
THE NEUMANN PROBLEM FOR THE HEAT EQUATION

W. FULKS

1. Introduction. By the Neumann problem we mean the following boundary-

value problem: to determine the solution u(x, t) of the equation

(1.1) "%*(*» ' ) " M*> ' ) = 0

in the rectangle or semi-infinite strip IvbfC': { 6 < Λ; < c; α < ί < Γ < o o } , given

u (x, a) on b < x < c and M* ( b, t) and H X ( c, t) on a < t < T. There is a formula

in terms of the Green's function (essentially given by Doetsch in [ 2 , p. 361])

which gives the answer to this problem if the closed rectangle is in the interior

of a larger region in which u(x, t) is a. continuous solution of (1.1) . This formu-

la is as follows: let d - c - b9 and let

where $ 3 is the Jacobi Theta function; then

(1.2) «(*,*)= Γ F(b'c\x,t;y,α)u{y,α)dy- [' F(b'c\x,t;b, s) uAb,s)ds
Jo Jα Λ

)(x9t; c,s) u(c,s)ds.
x

V
Jα

The purpose of this paper is to extend the use of formula (1.2) in the following

manner: w,e will give conditions under which a solution of the heat equation can

be written in the form (1.2) wherein u(α, y) dy, etc.* are replaced by dA(y) or

by α(y) dy, where A(y) £ BV (that is, of bounded variation) or α(y) G L. And

we will examine the senses in which these extensions of formula (1.2) solve the

boundary-value problem; that is, the manner in which the solutions tend to the

prescribed boundary data for approach to a boundary point. Furthermore, we will

obtain criteria for the unique determination of the solutions of these generalized

boundary-value problems.
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568 w. FULKS

We will normalize our rectangle to be R: {0 < x < 1, 0 < t < T < oo{, and for

this region we will delete the superscripts from the Green's function and denote

it simply by F(x, t; y, s). And we will denote by H the class of solutions of

(1.1) for which both uxx and u% are continuous.

It will be convenient to display here the formula ( see [2, p. 307])

(1.3) £ U/2, ί) = U ί Γ 1 / 2 Σ, e x p (*4+

t

n ) Γ

from which it is clear that f' *c'(x, t; y, s) is a uniformly continuous function

of all six variables if d is bounded away from both zero and infinity, and if the

point (x, t) is bounded away from the point (y, s).

It also follows easily from ( 1.3) that

Fχ(x, t; 0, s) = -Gγ(x, t; 0, s) and Fχ{x, t; 1, s) = -Fχ( 1 - x9 t; 0, s),

where

is the Green's function for the corresponding Dirichlet problem. (See [ 3; 4; 5; 6;
7].)

2. The Stieltjes integral representation. Our first main theorem gives the so-

lution to one of the generalized boundary-value problems.

THEOREM 1. For u(x, t) to be representable in R by

(2.1) u{x, t) = [l F{x, t;y,0)dA(y) - Γ F{x, t; 0, s) dB(s)
Jo Jo

Γ F(x9 t; 1, s)dC(s),
Jo

+
/o

where A(y) G BV ( 0 <y< 1) and B(s), C(s) G BV ( 0 < s < s 0 ) for every

sQ < T, it is necessary and sufficient that

( ί ) u{x, t) G H in R,

( 2) fι I ux (x, s) I ds < Mi uniformly for Q < x <x0 and x t < x < 1 for some

x0, xl9 where Mt depends only on t9
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( 3 ) Q I u ( y, t) I dy < M uniformly for 0 < t < t0 for some t0.

Proof. To prove the sufficiency, let (x9 t) € R. Then there exist α, b9 c > 0

such that u(x9 t) i s given by ( 1 . 2 ) . But, by condition ( 3 ) ,

A {x) = fX u{y, a) dy G B V [ O < % < 1 ]

uniformly in a for 0 < α < ί0. Hence the uniformity holds for any sequence of

values of α tending to zero, and thus by the well-known convergence theorems of

Helly and Bray (see, for example, [9, p. 29-31 ]) there exists a subsequence \an \

and a function A (x) G BV (0 < x < 1), to which AQn(x) converges substantially,

such that

lim fC F(b'c\x, t; y9 a) dAa (y) = [° F(b>c\x, t; y, 0) dA(y).
n-^oc Jb n n Jb

Then (1.2) becomes

(2.2) "(*,*)= [CF<<b>cHx,t;y,0)dA(y)- Γ F(b>c\x9t;b9s) ux{b,s)ds
Jb Jθ

+ V F(b>cHx, t;c9s) ux(c,s)ds,
Jo

where the e x i s t e n c e of the two lat ter i n t e g r a l s i s guaranteed by condi t ion ( 2 ) .

Furthermore,

BAt) = (* ux(b, s) ds and Cίt) = Γ ux(c, s) ds E B V [ 0 < t< t]b Jo c Jo - - o

for every t0 < T uniformly for 0 < b < x0 and xx<c<l. Hence the uniformity

holds for any sequence of values of b tending to zero and of c tending to one.

Hence there exist subsequences { bn \ and { cn \ and functions

B(t),C\t) E hV(0<t<tQ)

such that

lim Γ F(bn'Cn\x, t; b . s) dB. {s) = f* F(x, f, 0 , s) dB(s)
n-*oo Jo n Jo

and
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lim [' F{bn'CnHx, t; cn, s) dCCn(s) = [' F{x, f, I, s) dC(s).
n-*oo JQ JO

Hence u(x, t) has the representation asserted.

We will later show that A, β, C are independent of the particular sequences

of a, b, c used here ( s e e Theorem 3) .

To prove the necessity of condition ( 1 ) we must differentiate under the inte-

gral sign. The only difficulty encountered in this is the disposition of the terms

which arise from the variable upper limit. If, however, one forms a difference

quotient it is easy to see that the contribution arising from the variability of the

upper limit must always vanish, due to the strong convergence to zero of the

kernel as s — » t - 0.

To establish ( 2 ) we write

[ Fx(x,t;y90) dA(y) - [% Fx(x, t; 0, 5) dB(s)
o Jo

+
Jo

Now

Γ Fx(x, t; 1, s) dC(s)
Jo

= [l Fx{x,t;y,O)dA(y) + Γ Gy{x, t; 0, s) dB{s)
Jo Jo

+ I Gy (1 - x, t; 0, 5) dC ( 5)

= # ! ( * , * ) + i/ 2(*» 0 + V3(x, t).

\U2(x, t)\ < V Gy(x9 t; 0, s)\dB{s)\ = v2(x, t)
Jo

and

U3(x, t)\ < I Gy(l-x, ί O, s ) | r f C ( s ) | = v3{x9 t),
Jo

where v2(x, t) and v3(x, t) are nonnegative solutions of (1 .1) . Then, by [ 3 ,

p. 22-23] and [7, p. 373], v2(x, t) and V3(x, t) must satisfy condition ( 2 ) .

Hence so must U2(x, t) and U3(x, t).

To examine Uι(x, t) we need to note that, by (1.3), for 0 < x, y < 1,
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r(x, t; y, 0 ) = exp exp I-
4 τ τ 1 / 2 ί 3 / 2 l 4 ί J 4 / r 1 / 2 ί 3 / 2 l

( * + y - 2 ) f ( * + y - 2 ) 2 l _
exp I 1 + u χ ( x , y, t),

w h e r e u t i s bounded, s a y \uγ\ < B ι # T h e n

f \Uι(x,s)\ds < [' [l T Ljf^J expί- i l l |,M(y)|rfβ
Jθ Jo JO „ _ , A _ l / 2 o 3 / 2 I 4 s J

x VAl),

where ax = x — y, o 2 = x + y, a3 = x + y — 2, and V^( 1) is the variation of

Then

— I/n /β

2π

ι/2
ds\dA(y)\

( 3 / 2 + ί δ , ) VA ( 1 ) ,

the change of order of integration being permissible by Fύbini's theorem. Since

Vχ(x, t), U2(x, t), and U3{x, t) separately satisfy condition (2), so must their

sum, ux(x, t ) .

To verify condition (3) we write

/•l Γί ft
u(x, t) = / - / + / = ui(x, t) + u2(x, t) + u3(x, t ) ,

Jo Jo Jo

and first consider

u2(x, ί) - - f* F(x, ί O, s) dB(s).
Jo
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But, by (1.3),

F(x, t;09s) = n-
ι/2(t-s)~1'2 e x p L * j + Έ2(x9 t, s),

where "u2 is bounded, say by B2 Then

[ * \u2{x, t)\ dx < I π~ι/2{t- s)~ι/2 I exp dx\dB(s)\

Jo Jo Jo I 4>(t-s)i

+ B2VB(t),

- t

 X \dx\dB{s)\ + B7 VB(t)9

Similarly,

" \u3{x, t)\ dx < ( l + β 3 ) Vc(t).

We turn now to U 1 ( Λ , ί ) :

ί ' l ^ U 01 ώ < Γ [l F(x9t;y,0)dx\dA{y)\
Jo Jo Jo

But, again by (1.3),

FU. y.0) = i ( ^
22 I I 4ί J I 4ί

f U
+ exp

where α^ is bounded by, say, B4. Then

f U+2-2^11 .

[ ( v + v - 2 ) 2 11
- i - J J dx\dA(y)\ + B4



THE NEUMANN PROBLEM FOR THE HEAT EQUATION 573

Γ 2 [°° exp \-—]dx\dA(y)\ + S4
Jo J-oo I 4>t i2

< VΛ(1){2+B4)

H e n c e , f o r 0 < t < ί 0 ,

fl \ u ( x , t ) \ d x < VA(1) ( 2 + S 4 ) + F β ( ί 0 ) ( l + β 2 ) + F c ( ί 0 ) ( l + β 3 ) = M
Jo

This completes the proof.

3. The behavior at the boundary. We are now prepared to examine in detail

the behavior near the boundary of solutions of our generalized boundary value

problem considered in section 2. The main result of the section is:

THEOREM 2. If u(x9 t) is representable in R by (2.1), then

(1) lim u{x,t) = A\x)

and

(2) lim ux(x, t) = β ' ( ί - 0 ) ; lim ux(x, t) = C'( t - 0)
#->o + x -* 1-0

/ , β ( ί - 0 ) - β ( ί - A ) , \
I where B ( t — 0 ) = lim , and similarly for C ( t - 0) I ,
\ Λ -•()+ h I

wherever the derivatives in question exist.

Proof. If u(x, t) is representable by (2.1), let

u{x, ί ) = / - / + / = uγ{x, t) + u2(x, t) + us(x, t)
Jo Jo Jo

as before. Let / be any open interval whose closure is contained in {0 < x < 1}.

Then for x G /, F(x9 t; 0, s) and F(xy t; 1, s) both converge uniformly to zero

as t—»0+, as can be seen from (1.3). Then clearly u2(x, t)9 u3(x, t)—»0 as

ί — » 0 + , for A; G /.

Also, for* e I, by (1.3),

Fix, t y, 0 ) = ( 4 τ r ί ) " 1 / 2 exp [ - ( * " y ) I + o ( l )

uniformly as ί — > 0 + . Hence
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u , U t) = / l ( 4 7 7 ί ) " " 1 / 2 exp I - X ~ y I dΛ(y) + o ( l ) .
Jo I 4 ί J

Then ( s e e [ 3 , p. 25-26 and 65-66] and [7 , p . 393-394])

l i m u ι ( x 9 t ) = A ( x )
ί->o+

wherever this derivative exists. Since any x E ί 0 < * < 1} can be caught in such

an /, this establishes ( 1 ) .

To verify conclusion (2) we write, as before,

ux(x, 0 = (l Fx{x, t; y9 O)dA(y) + [ Gγ(x, t; 0, s) dB(s)
Jo Jo

+ Γ c y ( l - * , ί O, s) dC{s),
Jo

= Ux(x,t) + U2(x,t) + U3(x,t).

As x—»0+, V\{Xy t) and U3(x, t) vanish since the kernels converge uniformly

to zero, and as x — > 1 - 0 , Vx(x9 t) and U2(x, t) vanish for the same reason.

Then by [ 5 ] , ux(x, t) tends to B ( ί - 0 ) or C (t — 0) according as x tends to

zero or one, whenever the derivatives exist.

We can now give criteria for the existence of boundary values of the function

u ( x, t) itself on the sides x = 0, and x = 1.

COROLLARY 1. If u{x, t) is representable in R by (2.1), then u(0+, 0

exists if B (t — 0) does.

Proof. Let 0 < x0 < 1; then

u{x, t) = / ux(y, t) dy + u(x0, t) (0 < * < 1 ) ,
Jχo

and the integrand is bounded in 0 < x < x0. Hence the integral exists for x = 0

and defines u(0+, t).

We might also note in passing that for such ί, the x difference quotient at the

boundary also tends to B (t — 0); for, by the mean value theorem,

u(h, f ) - ι * ( 0 + , t)
= ux(Έ, t) —> B U - 0 )
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as h—*0.

From Theorem 1 we have:

COROLLARY 2. For u(Q+, t) to exist it is sufficient that

Γ~° (t-sΓ^2 \dB(s)\
Jo

converge.

Proof. Define

f(t) = fl F(09t;y90)dΛ(y) + Γ F(0, *, I, s) dC(s)
Jo Jo

V I / 2(ί-*Γ1 / 2 £ exp f- -_ί
n = t I ( ί -U - s )

"° ( ί - s ) - l / 2 rfβ(s),
0

and consider

l i m s u p \ u { x , t ) - f ( t ) \
x —»o +

f t- f Γ x 2

<π~1/2 lim sup / " (t - 5 ) ~ ι / 2 l l - exp 1 | | f l ί β ( s ) | .
χ->o + J 0 I I 4 ( ί - s )

Now given e > 0 there exists a δ > 0 such that

\dB{s)\ < e,

so that

lim sup I u{x, t) - / ( ί ) |

| l - e x p [ l l \dB(s)\ + 2e = 2e.
I L 4 ( ί - s)JJ
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Let e —»0 to get

l i m u { x , t) = a ( 0 + , t) = f ( t ) f
X -»0 +

which completes the proof.

We may also note that if B(s) were monotone, then, since exp [ - # 2 / 4 ( ί - s)]

converges to unity in a monotone way, we could invoke, the monotone conver-

gence theorem to obtain the convergence of the integral as a necessary and suf-

ficient condition for the existence of α(0+, t).

Also with Theorem 2 at our disposal we can now prove:

THEOREM 3. Let u(x9 t) be representable by (2.1); then the functions

A{x), B(t), C(t) are uniquely determined by u{x, t), so that, at every point of

continuity^

Γx
Λ(x) - lim / u(y, a) dy

α-»o+ Jo

and

B(t) = l im / ux{b, s) ds; C ( ί ) = l im / ux(c, s) ds.
b -»o+ Jo c-* ι~o Jo

Proof. F o r s u p p o s e B ί { t ) a n d B 2 { t ) a r i s e f r o m t w o d i s t i n c t s e q u e n c e s .

T h e n c l e a r l y i f B 3 ( t ) = B x ( t ) - B 2 ( t ) , w e h a v e

Γ F(x, t; 0, s) dB3(s) s 0 in R.
Jo

Hence, differentiating, we get

V Gγ(x, t; 0, s) dB3(s) ~ 0
Jo

We first show B3(s) is continuous: suppose it has a jump α at ίo; then, for t > ί0,

ft
0 = / Gy{x, t; 0, s) dB4(s) + σ Gγ(x, t; 0, t0),

Jo

where B4{s) i s the boundary function remaining after the jump σ at t0 i s re-

moved. Then
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Γ 4 ( ί - ί o ) l
r l

exp I + o (1)2π1/2(t-t0)
3 I 4 ( ί - ί 0 :

Choose 8 so small that

β 4 - v°-δ)< ¥ '
set t - ί0 = * 2 / 4 , and take a; so small that * 2 /4 < δ. Then

/ t o +* 2 /4 Λ; ^
0 = / exp - flίB4(s)

4σ
+

*2 L-
4 | g |

1/2 2 /«_$ o _ l / 2 / , _ „ , ».2/ /.\3/2"" t ' | Λ / , _ „ , , S ,

4 | σ | / o V 4
0 > — r m — Ϊ - / exp I

- e ι / 2 x 2 JtS ι/2( 2/4)3/2 [eπι/2x2 Jto-S 2πι/2(tQ-s + x2/4)3/2 [ 4 ( ί 0 - * + * 2 / 4 )

The maximum of the integrand is at s = ί0, so that

4 | g | 2 | g | 2 | g |
0 > - — , .- , + o (1) = + o ( l ) ,

- e 7 T i / 2 * 2 enι/2x2 en1/2x2

and we have a contradiction as x —» 0 + .

Similarly the jumps of C( ί) are determined.

Suppose Aι(x) and A2(x) arise from two distinct sequences, and A3(x) =

A ι(x) - A2(x)l then, as before,

0 = Γ Fix, t;y,0)dA3(y) in /?.
Jo

And suppose it has a jump of σ at # 0 ; then, as before,

0 = σ(4τr ί ) " 1 / 2 + ( 4 τ τ * Γ ι / 2 Γ exp [-

Jo L it

If δ is so small that
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F ^ U o + δ) ~ F ^ U o - δ ) < |σ | /2 ,

then

O = σ(4τ7iΓ 1 / 2 + ( 4 ^ ί ) " l / 2 Γ ° + S exp L
Jχ0 -8 I0 -8 I 4 ί

0 > | σ | ( 4 τ τ ί Γ ι / 2 - | σ | ( 4 τ r f ) " ι / 7 2 + o ( l ) = | σ

and as t —>0 + we get a contradiction.

Then Λ39 B39 C3 are continuous functions of bounded variation, and by Theo-

rem 2 their derivatives are zero almost everywhere. Each of them must then have

an infinite derivative on a nondenumerable set. (See e.g. [8 , p. 128].) This then

implies that lim u(x9 t) and lim ux(x9 t) must become infinite on a nondenumer-

able set, which is a contradiction, and the functions Λ39 B39 C3 are constants.

Hence, since every sequence of α's, b's, or c's contains a subsequence for

which Aa(x)9 etc., converges to a common limit, the limit must also be attained

for continuous approach. Thus the last statement of the theorem is established.

4. The Lebesgue integral representation. We are now in a position to estab-

lish:

THEOREM 4. For u(x9 t) to be representable in R by

(4.1) ι * ( * , ί ) = fl F(x9 t;y9θ)a(y)dy - f* F (x9 t; 0, s) b(s) ds
Jo Jo

rt
+ / F(x9 t; 1, s) c(s) ds9

Jo

where a(γ) £ L (0 < y <l) and b{s)9 c(s) £ L (0 < 5 < s 0 < Ί < oc) for every

sQ9 (0 < s0 < T)9 it is necessary and sufficient that

(1) u(x9 t) £ H in R9

( 2 ) lim P \ux(y9 s) - ux(y\ s)\ ds = 0
y,y -» o+ Jo

and

rt
l im / \ux(y9 s) - ux(y'9 s)\ ds = 0

y,y'-> 1-0 Jθ

for every t (0 < t < T)9 and
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( 3 ) lim fl \u(y, s) - u(y, s')\ dy = 0 .
.. o ' Λ Jo

579

s,s

Proof. For the sufficiency, let the closed finite interval / C ί 0 < s < Γ 1 be

prescribed, and let e be any measurable set in /. Given € > 0, there exists δ =

δ( €, /) such that

f \ux{y> s) - ux{y% s)\ ds < e / 2 for y , y ' < 8.
Je

Then

I \ux(y, s)\ds < I \ux(y',s)\ ds + I \ux(γ9 s) - ux(y', s)\ ds
Je Je Je

\ux(y% s\ ds + e/2.

N o w k e e p y'fixed a n d t a k e m(e) s o s m a l l t h a t

j \ux(y\ s)\ ds < e/2,

so that, forO < y < δ,

I \ux{y, s)\ ds < e

if m(e) i s s u f f i c i e n t l y s m a l l . H e n c e Bb(s) a r e u n i f o r m l y a b s o l u t e l y c o n t i n u o u s ;

c o n s e q u e n t l y , s o i s B(s), a n d dB(s) c a n b e r e p l a c e d by b(s) ds, w h e r e B'(s) =

b(s) a l m o s t e v e r y w h e r e . S i m i l a r l y dC( s) = c(s) ds and dΛ(y) - α(y) dy.

T h e n e c e s s i t y of ( 1 ) f o l l o w s by T h e o r e m 1. T o p r o v e t h a t of ( 2 ) w e w r i t e

b ( s ) = b x { s ) - b 2 ( s ) 9

where bι(s) and ό2 ( s ) are both nonnegative, say, for example,

b χ ( s ) - \ b ( s ) \ a n d b 2 ( s ) = \ b ( s ) \ - b ( s ) .

L e t

u(i){x, t) = - f* F ( Λ , ί; 0 , 5 ) bi(s) ds {i = 1, 2 ) .
Jo

Then

4 ° ( ^ O = Γ Gy{x,t,0fs) bi(s)ds (£ = 1 , 2 ) .
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We know from Theorem 2 that

lim u^\x9 t) = bi(t) (i = 1, 2),

almost everywhere, and, by Theorem 3,

lim Γu{ΐ\x>s)ds= Γ bi(s)ds ( ί = l , 2 ) .
%-*o+ Jo Jo

Since the uχ\x9 t) are nonnegative (see [4, Remark 1, p.975]), we can say

(see [4, p. 977])

(4.2) lim Γ |u ι '(x, S) - ^ ( s ) | ds = 0 ( £ = 1 , 2 ) .
X -* 0+ JO

Now consider

(4.3) f K U ί ) - l ( i ) | ώ < Γ I »<»>(*, s ) - bι(s)\ds
Jo Jo

+ Γ \ux

2)(x,s) - b2{s)\ds + Γ\ [l Fx{x, s y, 0) o ( y )
Jo Jo I Jo

dy ds

i: Gγ(l-χ9 s; 0, τ) c ( τ ) dτ
o I Jo

rfβ.

As x —> 0+, the first and second integrals on the right vanish by (4.2), and the

fourth since Gy( 1 — x, s; 0, T) tends to zero uniformly in 5 and T as x — * 0 + .

To estimate the third we note

Fχ{x>s; y' 0) = - ιv**'* l U " " y ) exp V ^ i r
Γ (x + y)2]\

+ (*+ y) exp f+ u(x, y, s ) ,
L 4 s JJ

where u = o( 1) uniformly in y and s as x —> 0+. Then

\Fx(x,s;y,0)\ < 1 \\x-y\ exp [- U "

f
+ (* + y) exp I

But
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e x p L £ 1 * . A Γ . - ,-t/a *, <
I 4 s J \a\ Ja2/Λt "

Hence

*t

/oJo

for x sufficiently small. Thus the third integral on the right side of (4.3) is

dominated by

[ l \ ° ( y ) \ Γ\Fχ(*> * ; y . o ) | ds dy < 2 fι \a(γ)\ dy.
Jo Jo Jo

Then by the dominated convergence theorem we can pass to the limit under the

integral sign, by which we get zero as a limit, since Fx(x9 s; y, 0) tends to

zero. This proves

lim
x

ft
im I I ux(x, s) - b(s) \ ds ,
••0+ Jo

from which condition (2) follows immediately.

Condition (3) follows similarly, but more easily.

5. Uniqueness. We now turn to the question of the extent to which the boun-

dary data uniquely determine the solution of the boundary-value problem. We get

one result as an immediately corollary of our Theorem 4.

COROLLARY 3. // u(x, t) is representable by (4.1) in R, and has zero

boundary values almost everywhere for approach along the normal, then u(x, t) =

0 in R.

Proof. By Theorem 2, a{y), b(s)9 and c(s) vanish almost everywhere.

The situation in the case of the Stieltjes representation is not so simple (see

[ 6 ] ) : We can have a function representable in R by (2.1) which has boundary

values identically zero for approach along the normal, yet which is itself not

identically zero; for example, for 0 < tQ9 let

u(x, t)
0 (0 < t < t0 ) ,

-F(x, t; 0, ί 0 ) (t0 < t).

This is a nontrivial solution of the heat equation, representable by (2.1), for

which
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u(x9 0 + ) = 0, ux(Q+9 t) = 0, ux{l - 0 , t) = 0.

However we can assert:

THEOREM 5. Suppose u(x, t) is representable in R by ( 2 . 1 ) , that

u(x9 0 + ) = 0 (0 <x < 1 ) ,

and that B(s) and C{s) are monotone for 0 < s < J < o c . Let

lim ux(x, t) = 0 as (#, ί) —» (ϋ, s )

along a parabolic arc of the form t - s ~ ax2, ( a > 0 ) and

lim ux (x, £) = 0 as (x, t) —» ( 1, s )

a l o n g a p a r a b o l i c a r c o f t h e f o r m t - s = b ( x - I ) 2 ( b > 0 ) f o r e v e r y s ( 0 < s < T ) .

T h e n u { x , t ) = 0 m /{

Proo/. Let Λ; be fixed, 0 < x < 1. Then, by ( 2.1) and (1.3),

u(x, t) = / ί ' (* , f; y, 0) cW(y) + o ( I ) as ί — » 0 + .

Choose 0 < 5 < ( 1/2) min (x, 1 - x)9 so that

u(x, t) = / ( 4 τ 7 θ ~ 1 / 2 exp L J . \dA(y) + o ( l ) ,

' ( 4 τ τ O " 1 / 2 exp - ϋ .

Γδ 2 2 Γ z 2 λ

/ — w o q/9 e x P
J-δ 4 ? 7 1 / 2 ί 3 / 2 L 4 ί J

z2λ A{x+ z)-A(x)

T h e n

4 U ) 4 U ) δ z2/ 4 U + z ) - 4 U ) Γδ
α (x9 t) > Inf /

- δ < 2 < § z J-h
exp I rfz + o ( 1),

L 4 ί J

4 (x + z) - A (x) Γ δ / 2 ί ι / 2 2
Inf /

-δ<z<δ z J~S/2tι/2 πι/2



THE NEUMANN PROBLEM FOR THE HEAT EQUATION 583

L e t t — » 0 + :

Λ(x+z)-A(x)
u(x,0 + )=0> I n f

Let 5—>0:

0 > DA(x).

Similarly,

0 < DA(x)

for every x ( 0 < * < 1) . Now Λ(x) is continuous, for if it had a jump it would

violate one or the other of these conditions. Then by [ 1 , p . 5 8 0 ] , it must be both

nonincreasing and nondecreasing, and hence constant.

Furthermore,

rt
ux(x, t) = I Gγ(x, t: 0 , s)dB{s) + o ( l ) a s (x, t)—> ( 0 , s ) .

J o

T h e n , b y [ 6 ] , B{s) i s c o n s t a n t . S i m i l a r l y o n e s e e s C(s) i s c o n s t a n t . T h i s c o m -

p l e t e s t h e p r o o f .
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