
ON SOME TRIGONOMETRIC TRANSFORMS

O T T O SZASZ

l Introduction. To a given series Σ ^ = ι un we consider the transform

A sin vtn
An = 2* uv > where tn Φ 0 as n —* °°

It was shown in a previous paper [5, Section 4, Theorem 3] that the transform

(1.1) is regular if and only if

(1.2) ntn = 0 ( 1 ) , as n
• o o

We shall now consider the transform (1.1) in relation to Cesaro means. In a forth-

coming paper Cornelius Lanczos has found independently that the transform (1.1)

is very useful in summing Fourier series and derived series, and gave some very

interesting examples; he takes tn — ττ/n. Of our results we quote here the follow-

ing theorem:

THEOREM 1. In order that the transform (1.1) includes {CfD summability, it

is necessary and sufficient that

(1.3) ntn=pπ + (Xn, n<Xn = θ(l), p a positive integer.

We also discuss other triangular transforms which may be generated by "trun-

cation" of well-known summation processes, such as Riemann summability. The

transform An and the transform Dn (Section 5) are special cases of the general

transform

n

Ύn = Zs
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where φ(P) is a function of the π-dimensional point P(xι, #2> * ' *> xn)>

Pn —> 0. This transform and many special cases of it were discussed by

W. Rogosinski [4] in particular, the special case an = 0 of our Theorem 4 is

included in his result on page 96. The general approach is essentially the same

as in the present paper.

2 Proof of Theorem l If we write

" " , sinvtn sin (y + l) tn

sin vtn 2 sin {v + l) tn sin (v -f 2) t n _

(v + 1 ) ίn (v + 2 ) t n

I

then

n t

= " y s ' Δ 2 + s ' Δ + ( ' - s ' ) —

or

/0 ,x . _ n ^ 2 , Λ2 , , I sin (n - 1) tn 2 sin ntn

ntr,

sin

n
ntn

Now (C. 1) summability of 2 n = 1 un to 5 means that

(2.2) n - i s ^ —> s , as n —• 00 .

If sn = 1, then i4Λ = sin ίΛ/ίπ —> l

In order that (2.2) imply An —> 5, it is necessary and sufficient [in view of

(2.1)] that



ON SOME TRIGONOMETRIC TRANSFORMS 2 9 3

sin ntn , x sin (n — l) tn
(2.3)

n-2

(2.4) Σ H Δ H = 0 ( 1 ) , as n

v=l

The first condition of (2.3) [in view of (1.2)] is equivalent to

sin ntn = 0(tn) = 0(l/n) ;

hence

ntn = pπ + an , ndn = θ(l) .

The second condition of (2.3) now reduces to

cos ntn sin ίn = θ ( ί n ) ,

or

cos α n sin ίn =θ(n"1) ,

which is satisfied. Finally

= / cos vx dx = K / e ι c/x

hence

(2.5) t n Δ ^ = R j Γ t n tfeivx dx=Hfo

ta eivx(l-eix)2 dx ,

and

(2.6) t B I Δ i I < JΓ t n |1 - β " | 2 dx = 4 jftn (sin x/2)2 dx

It follows that

n-2
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This proves Theorem 1.

We can show by an example that the transform An may be more powerful than

(C,l). In (1.3) let p = 1, nan = - π / 2 ; the series Σ * = ι (-l)n~ ι n (that is,

un — (—l)nn) is not summable (C, 1), but summable (C, 2) to 1/4. Now

in t n ~ ( - l ) n [sin ntn + sin (n + l) tn]sin

where ntn = π—7T/2n. Hence, as τι 00

An ~ 1/4 + o(l) .

An even more striking example is un

 = ("~l)n n2 .

3. Summation by harmonic polynomials. We get a more powerful method if we

introduce the harmonic polynomial

and the corresponding transform

(3.2) Bn= Σ »vPn

or

βn = tn

ϊhn(pnf tn)

Let

n

Sn = Σ

where



ON SOME TRIGONOMETRIC TRANSFORMS 2 9 5

fc _ ( k ' + l ) ••• {k + n ) nk

Ύn =
n! Γ(k + 1) '

we also write

and

σ*-fL
n y

Ύn
Now {C,k) summability of the sequence [sn] to s is defined by

lim σ\f = s •

We quote the following elementary theorem [cf. 6, Theorem l ] , which is included

in a more general result of Mazur [ l , Theorem X] :

LEMMA 1. Let k be a given positive integer^ and let

n = 0,1,2, •••.

In order that lim Tn exist, whenever the sequence {sn} is \C9k)summable to s,

it is necessary and sufficient that:

n

<3 3 ) Σ Ύv \&antv I = 0(1) , α M = 0 f o r ^ > n ;

^ ^ lim y ί Δ α π > v = α v βΛ ί s ί s , v — 0, 1, 2,
n-»oo

S) lim V απ v = /3 exists.
π-»α> ^^ '

We then have lim Tn — βs + Σ^=o CXv(σv ~"-s) Since then the transform ΓΛ
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is convergence preserving we must have (3.5) and:

lim anv exists,
n-»co

V = 0 Ί 2
" υ > J-f *>t t

hence (3.4) and (3.5) hold, so that the conditions of Lemma 1 reduce to (3.3). In

the case of the transform Bn, we have

«π,n = Pit
sin nt n

sin {y + l) tn

(* + l ) t Λ '

hence

To satisfy (3.3) we must have

(3.6)

(3.7)

0 ,

sin nt

n pn

-i sin (n -\) tn

77{n - 1) tn

= 1,2,

as

and

(3.8)

k n-k s i n (n

P ~7(π -fe) tn

n-k-l
s in

= 0(1)

_ sin ntn

Assume first that k = 0 then our conditions become:

(3.9)

and

(3.10) - -" S i n Vtn - S i Π {V + 1 } t n = 0(1)
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We now prove the lemma:

LEMMA 2. / /

(3.11) pS- ••
— ρn

α s t n Φ 0 ,

then Rn is a regular transform.

Clearly (3.9) holds, and we need only to show that (3.10) also holds.

If pn > 1, then p% < p%, v - 0, 1, , n - 1 if on the other hand pn < 1,

then p% < 1. Hence, in either case,

max pi = 0(1) ,
0<v<n as n

00

We have

sin vt sin (v + l) t
~ P

v v + 1
<

sin vt sin (v + l ) t

Σ
s i n

+ 1

+ l ) t

v + 1

the second term is O(t), and

sin (v + l) ts m

-f 1
= Γ° cos (v = 0{t2) ,

so that

ΣPV sin vt sm

+ 1
= 0

Thus (3.10) is satisfied and Lemma 2 holds.

Note that the condition p% = 0(1) is equivalent to n(pn ~ 1) < c, a positive

constant (see [5>p. 73]); furthermore, if ntn = 0(1), then clearly the secondcon-

dition of (3.11) holds.

Next let k — 1 we shall prove the theorem:
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THEOREM 2. //(3.11) holds, and if

(3-12) PX s i n ntn=O(tn),

then Bn includes (C91).

The conditions (3.6)—(3.8) now become :

p5 sin ntn =O(tn) ,

pZ sin (n - 1) tn =O(tn) ,

CO

and

(3.13)
n-2

Σ
v-l

sin vu

v
= o{tn), as n • • o o

Clearly, we need only to show that (3.13) is satisfied. Now

sin vt
Δ2 pι = Δ 2 / f* cos vx dx = RΔ2 f* pveivx dx

= Hfo

tpveivx(l-2peix +p2e2ix) dx

= Kft pveivx(l-peix)2 dx

Hence

sin vt

v
<PV Γ \ 1 - P e ί x \ 2 d x < p v t { ( l - p ) 2 + p t 2 } ;

it follows from (3.11) that

Σ
sin vtn >] Σ

This proves (3.13) and Theorem 2.

4. Comparison of Bn and (C, k), k > 2. We wish to prove the following theo-

rem :
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THEOREM 3. Suppose that (3.11) holds and that

(4 D n*"VS sin n t B = O ( t B ) ,

(4.2) nk~ιρ$ cos ntn =0(1) ,

then Bn includes (C,k) summabilίty.

pn
t Λ Φ 0 ,

Now (3.6) holds because of (4.1), and then (3.7) follows from (4.2). It remains

to prove (3.8). We have

hence

(4.3)

sin

V J*

•pv
sin vt

<pvfo

t | i -/

-peίx)k+1 dx;

It follows that

(4.4)
v = l

sin vtn

Pn
vtn

Λ+i]

= 0 (l-Pn)k+1 Σ ^ +0 K

Here the first term is 0(1) by Lemma 2 of [ό] finally

-0(1)
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This proves Theorem 3.

An interesting special case is tn = 7τ/n; the conditions now reduce to the

single condition

If, in particular, nkp% — 0(1) for all k9 then Bn includes all (C, k).

Observe that by Lemma 1 of [6] the condition n p% — 0(1) is equivalent to

lim sup \n(pn - l ) + fe log n] < +«> .

Note also that (4.1) and (4.2) imply:

n*-VS = 0(1) .

5 Truncated Riemann summability The series Σ v=0 uv is called (R9k)

summable to s if the series

(5.1)
CO / . Λk

^ / s i n nt\ , N

+ Σ I — I "IE =Rk(t)
n = l nt

converges in some interval 0 < t < t0, and if

Rk(t)—>s, as t •0.

For A; = 1 it is sometimes called Lebesgue summability. The method (/?, k) is

regular for k > 2 and, in fact, it is more powerful than (C9 k — 2) for k = 2, it

was employed by Riemann in the theory of trigonometric series. We generate from

it by truncation the triangular series to sequence transform {u0 — 0):

sin vtn

n - l

= Σ
sin vtn sin ntr.

ntr

k is a positive integer. We assume k > 2; it is then easy to show that Dn is a

regular transformation.

From Lemma 1 we find for (C9 k) to be included in Dn the conditions:

(5.2)

(5.3)

t;* (sin ίΓ^TtJ* =0(1), for v = 0,1, * , k

n-k-l
sin vtn = 0(1), * oo
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It follows from (5.2) (see Section 2) that we must have

(5.4) ntn - pπ + 0Ln , n an = θ(l) , p a positive integer

now (5.2) reduces to

tn sin (θLn~vtn) = θ(l) , V = 0, 1, , k ,

and this is satisfied in view of (5.4).

To show that now (5.3) also holds, we employ a lemma, due to Obreschkoff

[2,p. 443]:

LEMMA 3. We have

sin vt

vt
<M

v

where M is independent of t and V.

It now follows that

Σ ^
sin vtn) = O(ntn) =0(1), > 0 0

This yields the following theorem:

THEOREM 4. If ntn — pu + ctn, p a positive integer^ n<Xn — 0(1), then the

transform

JL lsinvtn\
k _.Λ

includes {C9k) summability (k a positive integer).

6. A converse theorem* We shall establish the following result.

THEOREM 5. //

k
(6.1) lim inf

sin ntn = λ > 1/2 ,

then the transform Dn is equivalent to qonvergence.
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It follows from (6.1) that lim sup ntn < 2i/k hence (see Sections 1 and 5) the

transform Dn is regular. We now wish to show that Dn —> 5 implies sn —» s;

we follow a device used by R. Rado [3] •

Assume first that s = 0, and that sn — 0(1); then

0 < lim sup \sn I = δ < °o f
π-»oo

and we shall show that S = 0. To a given e > 0 choose n — n(β) so that js v | <

8 + € for v > n. Next choose m > n and such that \sm\ > δ — £. We have

sin mt.

where

Jfίtn

sin vtn
in iy + 1) Vfsin

+ 1) t

hence, as mt < 77, we have

s in

/nt-

m - 1

Σ

<o(l) + (δ -h e) fsm ntn
f s in mtn

nit.

It follows that

δ - β < Is, I < o ( l ) + (δ + e ) {1/λ- 1 + o ( l ) } .

But l /λ < 2, and € is arbitrarily small; hence δ = 0.

We next assume s = 0 and lim sup \sn\ — °° choose € > 0 and ω large.

Denote by m = m(α ) the least m for which | sm \ > ω; then

ω< \sm\ < o ( l ) +

But this is impossible for λ > l/2, small e, and large m.This proves our theorem

for s = 0. Finally, applying this result to the sequence \sn ~~ s |and its transform

completes the proof of Theorem 5.

7. Application to Fourier series* Suppose that f(x) is a Lebesgue integrable
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function of period 277, and let

GO

(7.1) f(x) ~ αo/2 + Σ (αn c o s n x "*" bn s i n nx) = Σ u n (*) ί

we may assume here α0 = 0. Now (cf. [7,p. 27])

00 ^

F(X) — f f(t) dt = C + ^ (aa sin nx ~~ 6 a cos ΠΛ) — ,
0 γi

where

00 -,

c = ? „ n

It is known [7, p. 55] that at every point x where F'(x) exists and is finite, the

series (6.1) is summable (C?r), r > 1, to the value F'(x).

It now follows from Theorem 3 for k — 2 and tn — τr/n that if np\ ~ 0(1), then

" v sin vπ/n t

Furthermore, Theorem 4 yields, for k — 2, that if

ntn = prr + α n , nα n = θ(l) ,

then

n /sin vίn\
2

uv \x) i i ' r V ̂ /

An analogous theorem holds for higher derivatives (cf. [7, p. 257] ).



304 OTTO SZA'SZ

REFERENCES

1. St. Mazur, Uber lineare Limitierungsverfahren, Math. Z. 28 (1928), 599-611.

2. N. Obreschkoff, Uber das Riemannsche Summierungsverfahren, Math. Z. 48 (1942-
43), 441-454.

3. R. Rado', Some elementary Tauberian theorems (I), Quart. J. Math., Oxford Ser. 9
(1938), 274-282.

4. W. Rogosinski, Abschnittsverhalten bei trigonometrischen und Fourierschen Reihen,
Math. Z. 41 (1936), 75-136.

5. Otto Szasz, Some new summability methods with applications, Ann. of Math. 43
(1942), 69-83.

6. , On some summability methods with triangular matrix, Ann. of Math. 46
(1945), 567-577.

7. A. Zygmund, Trigonometrical series, Monografje Matematyczne, Warszawa-Lwow,
1935.

NATIONAL BUREAU OF STANDARDS, LOS ANGELES




