ON SOME TRIGONOMETRIC TRANSFORMS

Otto SZÁSz

1. Introduction. To a given series $\sum_{n=1}^{\infty} u_{n}$ we consider the transform

$$
\begin{equation*}
A_{n}=\sum_{\nu=1}^{n} u_{\nu} \frac{\sin \nu t_{n}}{\nu t_{n}}, \quad \text { where } t_{n} \downarrow 0 \text { as } n \longrightarrow \infty \tag{1.1}
\end{equation*}
$$

It was shown in a previous paper [5 , Section 4, Theorem 3] that the transform (l.1) is regular if and only if

$$
\begin{equation*}
n t_{n}=O(1), \quad \text { as } n \longrightarrow \infty \tag{1.2}
\end{equation*}
$$

We shall now consider the transform (1.1) in relation to Cesàro means. In a forthcoming paper Cornelius Lanczos has found independently that the transform (1.1) is very useful in summing Fourier series and derived series, and gave some very interesting examples; he takes $t_{n}=\pi / n$. Of our results we quote here the following theorem:

Theorem l. In order that the transform (1.1) includes ($C, 1$) summability, it is necessary and sufficient that

$$
\begin{equation*}
n t_{n}=p \pi+\alpha_{n}, \quad n \alpha_{n}=O(1), \quad p \text { a positive integer. } \tag{1.3}
\end{equation*}
$$

We also discuss other triangular transforms which may be generated by "truncation" of well-known summation processes, such as Riemann summability. The transform A_{n} and the transform D_{n} (Section 5) are special cases of the general transform

$$
\gamma_{n}=\sum_{\nu=0}^{n} u_{\nu} \phi\left(\nu P_{n}\right)
$$

Received March 8, 1950. Presented to the American Mathematical Society December 30, 1948. The preparation of this paper was sponsored (in part) by the Office of Naval Research. Pacific J. Math. 1 (1951), 291-304.
where $\phi(P)$ is a function of the n-dimensional point $P\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, and $P_{n} \rightarrow 0$. This transform and many special cases of it were discussed by W. Rogosinski [4]; in particular, the special case $\alpha_{n}=0$ of our Theorem 4 is included in his result on page 96. The general approach is essentially the same as in the present paper.
2. Proof of Theorem 1. If we write

$$
\begin{aligned}
\sum_{\nu=1}^{n} u_{\nu}=s_{n}, \quad & \sum_{\nu=1}^{n} s_{\nu}=s_{n}^{\prime}, \quad \frac{\sin \nu t_{n}}{\nu t_{n}}-\frac{\sin (\nu+1) t_{n}}{(\nu+1) t_{n}}=\Delta_{\nu} \\
& \frac{\sin \nu t_{n}}{\nu t_{n}}-\frac{2 \sin (\nu+1) t_{n}}{(\nu+1) t_{n}}+\frac{\sin (\nu+2) t_{n}}{(\nu+2) t_{n}}=\Delta_{\nu}^{2}
\end{aligned}
$$

then

$$
\begin{aligned}
A_{n} & =\sum_{\nu=1}^{n-1} s_{\nu} \Delta_{\nu}+s_{n} \frac{\sin n t_{n}}{n t_{n}} \\
& =\sum_{\nu=1}^{n-2} s_{\nu}^{\prime} \Delta_{\nu}^{2}+s_{n-1}^{\prime} \Delta_{n-1}+\left(s_{n}^{\prime}-s_{n-1}^{\prime}\right) \frac{\sin n t_{n}}{n t_{n}},
\end{aligned}
$$

or

$$
\begin{align*}
A_{n}=\sum_{\nu=1}^{n-2} s_{\nu}^{\prime} \Delta_{\nu}^{2}+s_{n-1}^{\prime}\left[\frac{\sin (n-1) t_{n}}{(n-1) t_{n}}\right. & \left.-\frac{2 \sin n t_{n}}{n t_{n}}\right] \tag{2.1}\\
& +s_{n}^{\prime} \frac{\sin n t_{n}}{n t_{n}}
\end{align*}
$$

Now (C. 1) summability of $\sum_{n=1}^{\infty} u_{n}$ to s means that

$$
\begin{equation*}
n^{-1} s_{n}^{\prime} \rightarrow s, \quad \text { as } n \rightarrow \infty \tag{2.2}
\end{equation*}
$$

If $s_{n} \equiv 1$, then $A_{n}=\sin t_{n} / t_{n} \rightarrow 1$.
In order that (2.2) imply $A_{n} \longrightarrow s$, it is necessary and sufficient [in view of (2.1)] that

$$
\begin{equation*}
\frac{\sin n t_{n}}{t_{n}}=O(1), \quad \frac{\sin (n-1) t_{n}}{t_{n}}=O(1) \tag{2.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{\nu=1}^{n-2} \nu\left|\Delta_{\nu}^{2}\right|=O(1) \tag{2.4}
\end{equation*}
$$

as $n \longrightarrow \infty$.

The first condition of (2.3) [in view of (1.2)] is equivalent to

$$
\sin n t_{n}=O\left(t_{n}\right)=O(1 / n) ;
$$

hence

$$
n t_{n}=p \pi+\alpha_{n}, \quad n \alpha_{n}=O(1)
$$

The second condition of (2.3) now reduces to

$$
\cos n t_{n} \sin t_{n}=O\left(t_{n}\right),
$$

or

$$
\cos \alpha_{n} \sin t_{n}=O\left(n^{-1}\right)
$$

which is satisfied. Finally

$$
\frac{\sin \nu t}{\nu}=\int_{0}^{t} \cos \nu x d x=R \int_{0}^{t} e^{i \nu x} d x
$$

hence

$$
\begin{equation*}
t_{n} \Delta_{\nu}^{2}=R \int_{0}^{t_{n}} \Delta^{2} e^{i \nu x} d x=R \int_{0}^{t_{n}} e^{i \nu x}\left(1-e^{i x}\right)^{2} d x, \tag{2.5}
\end{equation*}
$$

and

$$
\begin{align*}
t_{n}\left|\Delta_{\nu}^{2}\right|<\int_{0}^{t_{n}}\left|1-e^{i x}\right|^{2} d x= & 4 \int_{0}^{t_{n}}(\sin x / 2)^{2} d x \tag{2.6}\\
& <\int_{0}^{t_{n}} x^{2} d x<t_{n}^{3}
\end{align*}
$$

It follows that

$$
\sum_{\nu=1}^{n-2} \nu\left|\Delta_{\nu}^{2}\right|<t_{n}^{2} \sum_{\nu=1}^{n} \nu<n^{2} t_{n}^{2}=O(1), \quad \text { as } n \rightarrow \infty
$$

This proves Theorem 1.
We can show by an example that the transform A_{n} may be more powerful than ($C, 1$). In (1.3) let $p=1, n a_{n}=-\pi / 2$; the series $\sum_{\nu=1}^{\infty}(-1)^{n-1} n$ (that is, $u_{n}=(-1)^{n} n$) is not summable $(C, 1)$, but summable $(C, 2)$ to $1 / 4$. Now

$$
\begin{aligned}
t_{n} A_{n}=\sum_{\nu=1}^{n} & (-1)^{\nu-1} \sin \nu t_{n} \\
& =\frac{\sin t_{n}-(-1)^{n}\left[\sin n t_{n}+\sin (n+1) t_{n}\right]}{\left|1+e^{i t}\right|^{2}},
\end{aligned}
$$

where $n t_{n}=\pi-\pi / 2 n$. Hence, as $n \longrightarrow \infty$,

$$
A_{n} \sim 1 / 4+o(1)
$$

An even more striking example is $u_{n}=(-1)^{n-1} n^{2}$.
3. Summation by harmonic polynomials. We get a more powerful method if we introduce the harmonic polynomial

$$
\begin{equation*}
h_{n}(\rho, t)=\sum_{\nu=1}^{n} u_{\nu} \rho^{\nu} \frac{\sin \nu t}{\nu} \tag{3.1}
\end{equation*}
$$

and the corresponding transform

$$
\begin{equation*}
B_{n}=\sum_{\nu=1}^{n} u_{\nu} \rho_{n}^{\nu} \frac{\sin \nu t_{n}}{\nu t_{n}}, \quad \rho_{n} \longrightarrow 1, \quad t_{n} \downarrow 0 \tag{3.2}
\end{equation*}
$$

or

$$
B_{n}=t_{n}^{-1} h_{n}\left(\rho_{n}, t_{n}\right)
$$

Let

$$
s_{n}^{k}=\sum_{\nu=0}^{n} s_{\nu} \gamma_{n-\nu}^{k-1},
$$

where

$$
\gamma_{n}^{k}=\frac{(k+1) \cdots(k+n)}{n!} \sim \frac{n^{k}}{\Gamma(k+1)} ;
$$

we also write

$$
\Delta^{k} v_{\nu}=\sum_{r=1}^{k}(-1)^{r}\binom{k}{r} v_{\nu+r}
$$

and

$$
\sigma_{n}^{k}=\frac{s_{n}^{k}}{\gamma_{n}^{k}}
$$

Now (C, k) summability of the sequence $\left\{s_{n}\right\}$ to s is defined by

$$
\lim _{n \rightarrow \infty} \sigma_{n}^{k}=s
$$

We quote the following elementary theorem [cf. 6, Theorem 1], which is included in a more general result of Mazur [1, Theorem X]:

Lemma 1. Let k be a given positive integer, and let

$$
T_{n}=\sum_{\nu=n}^{n} a_{n, \nu} s_{\nu}, \quad n=0,1,2, \cdots
$$

In order that $\lim T_{n}$ exist, whenever the sequence $\left\{s_{n}\right\}$ is (C, k) summable to s, it is necessary and sufficient that:

$$
\begin{equation*}
\sum_{\nu=0}^{n} \gamma_{\nu}^{k}\left|\Delta^{k} a_{n, \nu}\right|=O(1), \quad a_{n, \nu}=0 \text { for } \nu>n \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \gamma_{\nu}^{k} \Delta a_{n, \nu}=\alpha_{\nu} \text { exists, } \quad \nu=0,1,2, \cdots ; \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{\nu=0}^{n} a_{n, \nu}=\beta \text { exists } \tag{3.5}
\end{equation*}
$$

We then have $\lim T_{n}=\beta_{s}+\sum_{\nu=0}^{\infty} \alpha_{\nu}\left(\sigma_{\nu}^{k}-s\right)$. Since then the transform T_{n}
is convergence preserving we must have (3.5) and:

$$
\lim _{n \rightarrow \infty} a_{n, \nu} \text { exists, } \quad \nu=0,1,2, \cdots ;
$$

hence (3.4) and (3.5) hold, so that the conditions of Lemma 1 reduce to (3.3). In the case of the transform B_{n}, we have

$$
\begin{aligned}
& a_{n, n}=\rho_{n}^{n} \frac{\sin n t_{n}}{n t_{n}}, \\
& a_{n, \nu}=\rho_{n}^{\nu} \frac{\sin \nu t_{n}}{\nu t_{n}}-\rho_{n}^{\nu+1} \frac{\sin (\nu+1) t_{n}}{(\nu+1) t_{n}}, \quad \nu=1,2, \cdots . n-1 ;
\end{aligned}
$$

hence

$$
a_{n, \nu} \longrightarrow 0
$$

as $n \longrightarrow \infty$.
To satisfy (3.3) we must have

$$
\begin{gather*}
n^{k} \rho_{n}^{n} \frac{\sin n t_{n}}{n t_{n}^{n}}=O(1) \tag{3.6}\\
n^{k} \rho_{n}^{n-1} \frac{\sin (n-1) t_{n}}{(n-1) t_{n}}=O(1) \tag{3.7}\\
\cdots \cdot \\
n^{k} \rho_{n}^{n-k} \frac{\sin (n-k) t_{n}}{(n-k) t_{n}}=O(1)
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{\nu=1}^{n-k-1} \nu^{k}\left|\Delta^{k+1} \rho_{n}^{\nu} \frac{\sin \nu t_{n}}{\nu t_{n}}\right|=O(1) . \tag{3.8}
\end{equation*}
$$

Assume first that $k=0$; then our conditions become:

$$
\begin{equation*}
\rho_{n}^{n} \frac{\sin n t_{n}}{n t_{n}}=O(1), \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\nu=1}^{n-1} \rho_{n}^{\nu}\left|\frac{\sin \nu t_{n}}{\nu t_{n}}-\rho_{n} \frac{\sin (\nu+1) t_{n}}{(\nu+1) t_{n}}\right|=O(1) \tag{3.10}
\end{equation*}
$$

We now prove the lemma:
Lemma 2. If

$$
\begin{equation*}
\rho_{n}^{n}=O(1), \quad \frac{1-\rho_{n}^{n}}{1-\rho_{n}} t_{n}=O(1), \quad \text { as } t_{n} \downarrow 0, \quad \rho_{n} \longrightarrow 1 \tag{3.11}
\end{equation*}
$$

then B_{n} is a regular transform.
Clearly (3.9) holds, and we need only to show that (3.10) also holds.
If $\rho_{n}>1$, then $\rho_{n}^{\nu}<\rho_{n}^{n}, \nu=0,1, \cdots, n-1$; if on the other hand $\rho_{n} \leq 1$, then $\rho_{n}^{\nu} \leq 1$. Hence, in either case,

$$
\max _{0 \leq \nu \leq n} \rho_{n}^{\nu}=O(1), \quad \text { as } n \longrightarrow \infty
$$

We have

$$
\begin{aligned}
\sum_{\nu=1}^{n} \rho^{\nu}\left|\frac{\sin \nu t}{\nu}-\rho \frac{\sin (\nu+1) t}{\nu+1}\right| & \leq \sum_{\nu=1}^{n} \rho^{\nu}\left|\frac{\sin \nu t}{\nu}-\frac{\sin (\nu+1) t}{\nu+1}\right| \\
& +(1-\rho) \sum_{\nu=1}^{n}\left|\frac{\sin (\nu+1) t}{\nu+1}\right| \rho^{\nu} ;
\end{aligned}
$$

the second term is $O(t)$, and

$$
\frac{\sin \nu t}{\nu}-\frac{\sin (\nu+1) t}{\nu+1}=\int_{0}^{t}[\cos \nu x-\cos (\nu+1) x] d x=O\left(t^{2}\right)
$$

so that

$$
\sum_{\nu=1}^{n} \rho^{\nu}\left|\frac{\sin \nu t}{\nu}-\frac{\sin (\nu+1) t}{\nu+1}\right|=O\left(t^{2} \frac{1-\rho^{n}}{1-\rho}\right)
$$

Thus (3.10) is satisfied and Lemma 2 holds.
Note that the condition $\rho_{n}^{n}=O(1)$ is equivalent to $n\left(\rho_{n}-1\right)<c$, a positive constant (see $[5, \mathrm{p} .73]$); furthermore, if $n t_{n}=O(1)$, then clearly the second condition of (3.11) holds.

Next let $k=1$; we shall prove the theorem:

Theorem 2. If (3.11) holds, and if

$$
\begin{equation*}
\rho_{n}^{n} \sin n t_{n}=O\left(t_{n}\right), \quad n \longrightarrow \infty \tag{3.12}
\end{equation*}
$$

then B_{n} includes ($C, 1$).
The conditions (3.6)-(3.8) now become:

$$
\begin{aligned}
\rho_{n}^{n} \sin n t_{n} & =O\left(t_{n}\right), \\
\rho_{n}^{n} \sin (n-1) t_{n} & =O\left(t_{n}\right),
\end{aligned}
$$

and

$$
\begin{equation*}
\sum_{\nu=1}^{n-2} \nu\left|\Delta^{2} \rho_{n}^{\nu} \frac{\sin \nu t_{n}}{\nu}\right|=O\left(t_{n}\right), \quad \text { as } n \rightarrow \infty \tag{3.13}
\end{equation*}
$$

Clearly, we need only to show that (3.13) is satisfied. Now

$$
\begin{aligned}
& \Delta^{2} \rho^{\nu} \frac{\sin \nu t}{\nu}=\Delta^{2} \rho^{\nu} \int_{0}^{t} \cos \nu x d x=R \Delta^{2} \int_{0}^{t} \rho^{\nu} e^{i \nu x} d x \\
&=R \int_{0}^{t} \rho^{\nu} e^{i \nu x}\left(1-2 \rho e^{i x}+\rho^{2} e^{2 i x}\right) d x \\
&=R \int_{0}^{t} \rho^{\nu} e^{i \nu x}\left(1-\rho e^{i x}\right)^{2} d x
\end{aligned}
$$

Hence

$$
\left|\Delta^{2} \rho^{\nu} \frac{\sin \nu t}{\nu}\right|<\rho^{\nu} \int_{0}^{t}\left|1-\rho e^{i x}\right|^{2} d x<\rho^{\nu} t\left\{(1-\rho)^{2}+\rho t^{2}\right\} ;
$$

it follows from (3.11) that

$$
\sum_{\nu=1}^{n} \nu\left|\Delta^{2} \rho_{n}^{\nu} \frac{\sin \nu t_{n}}{\nu t_{n}}\right|<\left\{\left(1-\rho_{n}\right)^{2}+\rho_{n} t_{n}^{2}\right\} \sum_{\nu=1}^{n} \nu \rho_{n}^{\nu}=O(1)
$$

This proves (3.13) and Theorem 2.
4. Comparison of B_{n} and $(C, k), k \geq 2$. We wish to prove the following theorem :

Theorem 3. Suppose that (3.11) holds and that

$$
\begin{align*}
& \quad n^{k-1} \rho_{n}^{n} \sin n t_{n}=O\left(t_{n}\right), \tag{4.1}\\
& n^{k-1} \rho_{n}^{n} \cos n t_{n}=O(1), \tag{4.2}
\end{align*} \quad \rho_{n} \rightarrow 1, \quad t_{n} \downarrow 0,
$$

then B_{n} includes (C, k) summability.
Now (3.6) holds because of (4.1), and then (3.7) follows from (4.2). It remains to prove (3.8). We have

$$
\begin{aligned}
\Delta^{k+1} \rho^{\nu} \frac{\sin \nu t}{\nu}=\Delta^{k+1} \rho^{\nu} \int_{0}^{t} \cos \nu x d x & =\Delta^{k+1} R \int_{0}^{t} \rho^{\nu} e^{i \nu x} d x \\
& =R \int_{0}^{t} \rho^{\nu} e^{i \nu x}\left(1-\rho e^{i x}\right)^{k+1} d x ;
\end{aligned}
$$

hence

$$
\begin{align*}
&\left|\Delta^{k+1} \rho^{\nu} \frac{\sin \nu t}{\nu}\right|<\rho^{\nu} \int_{0}^{t}\left|1-\rho e^{i x}\right|^{k+1} d x \tag{4.3}\\
&<\rho^{\nu} \int_{0}^{t}\left\{(1-\rho)^{2}+\rho t^{2}\right\}^{(k+1) / 2} d x \\
&=O\left(\rho^{\nu} t\left\{(1-\rho)^{k+1}+t^{k+1}\right\}\right)
\end{align*}
$$

It follows that

$$
\begin{array}{r}
\sum_{\nu=1}^{n} \nu^{k}\left|\Delta^{k+1} \rho_{n}^{\nu} \frac{\sin \nu t_{n}}{\nu t_{n}}\right|=O\left(\sum_{\nu=1}^{n} \nu^{k} \rho_{n}^{\nu}\left\{\left(1-\rho_{n}\right)^{k+1}+t_{n}^{k+1}\right\}\right) \tag{4.4}\\
\\
=O\left(\left(1-\rho_{n}\right)^{k+1} \sum_{\nu=1}^{n} \nu^{k} \rho_{n}^{\nu}\right)+O\left(t_{n}^{k+1} \sum_{\nu=1}^{n} \nu^{k} \rho_{n}^{\nu}\right)
\end{array}
$$

Here the first term is $O(1)$ by Lemma 2 of [6]; finally

$$
t_{n}^{k+1} \sum_{\nu=1}^{n} \nu^{k} \rho_{n}^{\nu}=O\left(t_{n} \sum_{\nu=1}^{n} \rho_{n}^{\nu}\right)^{k+1}=O(1) .
$$

This proves Theorem 3.
An interesting special case is $t_{n}=\pi / n$; the conditions now reduce to the single condition

$$
n^{k-1} \rho_{n}^{n}=O(1)
$$

If, in particular, $n^{k} \rho_{n}^{n}=O(1)$ for all k, then B_{n} includes all (C, k).
Observe that by Lemma 1 of [6] the condition $n^{k} \rho_{n}^{n}=O(1)$ is equivalent to

$$
\lim \sup \left\{n\left(\rho_{n}-1\right)+k \log n\right\}<+\infty .
$$

Note also that (4.1) and (4.2) imply :

$$
n^{k-1} \rho_{n}^{n}=O(1)
$$

5. Truncated Riemann summability. The series $\sum_{\nu=0}^{\infty} u_{\nu}$ is called (R, k) summable to s if the series

$$
\begin{equation*}
u_{0}+\sum_{n=1}^{\infty}\left(\frac{\sin n t}{n t}\right)^{k} u_{n}=R_{k}(t) \tag{5.1}
\end{equation*}
$$

converges in some interval $0<t<t_{0}$, and if ${ }^{a}$

$$
R_{k}(t) \longrightarrow s, \quad \text { as } t \longrightarrow 0
$$

For $k=1$ it is sometimes called Lebesgue summability. The method (R, k) is regular for $k \geq 2$ and, in fact, it is more powerful than ($C, k-2$); for $k=2$, it was employed by Riemann in the theory of trigonometric series. We generate from it by truncation the triangular series to sequence transform ($u_{0}=0$):

$$
D_{n}=\sum_{\nu=1}^{n} u_{\nu}\left(\frac{\sin \nu t_{n}}{\nu t_{n}}\right)^{k}=\sum_{\nu=1}^{n-1} s_{\nu} \Delta\left(\frac{\sin \nu t_{n}}{\nu t_{n}}\right)^{k}+s_{n}\left(\frac{\sin n t_{n}}{n t_{n}}\right)^{k}
$$

k is a positive integer. We assume $k \geq 2$; it is then easy to show that D_{n} is a regular transformation.

From Lemmal we find for (C, k) to be included in D_{n} the conditions:

$$
\begin{align*}
& t_{n}^{-k}\left(\sin \overline{n-\nu} t_{n}\right)^{k}=O(1), \quad \text { for } \nu=0,1, \cdots, k \tag{5.2}\\
& \sum_{\nu=1}^{n-k-1} \nu^{k}\left|\Delta^{k+1}\left(\frac{\sin \nu t_{n}}{\nu t_{n}}\right)^{k}\right|=O(1), \quad n \rightarrow \infty . \tag{5.3}
\end{align*}
$$

It follows from (5.2) (see Section 2) that we must have

$$
\begin{equation*}
n t_{n}=p \pi+\alpha_{n}, \quad n \alpha_{n}=O(1), \quad p \text { a positive integer } \tag{5.4}
\end{equation*}
$$

now (5.2) reduces to

$$
t_{n} \sin \left(\alpha_{n}-\nu t_{n}\right)=O(1), \quad \nu=0,1, \cdots, k
$$

and this is satisfied in view of (5.4).
To show that now (5.3) also holds, we employ a lemma, due to Obreschkoff [2,p. 443]:

Lemma 3. We have

$$
\left|\Delta^{m}\left(\frac{\sin \nu t}{\nu t}\right)^{k}\right| \leq M \frac{t^{m-k}}{\nu^{k}}
$$

where M is independent of t and ν.
It now follows that

$$
\sum_{\nu=1}^{n} \nu^{k}\left|\Delta^{k+1}\left(\frac{\sin \nu t_{n}}{\nu t_{n}}\right)^{k}\right|=O\left(n t_{n}\right)=O(1), \quad n \rightarrow \infty
$$

This yields the following theorem:
Theorem 4. If $n t_{n}=p \pi+\alpha_{n}, p$ a positive integer, $n \alpha_{n}=O(1)$, then the trans form

$$
\sum_{\nu=1}^{n} u_{\nu}\left(\frac{\sin \nu t_{n}}{\nu t_{n}}\right)^{k}=D_{n}
$$

includes (C, k) summability (k a positive integer).
6. A converse theorem. We shall establish the following result.

Theorem 5. If

$$
\begin{equation*}
\lim \inf \left|\frac{\sin n t_{n}}{n t_{n}}\right|^{k}=\lambda>1 / 2 \tag{6.1}
\end{equation*}
$$

then the transform D_{n} is equivalent to convergence.

It follows from (6.1) that lim sup $n t_{n}<2^{1 / k}$; hence (see Sections 1 and 5) the transform D_{n} is regular. We now wish to show that $D_{n} \longrightarrow s$ implies $s_{n} \longrightarrow s$; we follow a device used by R. Rado [3].

Assume first that $s=0$, and that $s_{n}=0(1)$; then

$$
0 \leq \lim _{n \rightarrow \infty}\left|s_{n}\right|=\delta<\infty
$$

and we shall show that $\delta=0$. To a given $\epsilon>0$ choose $n=n(\epsilon)$ so that $\left|s_{\nu}\right|<$ $\delta+\epsilon$ for $\nu \geq n$. Next choose $m>n$ and such that $\left|s_{m}\right|>\delta-\epsilon$. We have

$$
s_{m}\left(\frac{\sin m t_{m}}{m t_{m}}\right)^{k}=D_{m}-\sum_{\nu=1}^{m-1} s_{\nu} \Delta_{\nu}
$$

where

$$
\Delta_{\nu}=\left(\frac{\sin \nu t_{m}}{\nu t_{m}}\right)^{k}-\left(\frac{\sin (\nu+1) t_{m}}{(\nu+1) t_{m}}\right)^{k}
$$

hence, as $m t_{m}<\pi$, we have

$$
\begin{aligned}
\left|s_{m}\right|\left|\frac{\sin m t_{m}}{m t_{m}}\right|^{k} & <\left|D_{m}\right|+\left|\sum_{\nu=1}^{n-1} s_{\nu} \Delta_{\nu}\right|+\left|\sum_{\nu=n}^{m-1} s_{\nu} \Delta_{\nu}\right| \\
& <o(1)+(\delta+\epsilon)\left\{\left(\frac{\sin n t_{m}}{n t_{m}}\right)^{k}-\left(\frac{\sin m t_{m}}{m t_{m}}\right)^{k}\right\} .
\end{aligned}
$$

It follows that

$$
\delta-\epsilon<\left|s_{m}\right|<o(1)+(\delta+\epsilon)\{1 / \lambda-1+o(1)\} .
$$

But $1 / \lambda<2$, and ϵ is arbitrarily small; hence $\delta=0$.
We next assume $s=0$ and $\lim \sup \left|s_{n}\right|=\infty$; choose $\epsilon>0$ and ω large. Denote by $m=m(\omega)$ the least m for which $\left|s_{m}\right|>\omega$; then

$$
\omega<\left|s_{m}\right|<o(1)+\omega\{1 / \lambda-1+o(1)\} .
$$

But this is impossible for $\lambda>1 / 2$, small ϵ, and large m. This proves our theorem for $s=0$. Finally, applying this result to the sequence $\left\{s_{n}-s\right\}$ and its transform completes the proof of Theorem 5.
7. Application to Fourier series. Suppose that $f(x)$ is a Lebesgue integrable
function of period 2π, and let

$$
\begin{equation*}
f(x) \sim a_{0} / 2+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum u_{n}(x) \tag{7.1}
\end{equation*}
$$

we may assume here $a_{0}=0$. Now (cf. [7, p. 27])

$$
F(x)=\int_{0}^{x} f(t) d t=C+\sum_{n=1}^{\infty}\left(a_{n} \sin n x-b_{n} \cos n x\right) \frac{1}{n},
$$

where

$$
C=\sum_{n=1}^{\infty} \frac{1}{n} b_{n}
$$

It is known [7, p. 55] that at every point x where $F^{\prime}(x)$ exists and is finite, the series (6.1) is summable $(C, r), r>1$, to the value $F^{\prime}(x)$.

It now follows from Theorem 3 for $k=2$ and $t_{n}=\pi / n$ that if $n \rho_{n}^{n}=O(1)$, then

$$
\sum_{\nu=1}^{n} u_{\nu}(x) \rho_{n}^{\nu} \frac{\sin \nu \pi / n}{\nu \pi / n} \rightarrow F^{\prime}(x)
$$

Furthermore, Theorem 4 yields, for $k=2$, that if

$$
n t_{n}=p \pi+\alpha_{n}, \quad n \alpha_{n}=O(1)
$$

then

$$
\sum_{\nu=1}^{n} u_{\nu}(x)\left(\frac{\sin \nu t_{n}}{\nu t_{n}}\right)^{2} \rightarrow F^{\prime}(x)
$$

An analogous theorem holds for higher derivatives (cf. [7, p. 257]).

References

1. St. Mazur, Über lineare Limitierungsverfahren, Math. Z. 28 (1928), 599-611.
2. N. Obreschkoff, Über das Riemannsche Summierungsverfahren, Math. Z. 48 (194243), 441-454.
3. R. Radó, Some elementary Tauberian theorems (I), Quart. J. Math., Oxford Ser. 9 (1938), 274-282.
4. W. Rogosinski, Abschnittsverhalten bei trigonometrischen und Fourierschen Reihen, Math. Z. 41 (1936), 75-136.
5. Otto Szász, Some new summability methods with applications, Ann. of Math. 43 (1942), 69-83.
6. \qquad , On some summability methods with triangular matrix, Ann. of Math. 46 (1945), 567-577.
7. A. Zygmund, Trigonometrical series, Monografje Matematyczne, Warszawa-Lwow, 1935.

National Bureau of Standards, Los Angeles

