
DISTRIBUTION OF ROUND-OFF ERRORS
FOR RUNNING AVERAGES

R. E. GREENWOOD AND A. M. GLEASON

1. Statement of the problem. Let G p G 2, ••• be scores (positive integers)

obtained in a sequence of plays in a certain game. For purposes of handicapping

matches it is desired to use running averages, and on the hypothesis that the

score of the last play is more significant than any prior score, the following for-

mula is used for computing the running averages {Sn \:

(1.1) S
n + 1

where k is a positive integer. Certain modifications in (1.1) may be necessary

when n <k.

The running averages defined by (1.1) are not necessarily integers. It is

therefore convenient to define a rounded running average (which will be integral)

by the relation

(k-l)Tn + Gn+1 + D
(1.2) Γ n + ι =

k

It is convenient to use three set of values for D in the foregoing relation.

fc + 1 -&+ 3 & - 1 1
Case A. For k odd, D = A e ] , . . . f.

I 2 2 2 J

f-A -k k\
Case B. Fork even, D = B e\ + 1, + 2, ••• , — I.

1 2 2 2 J

f-& - * k]
, D = C β\ , + 1, , —- f.

1 2 2 2 J

Case C For k even

For each n > k define the error En by the relation
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(1.3) En = Tn - S π .

(For n < ky the error would depend on the modifications made in relation (1.1).)

For n>_ k, then,

{k-l)En + D
(1-4) En + ί = Γ Λ + ι - Sn + ί =

k

For Case A, if at some stage \En\ < ( k - l ) / 2 , then

, x , Γ . ( A - l ) ( A - D / 2 + (Λ
( 1 . 5 ) l^/ i+i l < :

k

For cases B and C, if at some stage \En\ < k/2, then by a similar procedure

one obtains

(1.6) | £ π + 1 | < A/2.

Thus the errors introduced by the rounding off process are bounded if | Ei | <

(k — l)/2 or A /2 for the odd and even values of k respectively.

It is assumed that the scores { G;} are such that equal probability values are

realistic. In case C, where there will sometimes be a choice for round-off, one

might choose to round-off to the even integer. Thus, one would sometimes add

k/2 and sometimes subtract k/2, corresponding to the two end-values with proba-

bilities l/(2&), while the intermediate values would have probabilities l/k. It

is desired to find a limiting distribution for the error En; in this paper such

limiting distributions are found for a few special cases.

Allowing one's intuition free rein, one sees that limiting distributions for the

error En exist in all three cases. If such distributions exist, then relation (1.4)

may be used to determine means and variances, if any. Thus

(1.7)

(1.8) k2 Var ( £ n + 1 ) = (k- I ) 2 Var (En) + Var(D).

It is easy to verify that

μ U ) = 0 , Var {A) = (& 2 -l)/12,

μ(B) = 1/2, Var (B) = (k2-l)/12,

μ(C) = 0, Var (C) = (k2+2)/l2.

Then for the limiting distributions EΛ, EB, Ec for the three cases one gets
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μ(EΛ) = 0, Vβr(EA)

μ(£B) = 1/2, V a r ( £ β ) = ( * 2 - l ) / 1 2 ( 2 * - l ) ,

0, V a r ( £ c ) =

(1.10)

2. Distribution of the round-off error for k = 2, Case B. For the special value

A; = 2 and for Case B, one may take Eί = 0. Let Fn(x) be the cumulative distri-

bution for En, and let { fa n\ be the jumps in Fn(x) at the points of discontinuity.

One readily obtains the functions

(2.1)
FΛx)

0, x < 0,

1/2, 0 < x < 1/2

.1, 1/2 < x.

{fit3\ = ί 1/2 at 0, 1/2 at 1/21.

0, x < 0,

(2.2)
FΛx) (/= 1,2,3),

1, 3/4 < x.

ί/i,3* = ί 1/4 at 0, 1/4 at 1/4, 1/4 at 1/2, 1/4 at 3/4}.

By induction one gets

0, x < 0

F->.(x) = .
(2.3)

\n < x < j/2n (/= 1, . . , 2n

1, ( 2 π - l ) / 2 7 1 < x.

ί fi,n+1! = I jumps of 1/2" at points j/2n, / = 0, 1, , 2n - 1}.

In this simple example, heuristic considerations suggest that there is a limit-

ing cumulative distribution function

(2.4) Fix) =

0, x < 0,

%, 0 < x < 1,

1, 1 < x,

and its associated distribution function

(2.5) f(χ)
1, 0 < x < 1,

0 elsewhere.
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In order to deal with continuous functions insofar as possible, it is conven-

ient to take Fourier transforms of the jumps { h^n }. The finite Fourier transform

may be defined by relations

(2.6) φn(u) = [°° eiut d Fn(t)

= £ . fj.n e xP
all;

Thus we get

(2.7) Φ2(u) = 1/2+ (1/2) exp(iα/2)

1 sin(a/2)
= exp (iu/4<) cos (u/4) = — exp (iu/4>) —

2 sir

(2.8) Φn+i^11' = ~ 2-, ey

1 1 - exp ( iu)

¥ 1-exp (ΪV2 Λ

1 sin(u/2)
exp \ιu

The sequence of transforms { φ } has a limit φ( u),

sin u/2
(2.9) φ(u) = exp(m/2).

u/2

In order to transform back, it is convenient to use another definition of the

Fourier transform,

(2.10) φ(u) = f °° eiut f{t) dt.
J-oo

Then, whenever f(x) is of class L (~oo, oc) and of bounded variation in the

neighborhood of t [ 1, p. 83, Theorem 58] ,

(2.11) — [/(ί + 0) + / ( ί - 0 ) ] = lim — / e~iut φ(u) du.
2 λ-»oo 2π J~λ

Direct computation of the inverse transform (using 2.11) of φ(u) as defined
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by (2.9) might be troublesome. However, the Fourier transform (2.10) of the

supposed limiting distribution function of (2.5)

/(*) =
1, 0 < x < 1,

0 elsewhere

is just the limiting function φ(u) as given by (2.9). Since f(x) is of class

L 2 (-oo, oc) and is of bounded variation, the theorem quoted above enables one

to identify (2.5) as the limiting distribution function of the error for Case B,

except for the values /(0) and /(I) where /should be chosen as 1/2.

The use of the Fourier transform φn(u)> (as defined by (2.6)),is equivalent

to the use of the characteristic functions of the jump distributions \fjfn\. With

this interpretation, it is possible to use Lέvy's theorem [2, p. 101-102] to the

effect that convergence of φn(u) to φ(u) implies the convergence of Fn(x) to

the limiting form F(x) given by (2.4) and that φ(u) is the characteristic func-

tion of the cumulative distribution function F(x).

The mean and variance of f(x) as given by (2.5) (with or without modifica-

tions at 0 and 1) are 1/2 and 1/12 respectively, and thus agree with the values

called for by relations (1.10).

3. Distribution of round-off errors for k = 2 , Case C. Case C has symmetry

noticeably lacking in Case B. For convenience, take Ex s 0 as before. Let

Gn{x) and { g. \ be the cumulative and point-wise distribution functions. For

this case

(3.1)
GΛx)

0, * < - l / 2 ,

1/4, -1/2 < x < 0,

3/4, 0 < x < 1/2,

1, 1/2 <x,

{ g ! = { 1/4 at -1/2, 1/2 at 0, 1/4 at 1/21.

Designate the finite Fourier transform (2.6) by ψ2{u). Then

(3.2) φ2(u) = (1/4) exp (-ίn/2) + 1/2 + (1/4) exp (iu/2)

= (1/4) [exp (ΰi/4) + exp (-iu/4)] 2 = cos2 («/4).

This may be written in the form

(3.3) ψ (u) = (1/4) [x + 1/x]2 where x = exp (iu/4).
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Notice that to get { gy>3 } from { g/>2 ! and the set { C\, I C I = ί - 1 , 0, 1! with

probabilities {1/4, 1/2, 1/4} respectively, one merely takes 1/4 of the set

{ gj$2 \ on a smaller range at one end of the new range, 1/2 of the set } gjf2 } on a

smaller range at the middle, and 1/4 of the set { gj>2 \
 o n a smaller range at the

other end of the new range. In effect, one goes from ψ2(u) to φ3{u) by replacing

x by x2

9 multiplying by

[(1/4)* 2 + 1/2 + l/(4* 2 ) ] = ( l / 4 ) [ * + l / % ] 2 .

and then identifying x = exp (iu/&).

By this rule, one gets

(3.4) <A3U) = ( 1 / 4 ) 2 U + 1 / * ) 2 U 2 + 1 Λ 2 ) 2 = cos 2 (ι ./4)cos 2 (u/8).

Proceeding by induction, one gets

(3.5) Ψn+Λu) = cos2(α/4) cos2(w/8) ••• cos2( u/2n+ι).

The sequence of transforms \φn(u)\ has a limit,

sin2(u/2)
(3.6) φ(u) = lim φn(u) =

(u/2) 2

by use of a well-known infinite product.

Direct computation of the inverse transform of (3.6) may be troublesome.

However, it may be verified quite readily that if

(3.7)

1 + x, - 1 < x < 0,

1 -%, 0 < x < 1,

0, elsewhere,

the Fourier transform of g(x) is just φ(u) of (3.6). Then, by use of (2.11), it

follows that g{x) as defined above may be taken as the pointwise distribution

function for the limiting distribution EQ,

Direct computations show that

μ(Ec) = 0, V a r ( £ c ) = 1/6,

which values are in agreement with relations (1.10).

4. Conclusion. For higher values of k, the limits of the Fourier transforms

may be difficult to obtain.



(4.1)
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A somewhat more general problem would be to take

(k-m) Sn + mGn+ι

instead of (1.1), where k and m are both positive integers. In effect, however,

this merely allows the k in ( 1.1) to be a positive rational number instead of a

positive integer.

An equivalent statement of the problem would be to consider the distribution

of M (d), where

1
(4.2) M(d) = -

k
k . Λ \ k I

i = 0

and where { d^ \ is selected from the set D according to the value of k and the

end-point choice. For the expansion of M(d) is

(4.3) M(d) = ( \/k) \ d0 + (k — 1 )/k \ dχ + { k - 1 )/k { d2 + ! Π ,

and this is just the scoring used in ( 1.4) but with reversed numerical ordering.

Thus for k = 2 and Case B, M is uniformly distributed on (0, 1), while for Case

C, M has a house-top distribution on ( - 1 , 1).
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