A NOTE ON A PAPER BY L. C. YOUNG

F. W. Gehring

1. Introduction. Suppose that $f(x)$ is a real- or complex-valued function defined for all real x. For $0 \leq \alpha \leq 1$, we define the α-variation of $f(x)$ over $a \leq x \leq b$ as the least upper bound of the sums

$$
\left\{\sum|\Delta f|^{1 / a}\right\}^{a}
$$

taken over all finite subdivisions of $a \leq x \leq b$. (When $\alpha=0$, we denote by the above sum simply the maximum $|\Delta f|$.) We say that $f(x)$ is in W_{α} if it has finite α-variation over the interval $0 \leq x \leq 1$. L. C. Young has proved the following result.

Theorem 1. (See [2, Theorem 4.2].) Suppose that $0<\beta<1$ and that $f(x)$, with period 1 , satisfies the condition

$$
\int_{0}^{1}|f\{\phi(t+h)\}-f\{\phi(t)\}| d t \leq h^{\beta} \quad(h \geq 0)
$$

for every monotone function $\phi(t)$ such that

$$
\phi(t+1)=\phi(t)+1
$$

for all t. Then $f(x)$ is in W_{a} for each $\alpha<\beta$.
Young's argument does not suggest whether we can assert that $f(x)$ is in W_{β}. We present here an elementary proof for Theorem 1 and an example to show that this result is the best possible one in this direction.
2. Lemma. We require the following:

Lemma 2. Suppose that $a_{1}, a_{2}, \cdots, a_{N}$ and $b_{1}, b_{2}, \cdots, b_{N}$ are two sets of nonnegative numbers such that $a_{1} \geq a_{2} \geq \cdots \geq a_{N}$ and such that

$$
\sum_{\nu=1}^{n} a_{\nu} \leq \sum_{\nu=1}^{n} b_{\nu}
$$

Received July 2, 1953.
Pacific J. Math. 5 (1955), 67-72
for $n=1, \cdots, N$. Then for $p>1$,

$$
\sum_{\nu=1}^{n} a_{\nu}^{p} \leq \sum_{\nu=1}^{n} b_{\nu}^{p}
$$

for $n=1, \cdots, N$.
Let

$$
S_{n}=\sum_{\nu=1}^{n} a_{\nu} \text { and } T_{n}=\sum_{\nu=1}^{n} b_{\nu}
$$

With Abel's identity and Hölder's inequality, we have

$$
\begin{aligned}
\sum_{\nu=1}^{n} a_{\nu}^{p} & =\sum_{\nu=1}^{n} a_{\nu} a_{\nu}^{p-1} \\
& =S_{1}\left(a_{1}^{p-1}-a_{2}^{p-1}\right)+\cdots+S_{n-1}\left(a_{n-1}^{p-1}-a_{n}^{p-1}\right)+S_{n} a_{n}^{p-1} \\
& \leq T_{1}\left(a_{1}^{p-1}-a_{2}^{p-1}\right)+\cdots+T_{n-1}\left(a_{n-1}^{p-1}-a_{n}^{p-1}\right)+T_{n} a_{n}^{p-1} \\
& =\sum_{\nu=1}^{n} b_{\nu} a_{\nu}^{p-1}, \\
& \leq\left\{\sum_{\nu=1}^{n} b_{\nu}^{p}\right\}^{1 / F}\left\{\sum_{\nu=1}^{n} a_{\nu}^{p}\right\}^{(p-1) / p},
\end{aligned}
$$

from which the lemma follows.
3. Proof of Theorem 1. For a subdivision $0=x_{0}<x_{1}<\cdots<x_{N}=1$, consider the numbers

$$
\left|f\left(x_{1}\right)-f\left(x_{0}\right)\right|,\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|, \cdots,\left|f\left(x_{N}\right)-f\left(x_{N-1}\right)\right|
$$

and label this set $a_{1}, a_{2}, \cdots, a_{N}$ so that $a_{1} \geq a_{2} \geq \cdots \geq a_{N}$. We say that the two points ξ^{\prime} and $\xi^{\prime \prime}$ are associated with a_{n} if they are the two points of the subdivision for which

$$
a_{n}=\left|f\left(\xi^{\prime \prime}\right)-f\left(\xi^{\prime}\right)\right| ;
$$

and, fixing n, we consider the union of points associated with $a_{1}, a_{2}, \cdots, a_{n}$. Labeling these $\xi_{1}<\xi_{2}<\cdots<\xi_{m_{n}}$, we define

$$
\phi(t)=\xi_{\nu} \text { for } \frac{\nu-1}{m_{n}} \leq t<\frac{\nu}{m_{n}} \quad\left(\nu=1, \cdots, m_{n}\right),
$$

and we extend this function so that

$$
\phi(t+1)=\phi(t)+1 .
$$

Now $m_{n} \leq 2 n$ and, if $0<h<1 / m_{n}$,

$$
\begin{aligned}
h \sum_{\nu=1}^{n} a_{\nu} & \leq h \sum_{\nu=2}^{m_{n}}\left|f\left(\xi_{\nu}\right)-f\left(\xi_{\nu-1}\right)\right|, \\
& \leq \int_{0}^{1}|f\{\phi(t+h)\}-f\{\phi(t)\}| d t \leq h^{\beta} .
\end{aligned}
$$

Letting h approach $1 / m_{n}$, we have

$$
\sum_{\nu=1}^{n} a_{\nu} \leq m_{n}^{1-\beta} \leq(2 n)^{1-\beta}
$$

for $n=1, \cdots, N$. Finally selecting $b_{1}, b_{2}, \cdots, b_{N}$ so that

$$
\sum_{\nu=1}^{n} b_{\nu}=(2 n)^{1-\beta}
$$

we have

$$
b_{1}=2^{1-\beta} \text { and } b_{n}<2^{1-\beta}(n-1)^{-\beta} \quad \text { for } n>1,
$$

and applying Lemma 2 we conclude that

$$
\left\{\sum_{n=1}^{N}\left|\Delta_{n} f\right|^{1 / \alpha}\right\}^{\alpha} \leq\left\{\sum_{n=1}^{N} b_{n}^{1 / \alpha}\right\}^{\alpha}<2\left\{\sum_{n=1}^{\infty} n^{-\beta / \alpha}\right\}^{\alpha} .
$$

This completes the proof.
4. Further results. We now show that Theorem 1 is best possible.

Theorem 3. Suppose that $0<\beta<\gamma \leq 1$. There exists a function $f(x)$, with period 1 , which is not in \mathbb{W}_{β} and which satisfies the condition

$$
\left\{\int_{0}^{1}|f\{\phi(t+h)\}-f\{\phi(t)\}|^{1 / \gamma}\right\}^{\gamma} \leq h^{\beta} \quad(h \geq 0)
$$

for every monotone function $\phi(t)$ such that

$$
\phi(t+1)=\phi(t)+1 .
$$

Consider two increasing sequences, $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$, such that

$$
x_{1}<y_{1}<x_{2}<\cdots<x_{n}<y_{n}<x_{n+1}<\cdots<x_{1}+1 .
$$

Define the function

$$
g(x)= \begin{cases}n^{-\beta} & \text { for } x_{n}<x<y_{n} \\ 0 & \text { everywhere else in } x_{1} \leq x<x_{1}+1\end{cases}
$$

and extend $g(x)$ to have period 1 .
Lemma 4. Suppose that $0<\beta<\gamma \leq 1$. The function $g(x)$ defined above satisfies the condition

$$
\left\{\int_{0}^{1}|g(x+h)-g(x)|^{1 / \gamma} d x\right\}^{\gamma} \leq\left(\frac{2 \gamma}{\gamma-\beta}\right)^{\gamma} h^{\beta} \quad(h \geq 0)
$$

Fix h in the range $0<h \leq 1 / 2$, and consider the finite sequence,

$$
\xi_{0}<\xi_{1}<\cdots<\xi_{N}=\xi_{0}+1
$$

defined as follows.
A. Let $\xi_{0}=x_{1}-h$.
B. Suppose that $\xi_{0}<\xi_{1}<\cdots<\xi_{n-1}<\xi_{0}+1$ have been defined. Let $\xi_{n}=\operatorname{Max}\left\{\xi_{n-1}+2 h, y_{n}\right\}$ if this does not exceed $\xi_{0}+1$. Otherwise let $\xi_{n}=\xi_{0}+1$.

It is not difficult to show that

$$
\int_{\xi_{n-1}}^{\xi_{n}}|g(x+h)-g(x)|^{1 / \gamma} d x \leq 2 h n^{-\beta / \gamma}
$$

for $n=1, \cdots, N$. Since $\xi_{n}-\xi_{n-1} \geq 2 h$ for $n=1, \cdots, N-1$, we have $N h<1$ and

$$
\begin{aligned}
\int_{0}^{1}|\Delta g|^{1 / \gamma} d x & =\sum_{n=1}^{N} \int_{\xi_{n-1}}^{\xi_{n}}|\Delta g|^{1 / \gamma} d x \leq 2 h \sum_{n=1}^{N} n^{-\beta / \gamma} \\
& <\frac{2}{1-\beta / \gamma} h N^{1-\beta / \gamma}<\frac{2 \gamma}{\gamma-\beta} h^{\beta / \gamma}
\end{aligned}
$$

This completes the proof of Lemma 4.
Take any strictly increasing continuous function $\phi(t)$ such that

$$
\phi(t+1)=\phi(t)+1 .
$$

If ϕ^{-1} is the inverse function, and

$$
u_{n}=\phi^{-1}\left(x_{n}\right) \text { and } v_{n}=\phi^{-1}\left(y_{n}\right),
$$

then $u_{1}<v_{1}<u_{2}<\cdots<u_{n}<v_{n}<u_{n+1}<\cdots<u_{1}+1$ and

$$
g\{\phi(t)\}= \begin{cases}n^{-\beta} & \text { for } u_{n}<t<v_{n}, \\ 0 & \text { everywhere else in } u_{1} \leq t<u_{1}+1 .\end{cases}
$$

Now $g\{\phi(t)\}$ has period 1 in t, and, by Lemma 4,

$$
\left\{\int_{0}^{1}|g\{\phi(t+h)\}-g\{\phi(t)\}|^{1 / \gamma} d t\right\}^{\gamma} \leq\left(\frac{2 \gamma}{\gamma-\beta}\right)^{\gamma} h^{\beta} \quad(h \geq 0) .
$$

The Lebesgue limit theorem allows us to conclude this holds for all nondecreasing $\phi(t)$ such that

$$
\phi(t+1)=\phi(t)+1 .
$$

To complete the proof of Theorem 3, observe that $g(x)$ is not in \mathscr{W}_{β} and let

$$
f(x)=\left(\frac{\gamma-\beta}{2 \gamma}\right)^{\gamma} g(x)
$$

In the proof of Theorem 3, the fact that $\beta<\gamma$ plays an important role. We have a different situation when $\beta=\gamma$.

Theorem 5. Suppose that $0 \leq \beta \leq 1$ and that $f(x)$ is measurable and realvalued with period 1 . The β-variation of $f(x)$ over any interval of length 1 does not exceed 1 if and only if

$$
\left\{\int_{0}^{1}|f\{\phi(t+h)\}-f\{\phi(t)\}|^{1 / \beta} d t\right\}^{\beta} \leq h^{\beta} \quad(h \geq 0)
$$

for each monotone function $\phi(t)$ such that $\phi(t+1)=\phi(t)+1$.
For the sufficiency, let $x_{0}<\cdots<x_{N}=x_{0}+1$ be a subdivision of some interval of length 1 . Define the function

$$
\phi(t)=x_{n}, \quad \frac{n}{N} \leq t<\frac{n+1}{N} \quad(n=0, \cdots, N-1),
$$

and extend $\phi(t)$ so that

$$
\phi(t+1)=\phi(t)+1 ;
$$

for $0<h<1 / N$ we get

$$
\left\{\sum_{n=1}^{N}\left|\Delta_{n} f\right|^{1 / \beta}\right\}^{\beta} \leq\left\{\frac{1}{h} \int_{0}^{1}|f\{\phi(t+h)\}-f\{\phi(t)\}|^{1 / \beta} d t\right\}^{\beta} \leq 1
$$

For the necessity, we see that the β-variation for $f\{\phi(t)\}$ over any interval of length 1 does not exceed 1 , and we can apply the following:

Theorem 6. (See [1, Theorem 1.3.3].) Suppose that $0 \leq \beta \leq 1$, that $f(x)$ is measurable and real-valued with period 1 , and that the β-variation of $f(x)$ over any interval of length 1 does not exceed 1 . Then

$$
\left\{\int_{0}^{1}|f(x+h)-f(x)|^{1 / \beta} d x\right\}^{\beta} \leq h^{\beta} \quad(h \geq 0)
$$

References

1. F. W. Gehring, A study of a-variation, I, Trans. Amer. Math. Soc. 76 (1954), 420-443.
2. L. C. Young, Inequalities connected with bounded p-th power variation in the Wiener sense and with integrated Lipschitz conditions, Proc. London Math. Soc. (2) 43 (1937), 449-467.

Peterhouse, Cambridge, England
harvard University, Cambridge, mass.

