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DECOMPOSITIONS OF THE STONE-CECH
COMPACTIFICATION WHICH ARE
SHAPE EQUIVALENCES

JAMES KEESLING

Let X be a realcompact space and BX the Stone-Cech
compactification of X. Let K C8X — X be any nondegenerate
continuum. In this paper it is shown that if f(K)=Y is any
map which is a shape equivalence, then f is a
homeomorphism. Let X be realcompact and connected. Sup-
pose that f(BX)=Y is a continuous map which is a shape
equivalence. Then it is shown that there is a compact set K CY
such that f/(K)CX with f|BX — f(K) a homeomorphism
onto Y — K. In particular, if cX is any compactification of X
and h: BX — cX is the natural map induced by the identity map
on X, then if h is a shape equivalence, then h is a
homeomorphism. Examples and applications are given.

Introduction. An important question in shape theory is: What
kinds of continuous mappings give shape equivalences? That is, if X
and Y are compact spaces and f(X)=Y what conditions on f would
guarantee that f is a shape equivalence? If f is a homeomorphism or a
homotopy equivalence, then f is a shape equivalence. If f has the
property that its point inverses have trivial shape then f is said to be a
CE-map. If f(X)=Y isa CE-map and Y is finite-dimensional, then f
is known to be a shape equivalence. This is one of the most important
types of shape equivalences. In this paper the question of when a map is
a shape equivalence is studied in reverse order. We suppose that we
have a map f(X)= Y which is a shape equivalence and ask what this
implies about the map f. The results we obtain are as follows. Let X
be a realcompact space and K a continuum contained in BX —
X. Suppose that f(K)= Y is a shape equivalence. Then we show that
f must be a homeomorphism. Thus maps which are shape equivalences
on continua contained in BX —X are of the simplest possible
type. They are homeomorphisms. This should be contrasted with
what is known about manifolds and polyhedra of dimension =1 which
always admit nontrivial CE-maps which are shape equivalences.

Let X be a realcompact connected space and suppose that f(BX) =
Y is a shape equivalence. Then it is shown that there is a compact set
K CY such that f(K) C X with f|8X — f(K) a homeomorphism onto
Y — K. This severely restricts the kinds of maps of BX which can be
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shape equivalences. In particular, if cX is another compactification and
f: BX — ¢X the natural map induced by the identity map on X, then if f
is a shape equivalence, then f is a homeomorphism.

As applications of these results we show that if X is realcompact and
K is a continuum contained in 8X — X, then K cannot be shape
equivalent to a compact connected abelian topological group. Also K
cannot be torus-like. If X is realcompact and connected and not
compact, then BX cannot have the shape of a compact connected abelian
topological group. Also BX cannot be torus-like. In addition a
number of results in [7] are generalized.

The proofs of the above theorems make significant use of the theory
of shape for compact connected abelian topological groups developed in
[3], [4), [5], and [6]. Specific results will be quoted in the first section of
the paper.

Preliminaries. We assume that the reader is familiar with the
Stone-Cech compactification. Gillman and Jerison [1] and Walker [9]
are good references. We assume a knowledge of general topology and
the reader should be familiar with the terms: Lindelof, paracompact,
pseudocompact, realcompact, and proper mapping. Most of the terms
can be found by consulting Gillman and Jerison [1] or Isbell [2] or any
advanced text in general topology. We let H"(X) denote the Cech
cohomology of X based on the numerable covers of X with integer
coefficients

Let C denote the category of compact spaces and continuous maps
and let S: C— SC denote the shape functor. If X and Y are compacta,
then a map f: X — Y is a shape equivalence if S(f) is an equivalence in
the shape category. A good reference for shape theory is Mardesi¢
[8]. We will only be concerned with shape theory for compact spaces in
this paper.

1. Continua contained in 8X — X. The main result of
this section is that if X is realcompact and K is a continuum contained in
BX — X and f(K) =Y is a map which is a shape equivalence, then f is a
homeomorphism. We are also able to prove that K cannot be movable
or of trivial shape unless it is a point. This last result generalizes the
main result of Keesling and Sher [7] where this was shown for continua
contained in BX — X for X Lindeléf. The proofs in this paper are quite
different from those in [7] and are not just a refinement of the techniques
of that paper. It seems that both techniques of proof will have further
applications.

We will need a number of results from [3], [4], [5], and {6] which we
now state for convenient reference.
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THEOREM 1.1. (Theorem 1.1 of [4]) Let X be a continuum and
X € X and let A be a compact connected abelian topological group. Then

if F: X—> A is a shape morphism, then there is a continuous map
f: X— A with f(x)=0 and with S(f)=F.

THEOREM 1.2. (Theorem 1.2 of [4]) Let X be a continuum and
x € X and let A be a compact connected abelian topological group. Then
if f and g are continuous maps from X to A with f(x)=g(x)=0 and
S(f)=S(g), then f and g are homotopic.

The next theorem follows from the proof of Theorem 2.1 of [4].

THEOREM 1.3. Suppose that X is a continuum and that A is a
compact connected abelian topological group. Suppose that X and A are
shape equivalent and let F: X — A be an equivalence in the shape
category. Then any map f: X — A with S(f) = F must be onto.

THEOREM 1.4. (Theorem 1.1 of [5]) Let X be a continuum and A a
compact connected abelian topological group. Suppose that
h: HA)— H(X) is a homomorphism. Then there is a unique shape
morphism F: X — A such that F* = h: H(A)— H(X).

The last theorem we need is the following.

THEOREM 1.5. (Theorem 1.2 of [6]) Let X be a torus-like
continuum. Then X has the shape of a compact connected abelian
topological group.

We now proceed to the results in the section. We will need two
preliminary lemmas.

LEMMA 1.6. Let x € BR — R where R is the real numbers. Let 3.,
be any solenoid and let z €3, Then there is a continuous map
f: BR = 3, such that f(0)=0 and f(x)= z.

Proof. Let A =[0,3]+Z CR and B = [3,1]+ Z CR where Z is the
integers. Now A and B are closed and A U B =R. Thus x EclgirA
or x EclgzB. Suppose without loss that x € clizA. Let ¢: R -3, be
a dense one-parameter subgroup. Let n€R for i =1,2,--- be such
that ¢(r,)—> 2. Now define a map g: R — R such that g(0)=0 and
g([0,9)+i)=ryfori € Z—-{0}. Suchamap g is clearly possible. Now
let f: BR =3, be the Cech extension of the map ¢ °g: R -3, Then
f(0)=¢°g(0)=0€23, and since x EclgA, f(x)=lime ()= z.
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LemMmA 1.7. Suppose that X is realcompact and not compact and let
K be a continuum contained in BX —X. Letx#y€E€K. Letu,v€3l,
where 3., is any solenoid. Then there is a continuous function g: K — 3,
such that g(x)=u and g(y)=v.

Proof. Since X is realcompact, there is a continuous real-valued
function f: X — R such that Bf: BX — BR has Bf(x) € R. Now let
q: BX — [0, 1] be a continuous map such that q is 0 on a neighborhood of
y and 1 on a neighborhood of x. Then let h: X — R be defined by
h(z)=f(z)-q(z) for all z€ X. Then consider Bh: BX — BR. Then
Bh(x)€ BR — R since h agrees with f on a dense subset of a neighbor-
hood of x in BX. Also, Bh(y)=0 since h =0 on a dense subset of a
neighborhood of x in BX. Now using Lemma 1.6, there is a map
p: BR—3, such that p(0)=0 and p(Bh(x))=u—v. Now define
s:3,—3, by s(z)=z+v for all z€Z, Then let g: BX >3, be
defined by g=sopoph. Then g(x)=scpeBh(x)=u—-v)tv=u
and g(y)=scpeBh(y)=s(@0))=0+v=0o. Thus g|K is the desired
map.

We now prove a theorem which allows us to generalize several of the
results of [7].

THEOREM 1.8. Suppose that X is realcompact and that K is a
nondegenerate continuum contained in BX — X. Then H'(K) has the
property that it contains a copy of the rational numbers as a subgroup.

Proof. Let x,y € K be distinct points. Let 2, be the rational
solenoid and let v € X, be a point which is not in the same arccomponent
as 0€3,. Then let f: K— 3, be a continuous function with f(x)=0
and f(y)=v as in Lemma 1.7.

Claim 1. The map f must be onto.

Proof of Claim 1. 'The set f(K) is a subcontinuum of 3,, containing
0and v. However, the only proper subcontinua of a solenoid are arcs or
points. Since there is no arc containing both 0 and v, f(K) must be all of
3. This proves Claim 1.

Now the rational solenoid has H'(Z,)= Q, the group of rational
numbers. Consider the homomorphism f*: H'(Z,)— H'(K). Now
H'(K) is torsion free and thus if f*(r) = 0 for some r# 0 in H'(Z,), then
f*=0. We will now show that f* is not identically zero. It will then
follow that f*(r) # 0 for all nonzero r € H'(3,) and thus that f*(H'(Z.,))
is an isomorphic copy of Q in HY(K). Thus Theorem 1.8 will follow
once we have proved Claim 2.
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Claim 2. The homomorphism f*: H'(Z,)— H'(K) cannot be
identically zero.

Proof of Claim 2. Suppose that f*=0. Let g: K—32, be the
constant map, g(z) =0forallz € K. Now g*: H'(2,)— H'(K) has the
property that g*=0 since g(K) is a point in 2.

Thus we have that f*=g*=0-and also f(x)=g(x)=0. Now by
Theorem 1.4, S(f)=S(g). That is, we have S(f)=S(g) and f(x)=
g(x)=0. Thus by Theorem 1.2, f and g must be homotopic. However,
this implies that there is an arc connecting f(y) and g(y)in %,. Thisisa
contradiction, since g(y)=0 and f(y)=v and no arc connects 0 and
v. This contradiction proves the claim and the proof of Theorem 1.8 is
complete.

COROLLARY 1.9. Let X be realcompact and let K be a nondegener-
ate continuum contained in BX — X. Then K cannot be movable. In
particular K cannot have the shape of a point.

Proof. Theorem 1.8 implies that H'(K) contains a copy of the
rational numbers. Theorem 4.4 of [5] then implies that K cannot be
movable. Now K cannot have trivial shape since a point is movable.

CoroLLARY 1.10. Let X be realcompact and let K CBX — X be a
nondegenerate continuum. Then if K has the same shape as Y, then Y
cannot be locally connected or arcwise connected.

Proof. Suppose that K and Y are shape equivalent. Then H'(Y)
contains a copy of the additive group of rational numbers Q, since H'(Y)
is isomorphic to H'(K). Thus Y cannot be locally connected by
Theorem 2.2 of [5]. Now we show that Y cannot be arcwise
connected. Let 3, be the rational solenoid and let h: H'(3,)— H'(Y)
be an isomorphism onto the copy of Q which exists by the above
remarks. Let F: Y — 3, be the shape morphism given by Theorem 1.4
with F*=h: H'(S,)—> H'(Y). Then let f: Y—3, with S(f)=F by
Theorem 1.1. Now we claim that f(Y)=2,. If not, then f(Y) is a
proper subcontinuum of %,. But then f(Y) is an arc or a point. But
that would imply that f*: H'Q,)—>H(Y) is the zero
homomorphism. This is a contradiction since f*=h#0. However,
this now implies that Y must have at least 2" arccomponents since
f(Y)=2, and 3, has 2™ arccomponents.

REMARK 1.11. 1In [7] it was shown that for a continuum K C8X —
X with X Lindel6f, H'(K) contains a copy of the real numbers as a
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subgroup. The technique of proof in [7] is quite different from the proof
of Theorem 1.8 given here. Thus we expect that both techniques of
proof will have further applications even though the basic results are very
similar.

We now prove the main theorem of this section and give some
applications.

THEOREM 1.12. Suppose that X is realcompact and that K is a
continuum contained in BX — X. Then if f(K)=Y is any continuous
map which is a shape equivalence, then f is a homeomorphism.

Proof. Suppose that f(K)=Y is a shape equivalence and that
f(x)=f(y)forx#y in K. Let3, be asolenoid. Letg: K—3, bea
map such that g(x)=0€ X, and g(y) is not connected to 0 by an arc in
2. Such a map g exists by Lemma 1.7. Now we claim that if
h: Y—3, is any map, then g is not homotopic to h of. We will then
show that this contradicts the assumption that f is a shape equivalence.

Claim 1. If h: Y — 3, is any continuous map, then A ° f cannot be
homotopic to g.

Proof of Claim 1. Suppose that h: Y—3, and that heof is
homotopic to g Then heof(x)=hef(y) since f(x)=f(y). Now
h o f(x) must be connected by an arc to g(x)=0 and h °f(y) must be
connected by an arc to g(y) = v. However, this implies that there is an
arc from 0 to v in 3, a contradiction. Thus h ©f cannot be homotopic to
g and Claim 1 is proved.

Claim 2. Since f is a shape equivalence, there must be a map
h: Y —3, such that h of is homotopic to g.

Proof of Claim 2. Since f is a shape equivalence, S(f) is an
equivalence in the shape category between K and Y. This implies that
the shape morphisms from Y to 3, are in one-to-one correspondence
with the set of all shape morphisms from K to 2,. This correspondence
is induced by composition with S(f). In particular, there must be a
shape morphism F: Y — 3, such that FoS(f)= S(g). Now according
to Theorem 1.1, there must be a map h: Y — 3, with h(f(x)) =0 and
with S(h)=F. However, then we have S(g)=S(h)°S(f)=S(h°f)
and hof(x)=g(x)=0. Thus by Theorem 1.2, hof and g must be
homotopic. This proves Claim 2.

Obviously Claim 1 and Claim 2 are contradictory. This contradic-
tion arises because we assumed f to be a shape equivalence and not a
homeomorphism. This completes the proof of Theorem 1.12.
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CoroLLARY 1.13. Suppose that X is realcompact and that K C
BX — X is a nondegenerate continuum. Then K cannot have the shape of
a compact connected abelian topological group.

Proof. Suppose that K has the shape of a compact connected
abelian topological group A. Let F: K— A be an equivalence in the
shape category. Then by Theorem 1.1 there exists a map f: K— A
with S(f)=F, and by Theorem 1.3 f must have the property that
f(K)=A. Thatis, f(K)=A and f is a shape equivalence. Thus by
Theorem 1.12 f must be a homeomorphism. However, every compact
connected abelian topological group which is not a point must contain a
nontrivial one-parameter subgroup. Thus A must contain an
arc. However, an arc has trivial shape. That is, there must be a
nondegenerate subcontinuum C of K having trivial shape. This is a
contradiction of Corollary 1.9 since C CBX — X also.

COROLLARY 1.14. Let X be realcompact and let K be a nondegener-
ate continuum contained in BX — X. Then K cannot be torus-like.

Proof. Suppose that K were torus-like. Then by Theorem 1.5, K
has the shape of a compact connected abelian topological group. This
contradicts Corollary 1.13.

ExamrLE 1.15. Example 1.6 of [7] shows that for X not realcom-
pact, the theorems and corollaries of this section may fail. The example
goes as follows. Let L be the long line and Y any compact
space. Then B(L X Y)=(L U{w,})X Y and thus if we let X =L X Y,
then BX — X =Y. By appropriate choice of Y we can get a space X
such that BX — X is a nondegenerate continuum which has trivial shape,
is a compact connected abelian topological group, or a continuum Y with
a nontrivial map f(Y)= Z which is a shape equivalence.

2. Maps which are shape equivalences of 8X. In this
section we show that if X is realcompact and connected and f(BX) =Y is
a shape equivalence, then f is a homeomorphism on a neighborhood of
BX — X. This severely restricts the kinds of maps which can be shape
equivalences of BX and allows us to draw several conclusions about such
maps.

ProrosITION 2.1.  Suppose that X is realcompact and connected and
that f(BX)=Y is a shape equivalence. Then if f(x,)= f(x;)=y with
X, # X5, then {x,,x,} CX.



462 JAMES KEESLING

Proof. Suppose not and let f(BX) =Y be a shape equivalence with
f(x)) = f(x.) = y with x; # x, and with x; € BX — X. Then there is a map
h: X — R such that Bh(x,)EBR — R and Bh(x,)=0€R. If x,€ X,
then it is straightforward to construct such an h. If x, & X, then such a
map was shown to exist in the proof of Lemma 1.7. Now let 3, be any
solenoid. Let p: R—32, be a map such that p(0)=0€3, and
Bp(Bh (x1)) = v cannot be connected by an arc to 0 in 2,. Such amap p
exists by Lemma 1.6. Then let g: BX — 3, be the Cech extension of the
map poh: X—3, Then g(x;)=v and g(x;)=0.

Claim 1. I h: Y — 3, is any continuous map, then h  f cannot be
homotopic to g.

Proof of Claim 1. This is the same as the proof of Claim 1 in the
proof of Theorem 1.12.

Claim 2. Since f is a shape equivalence, there must be a map
h: Y —3, such that h of is homotopic to g.

Proof of Claim 2. This is the same as the proof of Claim 2 in the
proof of Theorem 1.12.

Clearly Claim 1 and Claim 2 are contradictory. Thus we cannot
have the situation assumed and Proposition 2.1 must be true.

COROLLARY 2.2. Let X be realcompact and connected and suppose
that f(BX) =Y is a shape equivalence. Then for any y € Y with f7'(y)
nondegenerate f\(y) CX. Thusf| X must be a proper map onto f(X) and
f1BX — X must be a homeomorphism with f(X)N f(BX - X)=.

The next theorem, which is the main result of this section, shows that
not only is it true that f| X — X is a homeomorphism, but f restricted to
a neighborhood of BX — X must be a homeomorphism.

THEOREM 2.3. Let X be realcompact and connected and suppose
that f(BX) =Y is a shape equivalence. Let A ={y E Y|f'(y) is not a
single point}. Then f"(A)CX and clxf'(A) is compact.

Proof. The above corollary shows that f(A)CX. We now set
about to show that clyf'(A) is compact. The proof will be by
contradiction. Suppose that B = f~/(A) does not have compact closure
in X. Then (clgxB)N (BX — X)# . Let x € clgxB with x £ X. Since
X is realcompact, there must be a map g: X — R with Bg(x)€ BR -
R. Let b, € B be a sequence with |g(b,)|—®. Such a sequence exists
since x E clgxB. Now for each y € Y, f7)(y) is compact. Thus f~(y)N
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{b.} is finite for each y € Y. Thus, without any loss, we may assume that
f(b)# f(b) fori#j. Since b, € B = f"'(A) for each i, there must be a
¢. € B with ¢,# b, with f(c,)=f(b). Let {c.} be a sequence of such
points.

Claim 1. It must be that clgx{b} Nclux{c}=O.

Proof of Claim 1. By Corollary 2.2, f|X is a proper map onto
f(X). Since {b,} is a closed discrete subset of X, f({b,}) must be closed
and discrete in f(X). But {c,} is obtained by choosing one point out of
f'(f(b)) for each i. Thus, {c,} must also be a closed discrete subset of
X. Now since [g(b)|—>, the set {b} must be C-embedded in
X. Thus there is a continuous map k: X—>R with k(b)=i for
i=1,2,---. Let U, be an open set in X containing b, such that
U Ck™'(i —4i+3) foreachi and U N{c}=foreachi. Then{U}is
a disjoint discrete collection in X. Let h,: U, — [0, 1] be defined so that
h(b)=1 and h,(U, - U)=0. Define h: X—[0,1] by h|U, = h, and
h(x)=0 for xZU>,U. Then h|{b}=1 and hl|{c}=0. Thus
clgx{b,} CBh (1) and clgx{c,} CBR'(0). Thus clex{b.} Nclgx{c.} = and
Claim 1 is established.

Claim 2. There is a point p € clax{b,} — X and a point q € clgx{c,}
such that f(p)= f(q).

Proof of Claim 2. Let p Eclgx{b}—X. Let{b,}be asubnet of the
sequence {b,} such that b, — p. Let {c,} be a subnet of the net {c,_} such
that {c,} converges to some point q €clgx{c,}. Then b, —>p and
¢,—>q. Thus f(b,)—f(p) and f(c,)—f(q). However, f(b)= f(c.)
for all i so that these two nets, {f(b,)} and {f(c,)} are identical. Thus
f(»)=f(q). This proves Claim 2.

The points p and g given by Claim 2 must have the property that
p# q byClaim1. However, this then contradicts Proposition 2.1. This
completes the proof of Theorem 2.3.

We conclude this section by giving several applications of Theorem
2.3 and some examples.

COROLLARY 2.4. Suppose that X is connected and realcompact and
suppose that c¢X is a compactification of X. Let f: BX — cX be the
natural map induced by the identity map on X. Then if f is a shape
equivalence, then f is a homeomorphism.

Proof. Suppose that f is a shape equivalence. Now X is dense in
¢X and consequently f(BX)=cX. According to Theorem 2.3 if A =
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{y €EcX|f(y) is not a single point}, then f"'(A)CX. However, by
assumption f|X is the identity map. Thus A= and f is a
homeomorphism.

ExaMmpLE 2.5. In this example we will show that we may have
compactifications dX and cX and a natural map f: dX — c¢X which is a
shape equivalence and not a homeomorphism. Let n=2andlet I bea
tame arc in S". Then R" is homeomorphic to $"— I Also S” is
homeomorphic to the one-point compactification of R". Let the first
compactification be denoted dX and the second cX with X = R". Let
f:dX—>cX be defined by f(I)=« and f|R" is a
homeomorphism. Then f is a CE-map, and hence a shape
equivalence. But f is not a homeomorphism.

ExampLE 2.6. Let L be the long line and I be the unit
interval. Then let X =L xI. Then BX =L U{w,} X I and this space
has trivial shape. Let f(BX)={pt}. Then f is a shape
equivalence. Now X is not realcompact. This example shows that 2.1,
2.2, and 2.3 are not true if the assumption that X is realcompact is
dropped.

The last result of this section is that 8X cannot have the shape of a
compact connected abelian topological group.

THEOREM 2.7. Let X be a connected realcompact space which is not
compact. Then BX cannot have the shape of a compact connected
abelian topological group.

Proof. Suppose that BX has the same shape as the compact
connected abelian topological group A and let f(BX)= A be a map
which is a shape equivalence (see the proof of Corollary 1.13). Let
B C A be a compact set containing all the elements y € A with f™'(y) not
a single point and with f7'(B)CX. Such a set B exists by Theorem
2.3. Let x € f(BX —X). Then there is an arc I containing x with
ICA —B. Now we claim that such an arc cannot exist. Note that
I N f(BX — X) is totally disconnected, otherwise 8X — X would contain
a nondegenerate arc which it does not. Thus X Nf7(I) is dense in
f(I). .eth: X— R be acontinuous function such that gh: X — BR
takes y = f"(x) to a point in BR — R. But then Bh(f™') restricted to
some subarc of I determines a path in BR joining some point of R to
Bh(y)E BR — R. No such path exists in BR and‘consequently no such
arc can existin A — B. Thatis, B = A and the map f cannot be a shape
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equivalence because we have a contradiction to Theorem 2.3. This
proves Theorem 2.7.

3. Realcompact spaces. We conclude the paper with a
remark about realcompact spaces. It is known that a metric space is
realcompact if it is of nonmeasurable cardinality [1, 15.24, p. 232]. Also
every Lindelof space is realcompact [1, 8.2, p. 115]. We now give a
simple proof that every paracompact space of nonmeasurable cardinality
is also realcompact.

THEOREM 3.1. Every paracompact space of nonmeasurable cardi-
nality is realcompact.

Proof. Assume that X is a paracompact space of nonmeasurable
cardinality. Let x € X —X. We must construct a continuous func-
tion f: X— R such that the extension Bf takes x to a point of
BR — R. Foreachy € X there is an open set U, with y € U, and clgxU,
not containing the point x. For each y € X, let U, be chosen and let
U ={U,:y € X}.

Now every paracompact space is a uniform space with each open
cover a member of the uniformity. Thus by [2, Theorem 14, p. 7] there
is a continuous map g(X)= M with M a metric space such that every
subset S of M with diameter less than 1 has the property that g '(S)CU,
for some y € X.

Claim. If Bg:BX—>BM is the Cech extension of g, then
Bg(x) € M.

Proof of Claim. Suppose that Bg(x)EM. Let S be the i-ball
about pBg(x). Then there is a y€X with g7(S)CU, Let
h: M —[0,1] be such that h(Bg(x))=1 and h =0 on the complement of
S. Then hog: X—][0,1] has the property that h og vanishes outside
U, Thus B(h°g) vanishes outside clgxU,, Thus B(hog)(x)=
0. However, this contradicts the fact that B(hog)(x)=Bh°Bg(x)=
h(Bg(x))=1. This proves the claim.

Now M must be of nonmeasurable cardinality since X is. Thus M
is realcompact. Thus there must be a map h: M— R such that
Bh(Bg(x))EBR — R. But then hog: X — R is a map which has the
property that B(h°cg)(x) € BR — R. Thus X must be realcompact. This
proves Theorem 3.1.
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