6. Let p,qc P,. Then pM; = qS implies p = q.

Proof. To simplify the notation let 4 = 0. Then
17 D@y Ty + o0y Bys) = QT+ 0, )T,

Therefore,
Q@y, iy + )T, = D(EE,Y, Ty 0 0) = QT 0 0)T,Y

18
(18) = q(y, )T, = @&, <)Y .
Now compute (applying (18) in every step):

qM, = (@, Ty =+ +) = Q@ 2 ) QXD -0 )
= QB+ ) QX =+ )T = QBE = QL Dy ++2)y == )Ty
= q(xog;n.q(xo, .o .)’ . .)xo —_ q(xo, .o .).q(;(;o’ .o .).xoxn
= q(@, ++*)¥, = ¢S .

Hence
oM, = ¢S = q¢M, ,

and so by Lemma 5 we conclude that p = q.
LEMMA 7. Let p,gqe P,, and i #j. Then pM;=pM; if and only if

p(xoy ety Lgy vty Xy "',xn—l)

(19)
= p(xoy ey Lyl vy xixjy tt 0y wn——l) .
Proof. Let ¢ = 0,7 =1, and assume (19), that is,
(20) D = DXL, Telyy By = v+ Tyr)
Then
DMy = p(Xe,, Ty <+ +) = “OP(EE,215 Ty Ty - +)
= (2O)p(x0y Lilyy = ') = le .
Conversely, if pM, = pM,, then
(21) p(fcoxm Lyy = ') = 10(950; Llyy = ') ’
and so

D(@oy X1y v+ +) = P(TeiTo, Tyy o) = FD(Xgy Ty ¢ v )
= D@y, (Xe2)y, +++) = DBy, By, =+ 0)

completing the proof.

Finally, we introduce some notations that will be useful in the
sequel, and using these we characterize semilattice polynomials.

For peP, let G(p) denote the group of all permutations a of
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{0, ---, n — 1} satisfying
(22) Doy *+ 0y Tpey) = P(Toay ** %5 Tipepia) -

G(p) is the symmetry group of p, and it is a subgroup of S(n), the
symmetric group on n letters. Then

LEMMA 8. The index of G(p) wn S(n) is the same as the number
of polynomials arising from p by permuting the variables.

Proof is obvious.
For aec S(n), pe P, define p*c P, by
pa(xo, *t xn—l) = p(xom tt ey m(n-—-l)a) .

Note that o< G(p) if and only if p = p=.

Let P,.,(?) denote the set of all (n + 1)-ary polynomials » which
can be represented in the form
(23) D= Q(xoy ey Ligy Ly =0y xn)xz

for some ge P,. It follows from Lemma 4 that P,,,(:)< P,., and
that ¢ is uniquely determined by p. If pe P,.,(¢) the variable z; is
said to split in p.

LEMMA 9. If =z, splits in peP,., and acG(p), then x;, also
splits in .

Proof. Obvious from (22) and (23).

LEMMA 10. Let pe P,. Then p = ¢y ++- -2, if and only if all
x; split in p.

Proof. It is obvious that if p = x,- --- -2,_,, then all x; split in
p. Conversely, assume that all x; split in . Then, for some ¢geP,_,,

Q(@oy + v oy Bigy Ligyy * o, T,0)®; = P, and so
(24) p(xm ey LYy o0y xn—l) = q(xm ey Wigy Xiry =0y xn-—l)xiyi
= P(Loy *+* 2y Ty >0y Tp)Ys -

Now compute using (24):

D(XYor =y Tlfiy =y TpeiYns) = D( @y =y Tpe)Wo *** Yy

(25)
= D(Yoy ***y Yur)o® *** *Tpy &

Setting y, = ++- = y,_, =y we get

(26) D@y =y B )Y = Yoo v 00 *Tpy &
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And so
DXy oo oy Tpy) = P(Lgy ** 2y Tpt) DXy =y Tpy)
= (@, c oy Tpyy) Xpr oo Ty
= Ly v Xy XL vt X,y

= Ly e X,y ,

which was to be proved.

4. The inequality p,., = 2p, + 1. In this and the next section
let 2 be an algebra satisfying the conditions of Theorem 2, and let
n be a fixed integer with p,(¥) # 1. Now we proceed to proving the
inequality given in the title of the section.

For pe P, let R(p) denote the set of all polynomials of the form
pM;, or pS. By Lemmas 8 and 4, R(p) S P,y,.. If p =2 +-+ -2,
then |R(p)| =1, in fact, R(p) = {®y+ +++ Xy T,}.

LEmMA 11. If p # 24 «-- -®,_,, then |R(p)| = 2.

Proof. Let |R(p)|=1. Then pM, = pM, = --- = pM,_,. Thus
by Lemma 7 any pair of variables can be replaced by their products.
Applying this a number of times we get

»= p(a’;o. cee D,y e, Dge e 2D, ) = Xy e Xy,
as claimed.
LEMMA 12. Let p,qc P,,p#q. Then R(p) and R(q) are disjoint.
Proof. By Lemmas 3, 4,5, and 6.
By Lemmas 11 and 12,
(27 P = |U RB(D) | peP,)| = 2p, — 1.

LEMMA 138. If p,., < 2p, + 1, then |R(p)| = 2 for all peP,, p +

Los o0 *Lyy o

Proof. It follows from (27) that p,., = 2p, or D,+ = 2p, — 1,
and so |R(p)| =2 for all peP,, p # @, ++- &,_,, with at most one ex-
ception. Let p be this exception; then |R(p)| = 3.

Partition {0, .-+, % — 1} into (at most) three classes, X,, X, X, as
follows:

1, j € X, for some a, if pM; = pM;; furthermore, if 7 ¢ X,, then
oM; = pS .
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Since |R(p)] =38, |X,| #0,|X,| #0, but X, could be empty. Note

that by Lemma 7 7,7 ¢ X,, if and only if «; and x; can be substituted

by x:x;; hence if ¢ € X,, j € X,, @ # b, then this cannot hold for z; and z;.
Now we distinguish some cases:

Case 1. For some a|X,| = 2. Then choose 7,5 X,, 1+ 7, keX,,
a #= b. To simplify the computation let 0,1¢ X,, 2¢ X,. Let 7 be the
transposition (0, 2). We claim that p # p°. Indeed, if p = p-, then

(o, Tyy Ty * o +) = D(LeXy, Xy, Tay =+ *)
= p(%, Lol1y Lolyy *° ')
= (Lo, Xy T Xy, Lolyy +**)
= P(Xe,, Lok, Lgy Lok Lgy + =)
= DXL,y Lk, Lgy To1 Loy Ly *+*) &

Similarly,
p(ﬂ%wz, L1y Lolgy = * ') = p(xoxxxz’ Lo, Loy LoX1 gy * ') ’

and s0 p(%,, X1y gy =+ +) = D(XXsy Ty, Xsy - - +), contradicting 0 ¢ X,,2 ¢ X,
a # b.

Thus p # p°. Since |R(p)| = |R(p°)|, we get a contradiction with
the uniqueness of p.

Case 2. |X,|=<1fora=20,1,2 and X, # @. Since |X,| = n is
impossible, let |X,| # 0, and takeie X,,5€ X,, 7 = (¢,7). Then p = p°
would imply pM; = pS; since pM; = pS, we obtain pM; = pM;, contra-
dicting the definition of X,, and 7 ¢ X,. Hence p = »%,|R(p*)| = | R(p)| =
3, a contradiction.

Case 3. |X,|=|X,]=1, and X, = @. Thus in this case n = 2,
and pM,, pM, pS are all distinct. Take z = (0,1). If p = p°, then
|R(p)| = | R(p°)| = 3, a contradiction. Hence, p(x,, 2,) = p(, %,). Let
us denote p(%, x,) by #, + 2. Then - and + satisfy the requirements
of Lemma 2. Since p; < 2p,, all essentially ternany with at most one
exception are accounted for by |J (R(¢)|te P,). But the seven poly-
nomials listed in (10) can belong to no R(t) excepting R(+). (The
verification of this statement is tedious but straightforward.) Hence
either |R(+)| > 3, or there are at least five essentially ternary poly-
nomials outside of UJ (R(¢)|t e P,), contradicting the assumptions.

Cases 1-3 exhaust all possibilities, thus completing the proof of

Lemma 13.

LEmMMA 14. If |R(p)| =2 for all pe P,, then all pe P,, p = %y -~
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%,_1, have a unmique representation in the form (8), where o is an
essentially binary noncommutative polynomial satisfying (9); this
polynomial o is uniquely determined by p.

Proof. Let peP,, p+# & -+ ®,_,, and so |R(p)| =2. Thus
{0, - -+, n — 1} splits into two nonvoid sets X,, X, such that for 4, j ¢ X,
pM; = pM;, and for ie X,, pM; = pS. Thus by Lemma 7, for e X,
2; can be replaced by the product of all z;, j € X,, for i€ X,, ; can be
replaced by the product of all z;, j e X,, and all these variables split
in px,. Define o by

oy = P(Roy ***y Bys)

where 2z, =2 for 1eX, 2, =y for 1eX,. Setting X, = {ty ---, 14},
(8) gives p. The uniquness of o, and (9) follow from the fact that
the x;, © € X, do not split, while the %;, 1€ X, do in pz,.

Now we are ready to complete the proof of the inequality. If
Dot = 2p, + 1 does not hold, then p,., < 2p,, hence by Lemma 13,
|R(p)) < 2 for all pe P,. By Lemma 14, (8) gives a unique represen-
tation for every peP,, p # 2, -+- -2,_,, and Lemma 1 stated that
every such polynomial is essentially w-ary. Let k& denote the number
of essentially binary polynomials satisfying the requirements of Lemma
1. Then it follows from what has been stated above that

D, = k2" —2)+1.
Again applying Lemma 1, we obtain the inequality
Dpsr = k(2" —2) + 1.
Hence
k@ —2) +1Z 9,0 < 2p, = 22" —2) + 2,

yielding 2k < 1, that is k¥ = 0. Therefore p, = 1, contrary to assump-
tion. This completes the proof of the inequality.

5. The inequality p,., = P, + % + 2. Recall that P,.,(?) is the
set of all polynomials with representation (23). By Lemma 4, |P,..(1)| =
»,. By Lemma 10, N (P,.(?)|0 =1 < n) = {x,+ ++- +x,}, hence we
can choose

p(woy c xn-—-l)xn € P'n+l(n) - Pn+1(n - 1) ’

that is, pe P, can be chosen such that xz,_, does not split in p=,.
Define:

(28) g = D@ + o+, Tpsly) «
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LEMMA 15. Neither x,_, nor x, splits in q.

Proof. «,_, and x, are symmetric in ¢, therefore it suffices to
prove that x, does not split in q. Let us assume that x, splits in g,
that is

'(29) q = /r(xoy ) x’n—-l)xn .
Now substitute z, = z,_, in (28) and (29); we obtain
(30) p(xoy cccy wn-—l) = r(xo, M) xn—-l)xn—l .

Substituting z,_,x, for x,_,, and comparing the result with (28) and
(29) we obtain

31) @0y ** %y Bpea®0) Ty i@y = (Tgy ***y T}y o
Thus
D(Loy =+ oy B )Ty = CMP(Bgy v 00y By )0 @y = COP(Xgy 00y Bpps @) Ty iy o

This formula shows that px, is symmetric in x,_, and #,, contradict-
ing the assumption that x,_, does not split in pz,.

Now we start proving the inequality. Let s denote the number
of variables that split in q.

Case 1. s=2. Let @ denote the set of all polynomials arising
from ¢ by permuting #, -+, 2,_,. Note that P,..(n)NQ=@. Of
the n! permutations (by Lemma 9) at most (n — s)!-s! belong to G(q),
hence by Lemma 8,

ozt ()

v

(n — s)!.s! s 2

for n =4, and s<n-—1.

Thus, if n =4, and s <#n — 1, then
[Posi| Z | Pprs(®) U Q| Z [ Pp(n)| + Q| Z P+ 1+ 2.

Let » =38;8s=2, hence s =2 (s =3 implies that p = x,-2,-2,).
Thus 2, and @, split in q(x, 2, ©,, ©;) = (%, T;y T.2:), and 80 ¢ = P(X2,,
X, Xas). Set xoy = p(x, x, y). Then o satisfies (9) and so (8) will
produce seven essentially 4-ary polynomials in which x, does not split.
Thus p, = 0, + 7= p, + 3 + 2. Finally, if » = 4, and s = » — 1, then
as in the previous case we set xoy = p(x, -+-, 2, ¥) and apply (8) to
get P =0, +2'Zp, + 0+ 2

Case 2. s =1. Let x, be the variable that splits in ¢q. Let @
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be defined as in Case 1. Since by Lemma 9 one variable (the one that
splits) has to be kept fixed by any aeG(q) we get that at most
(n — 1)! permutations of {0, .--, n — 1} belong to G(g), and therefore
we get at least # polynomials from ¢ by permuting =, :--, z,_,. We
get exactly n, if every permutation not moving 0 belongs to G(g).
Thus if we get exactly =, all transpositions (4, n) € G(p), © = 0. But
then

q(xO! xu ) xn)
= D(Toy Tyy =00y Tpsly)
(32) = P(Xoy Ty @y + =+ %01 %y)
= p(xo, By Dy ** oy xlxn_lxn) = eee

= p(;x;o, Lyy oo v Ly Byge wov oLy, oooy Ll voe o X,) o
Also, since x, splits in ¢:
(33) Q(Xgy = o0y X,) = T(Tyy + o0, T,) %
From (32) and (33) we obtain,

Q(@gy =00y Bp) = T(Lye ov0 Xy o0y, Tye o 0o ),
= Ly Xy v o

n e

Thus p = x4+ +-+ +x,_,, contrary to assumption. Thus we cannot get
exactly n, hence we get at least 2n, and so

Doy ZPu + 2020, + 0+ 2,
because n = 2.

Case 3. Cases 1 and 2 do not apply to any
pr, € P'n-!-l(,n) - Pn+1(n - 1) .

Firstly we claim that p,_, = 1. Indeed, if p,_, # 1, then let » be an
essentially (n — 1)-ary polynomial different from «, «-. .2,_,. Then
some %;, say %, does not split in »-x,_,-x,, hence by permuting the
variables we get a px, e P,.,(n) — P,.,(n — 1) such that some 2, splits
in Py *+ 0y Tpss)-

Now choose an arbitrary px, € P,..(n) — P,.,(n — 1) and take q =
(g, +++, 2,_,2,). Note that in ¢ the pair {x,_, «,} is the only one
which can be substituted by their product, because if {x;, «;} is any
other such pair then by setting z,_, = «,, #; = ©; we would get an
(n — 1)-ary polynomial different from x,+ --- -x,_,, in contradiction with
P.—1 = 1. Hence for every a¢cG(q), (n — 1)a = » — 1 and na = n, or
n—-1Da=mnnax=mn—1. Thus |G@Q)| < (r — 1)!12!, and so we get

at least (n g 1) = n + 2 polynomials by permuting the variables of ¢,
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none of them in P,,,(n), provided n = 3.

If n =2, then p(w, x,2,) yields three polynomials in which no
variable splits; | Py(2)| = p, and we can choose a ¢ € Py(1) — P4(2), obtain-
ing p, + 4 polynomials. This completes the proof of the inequality.

6. The nonassociative case. In this section let 2 be an idem-
potent algebra, and - a binary commutative and nonassociative poly-
nomial. The following lemma is due to J. Dudek [1]:

LEMMA 16. Let n > 2 and let f, denote the polynomial
(oo ((@@)D) =+ ) Ty

Let © be the transposition (1,1 + 1), where 1+ 0, and let o denote
the cyclic permutation (0,1, «+-,n — 1). Then f, # fI, and the poly-
nomials f,, o, £, «oo, £ are all distinet.

Now we prove the inequality »,., = p, + (n — 1). Observe that

Lemma 3 applies, hence |P,M,_,| = p, and P,M, S P,,,. We claim
that foir fley o fo0 € P,M, .. Indeed, let fo*e P,M, .. Then

(' °c (((’ . (xkxlc-f—l) ° ') xn)a/o) v ') Ly = p(xoa M) wn—-lxn) .

Since z,_, and x, are symmetric in the right hand side, we get that
fuii 18 invariant under some 7 = (¢, ¢ + 1), 7 == 0, contrary to Lemma
16. Thus we have found p, + (» — 1) essentially (n + 1)-ary poly-
nomials, completing the proof.

REFERENCES

1. J. Dudek, The number of algebraic operations im an idempotent groupoid, Bull.
Acad. Polon. Sci. Sér. Math. Phy. Astr. (to appear).

2. G. Gritzer, Universal algebra, The University Series in Higher Mathematics, D.
Van Nostrand Co. Inc., Princeton, N. J., 1968.

8. G. Gritzer and R. Padmanabhan, On commutative, idempotent, and non-associative
groupoids (to appear).

4. G. Griatzer and J. Plonka, A characterization of semilattices, Collog. Math.
(to appear).

5. —————, On the number of polynomials of a universal algebra II (to appear).

6. G. Griatzer, J. Plonka, and A. Sekanina, On the number of polynomials of a universal
algebra I, Collog. Math. (to appear).

7. J. Plonka, On the number of independent elements in finite abstract algebras with
two binary symmetrical operations, Colloq. Math. 19 (1868), 9-21.

8. , On a method of construction of abstract algebras, Fund. Math 61 (1967),
183-189.

9. K. Urbanik, On algebraic operations in idempotent algebras, Collog. Math. 13 (1965),
129-157.

Received July 28, 1969, and in revised form November 4, 1969. The research of
both authors was supported by the National Research Council of Canada.

THE UNIVERSITY OF MANITOBA








