
AN EXTENSION OF TIETZE S THEOREM

J. DUGUNDJI

1. Introduction. Let X be an arbitrary metric space, A a closed subset of X,

and En the Euclidean /z-space. Tietze's theorem asserts that any (continuous)

/ : A —> E1 can be extended to a (continuous) F : X —* E1* This theorem trivi-

ally implies that any / : A —> En and any / : A —> (Hubert cube) can be ex-

tended; we merely decompose f into its coordinate mappings and observe that, in

these cases, the continuity of each of the coordinate mappings is equivalent to

that of the resultant map.

Where this equivalence is not true, for example mapping into the Hubert space,

the theorem has been neglected. We are going to prove that, in fact, Tietze's theo-

rem is valid for continuous mappings of A into any locally convex linear space

(4.1), (4.3). Two proofs of this result will be given; the second proof (4.3), al-

though essentially the same as the first, is more direct; but it hides the geometri-

cal motivation.

There are several immediate consequences of the above result. First we obtain

a theorem on the simultaneous extension of continuous real-valued functions on a

closed subset of a metric space (5.1). Secondly, we characterize completely those

normed linear (not necessarily complete) spaces in which the Brouwer fixed-point

theorem is true for their unit spheres (6.3). Finally, we can generalize the whole

theory of locally connected spaces to arbitrary metric spaces. By way of illus-

tration, we prove a theorem about absolute neighborhood retracts that is apparently

new even in the separable metric case (7.5).

The idea of the proof of the main theorem is simple. Given A and X, we show

how to replace X — A by an infinite polytope; we extend / continuously first on

the vertices of the polytope, and then over the entire polytope by linearity. For

this we need several preliminary remarks on coverings and on polytopes.

2. On coverings and polytopes. If X is any space, a covering of X by an arbi-

trary collection { JJ ] of open sets is called a locally finite covering if, given any
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x £ Xi there ex i s t s a nbd of x meeting only a finite number of the s e t s of {ll}. If

1^5* \V\ a r e a n y t w o coverings of X by open s e t s , \ V} is a refinement of {U} if

for each F G \V\ there is a (J £ {ί/} containing it. A. H. Stone has proved

[ l 2 ] that every covering of an arbitrary metric space has a locally finite refine-

ment.

2.1 LEMMA. Let X be an arbitrary metric space, and A a closed subset of X;

then there exists a covering \U 5 of X ~~ A such that:

2.11 the covering \U] is locally finite;

2.12 any n b d of a £ (A — interior A) contains infinitely many sets of {u};

2.13 given any nbd W of a £ A, there exists a nbd W', a £ W C W, such

that U Π W' ψ 0 implies U C W.

Proof, Around each point x £ (λ ~~ A), draw a nbd Sx such that diameter

Sx < (l/2)o? (Λ;, A), where d is the metric in Z. This is a covering of Z — A, since

Z — ̂ 4 is open. By A. H. Stone's theorem, we can construct a locally finite refine-

ment \U\. It is then evident that \u] satisfies 2.11-2.13.

A covering of X — A satisfying the conditions 2.11—2.13 will be called a

canonical covering of X — A

2.2 A polytope P is a point set composed of an arbitrary collection of closed

Euclidean cells (higher dimensional analogs of a tetrahedron) satisfying (a) every

face of a cell of the collection is itself a cell of the collection, and (b) the inter-

section of any two closed cells of P is a face of both of them. A CW polytope is a

polytope with the CW topology of Whitehead [l4] : a subset U of P is open if and

only if the intersection U Π ex of U with every closed cell σ is open in the Eu-

clidean topology of σ. It is easy to verify:

2.21 a CW polytope is a Hausdorff space;

2.22 in a CW polytope, the star of any cell σ {the collection of all open cells

having σ as a face) is an open set;

2.23 if Y is an arbitrary space, then f: P —> Y is continuous if and only if

f is continuous on each cell.

2.3 As a final preliminary, we need the "nerve" of a covering. Let A be a

space, and { U ] a covering of X by open sets. Consider an abstract nontopologized
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real linear vector space R spanned by linearly independent vectors Jpfy 5 is a

fixed one-to-one correspondence with the collection {ϋ}', the elements of R will

be called points. The n + 1 points p^ , , pun determine an rc-cell in the usual

way if and only if the corresponding sets satisfy fj\ Π * Π Un ψ 0. The poly-

tope determined in this way, with the CW topology, will be called the nerve of the

covering \U}9 and denoted by N(U).

2.31 T H E O R E M . // [U] is a locally finite covering of a metric space X, and

N(U) the nerve of \U}, then there exists a continuous K: X —» Λ(f/) such that

K ~ι ( s t a r pv) C V for every U £ {ϋ}.

Proof. (Cf. ϋowker [4] , where N(U) is taken as a metric polytope.) Define for

each V £ \U],

k(j(x) = - ^ -— (x £ X, d the metric in X) .

U

It is first necessary to investigate the nature of these functions. First we notice

that Σy d(x,X — U) is always a finite sum, since d(x, X — U) T 0 if and only if

x £ U, and since the covering being locally finite means x lies in a finite number

of ί/'s. Further, since { V 5 is a covering, we have Σyd(x,X ~~~ U) ψ 0 for every

x £ X, and so kv(x) is well-defined for each x £ X. Now each ky(x) is con-

tinuous; in fact, for any x £ X there is a nbd meeting only a finite number of the

sets of {Li}; in this nbd, ky(x) is explicitly determined in terms of a finite num-

ber of continuous functions, so λ^ is continuous at each x £ λ7. Finally, it is

evident that Σykyix) ~ 1 for each x £ X and that only a finite number are not

zero in some nbd of any point x £ Λ\

The mapping K : X —> N(U) is defined by setting

κ(χ) = Σ M*)Pί,.
u

Now krj (x) Φ 0 if and only if % £ U hence if % £ V ± Π # Π Vn and %£only

these sets, then because Σyky (x) — 1 for every x, K(x) is the point in the in-

terior of the cell spanned by ( p ^ , * * ' iPun)
 w ^ t n barycentric coordinates [ky.ix)]*

It follows readily that K~l(star p y) C U for every U . Finally, K is continuous:

for, given x £ /Y, let Λ; £ Uγ Π Π Un and Λ; £ only these sets; then K(x) is
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in the interior of σ — (pt/^ ,pu ) . Let V be any open set containing K{x)

then V Π σ is open in the Euclidean topology of σ, and so the continuity of each

λ v shows the existence of an open W Z> x with K(W) C V fi σ C F. This

proves the assertion. (See also 7.4 in this connection.)

3 The replacement by polytopes. After the above preliminaries, we are ready

to perform the "replacement" mentioned in the introduction.

3.1 THEOREM. Let X be a metric space and Aa closed subset ofX; then there

exists a space Y {not necessarily metrizable) and a continuous μ: X —> Y with

the properties :

3.11 μ\A is a homeomorphism and μ(A) is closed in Y

3.12 Y — μ(A) is an infinite polytope, and μ(X — A) C [Y — μ(A)~\;

3.13 each nbd of a £[μ(A)-interior μ{A)\ contains infinitely many cells of

Y -

Proof. Let {U} be a canonical covering of X — A, and N(U) the nerve of this

covering.The set Y consists of the set A and a set of points in a one-to-one corre-

spondence with the points of N(U); to avoid extreme symbolism we denote this set

Y by A U N(U) . The topology in A U N(U) is determined as follows:

a. N(U) is taken with the CW topology.

b. A subbasis for nbds of a G A in A U N(U) is determined by selecting a

nbd W of a in X and taking in A U N(U) the set of points W Π A together with the

star of every vertex of N(U) corresponding to a set of the covering { U] contained

in W. This nbd is denoted by W.

It is not hard to verify that A U N(U) with this topology is a Hausdorff space,

and that both A and N(U)9 as subspaces, preserve their original topologies. We

now define

(* G A) ,

[*€ (X-A)].

Because of 2.31 and the preceding remarks, the continuity of μ(x) will be proved
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as soon as we show it continuous at points of A Π (X ~ A). Let a £ A 0 X ~~ A,

and let iί be a subbasic nbd of μ{a) in A U N(U); this is determined by a nbd W of

a in X. Now (2.13) we can determine a nbd W' , a £W C IF, such that U Γ) W' ^

0 implies U C W, since \ V } is canonical, and clearly {(j\U C ίF' Π (X -A)}

is not vacuous. We now prove μ(W) C W In fact, if x £ W' Γ) (X ~~ A) let

* £ ί/i Π Π Vn and x £ only these; then K(x) is in the interior of the cell

spanned by py , * # ,Pun9
 a n (^ therefore K(x) is in the star of, say, p^.But since

UinWt Φ 0, we have b\ C ^ , and so K(x) € W. This shows

K[W Π(X ~ A)] = μ[W Π (X -A)] C R

Finally, since W C IF we have μ{W Γ\ A) C. W' (λ A d W, and so μ(W') C

ft7. This proves that μ is continuous. The properties 3.11—3.13 now follow at once.

4. Extension of Tietze's theorem. Let X, Y be arbitrary spaces, and A C X,

Let /: A —* 1 be continuous. A continuous F: X —> Y is called an extension

of / if F(a) = /(α) for every α C /I. We now prove:

4.1 THEOREM. Let X be an arbitrary metric space, A a closed subset of X,

L a locally convex linear space [ lθ,p.72j, and f: A —> L a continuous map.

Then there exists an extension F : X —* L of /; furthermore, F{X) d [convex

hull off(A)].

Proof. Let us form the space A U N(U) of Theorem 3.1. It is sufficient to

prove that every continuous /: A —> L extends to a continuous F : A U N{U) —*

L. In fact, to handle the general case we first define, on A C A \JN(U), the map

f(a) — f[_ μ~ι (o)] extending / to F we can write F(x) — F [ μ(x)~\ it is evident

that F is the desired extension of /.

Let then N(U)0 denote the collection of all vertices of NW) we first define

an extension of f to an fo' A U N(ίl)Q —> L as follows: in each set of \ U \ se-

lect a point xυ then choose anoy £ A such that d(xy9 ay) < 2d(xy, A) if

p ̂  is the vertex of NW) corresponding to U , set

fo(Pu) = /(at/)

/o(a) = / ( a ) (a £ A ) .

We now prove f0 continuous. It is clearly so on NW)> since the vertices of NW)

are an isolated set (the star of any one vertex excludes all the others). Thus

continuity of f0 need only be checked at A,
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Select any nbd F of /o(α) — f(a) since f is continuous on A, there is a § > 0

such that d(a,a') < 8 implies f(a') £ F. Let W be any nbd of a in X of radius

< 8/3. If U € {U} and U C W, then clearly d(xv, a) < S/3, and so d(aϋf a) <

d{aU9xu) + d(xϋ9a) < 2d(xv,A) + δ/3 < 2 δ/3 + δ/3 = 8. Thus all verti-

ces of N(U)0 in the nbd W satisfy fo(pv) = f(aυ) C F. Hence for all x £ W Π

[y4 U /V(ί/)0] we have fo(x) £L F and continuity is proved.

We now extend linearly over each cell of N(U) the mapping already given on

the vertices, and thus obtain an F mapping A U N(U) into L . This map we now

prove continuous; on the basis of 2.23 we need prove F continuous only at points

of A.

Let V be a convex nbd of f(a) = F(a). Since f0 is continuous at α, there is a

nbd W with f0 \W Π U U 7V(£/)0] ? C F. Construct now a nbd W' C W of α in Z

such that U Π IF' φ 0 implies f/ C IF. It follows that all vertices corresponding

to sets in the nbd W' have images lying in the convex set V. If py is any vertex

in the closure of the star of a vertex py' with U' C IF ; , we observe that U Π

W ' φ 0 and so p^ C W. Thus the vertices of any cell belonging to the closure

of the star of any vertex pu' are sent into the convex set V (Z L and therefore

the linear extensions over these cells have images lying in V; this shows

F(Ψ') C F. Since L is locally convex, this result implies that F is continuous.

It is evident, finally, from the construction, that F(X) C [convex hull of/C4)j,

and that F is an extension of /. The theorem is proved.

If Y is a space with the property that, given any metric space X and any closed

A C X, every continuous /: A —* Y extends to a continuous F: X * Y, we

call Y an absolute retract. Thus Theorem 4.1 asserts that any locally convex

linear space is an absolute retract. The conclusions of the theorem give a slight

extension.

4.2 COROLLARY. Let C be a convex set in a locally convex linear space L.

Then C is an absolute retract.

Proof. This is immediate from the construction of Theorem 4.1, since the ex-

tension has an image lying in the convex hull of f{A), and so in C.

Note that C is not required to be closed in L .

4.3 It is possible to give an elementary direct proof of Theorem 4.1 not ex-

plicitly involving the space A U Mi/), by merely explicitly exhibiting the resulting

extension that was constructed in 4.2. It has the advantage of exhibiting a certain



AN EXTENSION OF TIETZE'S THEOREM 359

kind of "linearity" in the constructed extension, which is sometimes more amena-

ble to applications. In fact, using the notations of Theorem 2.31 and Theorem 4.1,

we find it is simple to verify directly that

F(X) = Σ M*)/M [* c (x-A)],
υ

= /(*) (*CA)

is the extension of f which we have constructed. The proof of the continuity is es-

sentially a repetition of the last part of 4.1, and is as follows: By the consider-

ations of 2.31, the continuity of F need be proved only at points of A Select any

convex nbd F of F(a) = /(α); we are to find a nbd W" Z> a with F(W") C F.

Since /is continuous on A, there exists a δ > 0 such that d(a9a') < δ implies

f(a') £ F. Now let W be a nbd of a in X of radius < δ/3 since \ Jj}'is canonical,

we can find a nbd W' , a £ W' C W, such that whenever U Π W' ^ 0, then

U £ W. It follows that for any χυ £ W we have f/ C tF and so d(xU9 a) < δ/3;

this shows that d{aζj9a) < d(au9xy) + d(xu9a) < δ and therefore we conclude:

(*) Whenever Xu £ IF' , ί/ιeτι Ft^ί,) = /(α^) £ F.

Construct, finally, a nbd IF" such that a £ tF" C W and such that whenever

U Π ίί7" 7̂  0, then U C IF ; . We are going to show that F{W") C F.

In fact, if Λ £ W" Π (X - A), let % £ ί/t Π Π Un and % £ only these

sets; since Σu\y{x) = 1 for every # £ {X ~~ /I) and XJ/IΛ;) ψ 0 only if £/ = £/;,

i — 1, ,n, it follows that F(x) belongs to the (perhaps degenerate) cell in L

spanned by /(α^),* ,f(aτjn); and since UiΓϊW" ψ 0 for i = 1, ,rc, we see

from (*) that f(ay.) C F, Ϊ = 1, ,/ι. This means that the vertices of the cell

spanned by fidy.),* ,f{o>jj ) are all in the convex set V, so the linear extension

lies in V also, and therefore F(x) £ V. Since x is arbitrary, we see that

F[W" Π (X ~

But also, since we have diameter W" < δ , it follows that F(W" Π A) =

f(W" Π A) C F, and so FdF") C F, as stated. Since L is locally convex, this

proves F continuous at points of A , and, as remarked, continuous on X. (See also

Kuratowski [9] ).

We note that to prove Theorem 4.1 our method requires essentially three
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things: (l) the existence of a canonical covering of X -~ A9 (2) the possibility of

mapping X — A into the nerve of a canonical covering, and (3) the possibility

retracting the set J#£/5 into A; for (3) allows an extension over the vertices

of Mi/), and then with a linear extension over the cells the theorem follows at

once from (1) and (2). The metric enters in obtaining (1) and (3), while the para-

compactness comes into play only in establishing (2) (Dowker [4] Stone [12]).

It should be remarked that, after Theorem 4.1 was communicated to R. Arens, he

was able to demonstrate that the method used here applies in the case where X is

paracompact (but not metric), provided L is a Banach space. Arens' result coin-

cides with one by Dowker (oral communication).

5 Application to the simultaneous extension of continuous functions* The ex-

plicit form of the extension given in 4.3 immediately permits us to answer a

question of Borsuk [2J. Let Z be a metric space; denote by C{Z) the Banach space

of all bounded real-valued continuous functions on Z . We prove, as a first appli-

cation:

5.1 THEOREM. Let A be a closed subset of a metric space X then there

exists a linear operation φ which makes correspond to each f £ C(A) an ex-

tension φ(f) £ C(X).

Proof. With the notations of Theorem 4.1, having selected the points ay once

for all, define for every / C C(A),

Φ{f) = Σ λt/OO/M

u

Then φ(f) is clearly an extension of / for every / (see 4.3). We have evidently

φ(f + g ) =Φ(f) + Φ ( g ) ,

\\Φ(f)\\ = 11/11,
and so φis additive and continuous, hence a linear operation.

The restriction of Borsuk [2] that A be separable is thus not necessary. This

result extends, naturally, to Banach space valued functions.

6. Application to normed linear spaces. To give another application, we charac-

terize those normed linear spaces for which Brouwer's fixed-point theorem holds
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in their unit spheres.

6.1 LEMMA. Let L be a normed linear space, and C d L the set

Ul 11*11 = i i .

Let an be any n-cell, and β"crn its boundary. If C is not compact, then any

f:βσn —* C can be extended to an F : σ n —> C,

Proof, By a known theorem [l,p.502J it is enough to show that fiβσn) can

be contracted to a point over C, Now, since βcrn is compact and C is not, it

follows that fiβcrn) cannot cover all of C, so that there exists at least one

point x0 C [C — fiβσn)~\ , Select its antipode — x0 and define

Then φ is continuous in x and t, since the denominator cannot vanish for any x be-

cause — χ0 and f{χ) are never antipodal. Since φix , 0) = fix), φiβσn, 1) =

— x0 , and llφGt, ί) | | = 1 always, φ exhibits the desired contraction.

6.2 THEOREM. Let L be a normed linear space, and C = \x \ x \ — 1} . //

C is not compact, then C is an absolute retract.

Proof, With the notations of Theorem 4.1, let us take the space A U NiU) and

the mapping f: A —> C, By the construction of Theorem 4.1, we extend f to

F : A Ό NW) —> L and notice that F [A U N(U)] C C = \x \ \\x !| < 1} . Let

C = [x I || Λ; ί| < 1/21 then C - C is an open set and F'\C - C') is an

open set containing A* Let us consider the totality of all closed cells contained

in F"ιiC ~~ C ) ; this is a closed subpolytope Q of NiU), and because {U} is

canonical it is easily verified that no point of A can be a limit point of NiU) ~" Q',

furthermore, A U Q is a closed subset of A U NiU).

Let r(Z) = ^/IIHI > then taking rF iA U ̂ ) we observe that this is an ex-

tension of /: A —> C over the closed set A U Q, with values in C, We shall now

extend rF \ iA U Q) over NiU) ~" Q with values in C; this is the desired extension

of/.

Define

Φo(p) = rF{p) (p a vertex of N(u) - Q) ,

= rF(x) {x C A U Q) .
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Then φ0 is an extension of rF\(A U Q) over the vertices of N(U) ~ ^ with

values in C; the continuity is evident since we have rF(p) = F(p)for all vertices,

and since F is continuous.

We proceed by induction. Let φn be an extension of φ r ι _ 1 over all A U 0 U

[n-cells of N(U) ~~ Q]9 with values in C. We construct φn+\ as follows: for any

U + l ) - c e l l of NW) - Q, we have φn(βσn + ί) C C; applying Lemma 6.1, we

obtain an extension φn + γ'. cfn*1 —> C; extending over every rc+1-cell, with

values in C, we obtain φ^ + i Now, φn + ι is continuous, in virtue of 2.23 and be-

cause no point of A is a limit point of N(U) ~ Q . Defining

φ{x) = limφn(x)
n

for each x C A U N(U), we observe that φ is continuous; further, φ is an ex-

tension with values in C of rF \ (Λ U Q), and hence of / : A — * C. This proves

the assertion.

6.3 T H E O R E M . Let L be a normed linear space> and S — \x\\\xf\ < ]]. A

necessary and sufficient condition that every continuous f: S — > .S have a fixed

point is that S be compact.

Proof. US is compact, the result comes from Tychonoffs Theorem I_X 3 J If S

is not compact, it follows readily that C: [x | |x| | = 1} is not compact either.

Let F : S —> C be an extension of the identity map / : C —> C (6.2 Theorem).

Setting φ(x) — ~ F(x), we see that φhas no fixed point.

In particular (Banach, [2, p. 84] )this proves that the Brouwer fixed-point theorem

for the unit sphere of any infinite dimensional Banach space is not true. This is

a partial answer to a question of Kakutani [ό] who showed that in the Hubert

space a fixed-point free map of the unit sphere in itself can in fact be selected to

to be a homeomorphism.

6.4 COROLLARY. Let L be a normed linear space with noncompact

C: U | | | * | | = i | .

Then C is contractible on itself to a point.

Proof. Form the metric space C X /, / the unit interval, and map C X 0 by the

identity, C X 1 by a constant map. Since C is an absolute retract, the map on

C X 0 U C X 1 C C X / extends to a φ: C X / —-> C, and this φ gives the re-

quired deformation.
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7. Application to a generalization of the theory of locally connected spaces.

For our final application, we show that the entire theory of locally connected

spaces can be extended to arbitrary metric spaces. In this development, as in that

for the separable metric spaces (Fox [ 5 ] ) , the role of the ϊiilbert cube in the

classical theory is taken over by a whole class of ''universal" spaces. Kuratowski

[β]has shown that any metric space Z can be embedded in the Banach space C(Z)

of all bounded continuous real-valued functions on Z. Subsequently, Wojdyslawski

Ll5] has pointed out that, in the Kuratowski embedding of Z —> C(Z), Z is a

closed subset of its convex hull //(Z). The "universal" spaces in our develop-

ment are the convex sets in ίίanach spaces. We shall illustrate the technique by

proving a theorem (7.5) about '"factorization" of mappings into absolute nbd

retracts.

If A is a subset of Λ, A is called a retract of X if there exists a continuous

r: X —> A such that r{a) — a for each a £ A if A i s a llausdorff space, it

follows that a retract of X is closed in A. Now we prove the following result.

7.1 T H E O R E M . The following two properties of a metric space Y are equiva-

lent :

7.11 In every metric space Z Z) Y in which Y is closed, there is a nbd

V Z) } of which Y is a retract.

7.1 2 If X is any metric space, A a closed subset of Λ, and f: A —> };, there

exists a nbd lί Z> A and an extension F : IF —> Y of f.

Proof. We need only prove that 7.11 implies 7.12, the converse implication be-

ing trivial. Let Y be embedded in H(Y) as a closed subset. By Corollary 4.2, we

get an extension of / : A — > }' to F: X — * H(Y). Let V be a nbd of Y in I/{Y)

which retracts onto } , and r the retracting function. Then F" (V) — W is open in

A and contains A, and r F : \\ * Y is an extension of /.

Λ metric space Y with the properties 7.11, 7.12 is called an absolute nbd

retract, abbreviated ΛNR. They are thus characterized as nbd retracts of the set

//(}') in CAY).

7.2 L E M M A . Let Y be an ANR. Then given any covering \u] of Y, there

exists a refinement \W] with the property: If X is any metric space and f0>

fι'. A — > Y are such that fo(x), f \{x) lie in a common set of \W \ for each

x £ A , then fϋ is homotopic to fϊ9 and the homotopy φ{x9t), 0 < t < 1, can

be selected so that φ(x,I) C some U for each x £ A , where I denotes the
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unit interval.

Proof. We consider Y embedded in H(Y) C C(Y). Since Y is closed in H(Y),

and Y is an ANR, there is retraction r of a nbd V Z) Y in #(Y) onto Y. To simpli-

fy the terminology, we let a spherical nbd of y C H(Y) be the intersection of a

spherical nbd of y in C(Y) with H{y). For each y £ Y, select a spherical nbd

S(y) in H{y) such that S(y) C V and S(y) Π Y C some {/. Finally, for each y,

select a spherical nbd T{y) C S(y) in #(Y) such that r[T(y)] C % ) . The de-

sired covering is { T(y) Π Y\; it clearly refines {u}. If / 0 , f\ : L̂ —> Y and

fo(x)i f\M a r e * n a common Γ(y) Π Y for each Λ; , they can be joined by a line seg-

ment that lies in T(y) and therefore lies in V. Letting φ(x,t) be the point tfo(x) +

(1 ~~ t) fχ(x), we see that rφ(x9t), 0 < t < 1, gives the required homotopy.

It is not known whether this property implies that Y is an ANR. It does follow

readily, however, from 7.2, that an ANR is locally contractible. The theorem also

holds for LCn metric spaces, provided dim X < n; the property is in fact equiva-

lent to LCn It should be noted that Lemma 7.2 holds also if X is any CW poly-

tope, since then φ is still continuous (Whitehead [l4]).

Our second lemma requires the following definition (Lefschetz [ l l ] ) : Let Y be

a space, and {u} a covering of Y. Let P be a CW polytope, and Q a subpolytope

of P containing all the vertices of P. An / : Q —> Y is called a partial realization

of P relative to \v\ if, for every cell σ C P, we have f(Q Π σ) CI some {/.

7.3 LEMMA. Let Y be an ANR. Then given any covering \V\ of Y, there

exists a refinement \V\ with the property that any partial realization of any CW

polytope P relative to \V\ extends to a full realization of P relative to \Ό\.

The proof given by Lefschetz [ l l , 10.2,p. 89] can easily be applied to yield

this result, after a preliminary embedding of Y in H(Y). This property is in fact

equivalent to ANR; when we restrict P so that dim P < n + 1, this property

characterizes the LCn spaces.

The final lemma required is a covering lemma.

7.4 LEMMA. Let Y be a metric spacef and \U\ a covering of Y. There exists

a refinement \ V} of {u} with the property that whenever Πoc Va φ 0 ,then U α Va CI

some U. The covering \ V \ is called a barycentric refinement of \ U \ (cf. a lso

D o w k e r [ 4 ] ) .

Proof. L e t \U'} be a l o c a l l y f ini te r e f i n e m e n t of \u}9 a n d N(U') t h e n e r v e
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of {U'}9 K the barycentric mapping (2.31) K : Y —» NW') Let /V' be the bary-

centric subdivision of the polytope NW') and {p'] its vertices. We take stars in

N' (the CW topology of /V is a subdivision invariant); then the open sets V — K"1

(star p ') form the required covering.

We now prove the "factorization" theorem:

7.5 THEOREM. Let Y be an ΛNR; then there exists a polytope P and a

continuous g: P —> Y with the property that, if X is any metric space, and

f: X —> Y, there exists a μ: X —» P such that gμ is homotopiq to /.

Proof, Let us take the covering of Y by Y alone, and obtain a refinement \W\

satisfying Lemma 7.2. Let J F ' j be a refinement of \W \ satisfying Lemma 7.3

relative to {W}, and \V \ a locally finite refinement of a barycentric refinement

of { F $ . We now construct a mapping g: N(V) —* Y, as follows: if pv is the

vertex of N(V) corresponding to V £ [ F J , se lect yv £ V and set g(pv) = yv.

This is clearly a partial realization of N(V). If (pv , ,pv)isa cell of N(V),

then Vx Π Π Vn φ 0 so that U?=i Vi C: some V ' thus all vertices are sent

into a set of F ' . Hence (7.3), the mapping g extends to a g: N{V) —> Y. This

map g and polytope TV(Ϊ̂ ) are those required.

Now, for any metric space X and f: X —> Y, construct the covering \f"l(V)\

of X, and let |f/| be a barycentric nbd-finite refinement of \f'ι{V)\. We take

K:X —* NW) and define g' : NW) ~> Y a s follows: if P £ / is a vertex of NW),

select XJJ C ί/ and set g'(pτj) — f(xjj) .

Again, as before, g' extends to a mapping of M60 into Y.

We shall first show that f is homotopic to g' K by showing that for each x9f(x)

and g1 K{x) are in a common W (7.2). If x £ Uι Π
 # Π Un and x Q only these

sets, then K(x) £ ( p ^ , * SPί/n); s i n c e g'(pί/£) = /Uί/f) C /(t/t ) we have

U/=i g'(pϋi) C ULi /(ί/i) C ί7, so that g'K(x) is in some IF =) F. On the other

hand, f(χ) £ /(t/ iΠ Πί/Λ) C U ^ i /(ί/i) C F also; this shows that g ' K(x)

and /(%) are in a common set W for each x, and hence are homotopic.

Next, we map NW) into N(V) simplicially as follows: if pu is a vertex of

NW), select some V with ϋ <Z / Ή F ) and set π(prj) = p F . It is easy to verify

that π is simplicial. Extending linearly, we have 77: /V(/7)—> /V(F). Again it is

simple to verify that gτr{x) and g 'U) are in a common set IF for every x £ /V(ί/),

and hence are homotopic.

Thus we see that f is homotopic to gTίK, so that, with ΉK = μ, the theorem

is proved.
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The property is not known to be equivalent with ANR. The theorem also holds

for LCn spaces, if dimA^ < n the polytope P can be chosen so that dim P < n in

this case. We have the trivial consequence:

7.6 COROLLARY. If Y is an ANR, and P is the polytope of the theorem, then

the continuous homology groups of Y are direct summands of the corresponding

groups ofP,

Proof. By taking X — Y and i: Y —> Y the identity map, we have i homotopic

to g/JL', hence, for each n, the homorphism Hn(Y) —> Hn{Y) induced by gμ is the

identity automorphism. The result now follows from the trivial group theoretic

result:

7.7 T H E O R E M . If A, B are two abelian groups and μ: A —> B, g: B —> A

homomorphisms such that gμ{a) = a for each a £ A, then A is isomorphic to a

direct summand of B.

Proof. Since gμ(a) = a for every a £ A, it'follows at once that μA —> B

is an isomorphism into. Furthermore, μ(A) is a retract of B. In fact, defining

r — μg we see that r: B —> μ(A); further, for each b — μ(a), we have r(b) =

μgμ(a) — μ(a) — b. Since μ(A) is a retract of B, it is a direct summand of B ,

and β = μ(A) θ Kernel μg.

In the case that Y is a compactum, all coverings involved can be chosen finite,

and 7.6 yields known results (Lefschetz [ l l p.109]). If the Y is a separable

metric ANK, the coverings can be so chosen (Kaplan [7]) so that, the polytope P

is a locally finite one.

It should further be remarked that the method of proof used in Theorem 6.2 is a

completely general procedure to prove that an ANR which is connected in all di-

mensions is in fact an absolute retract.
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