ON GROUPS OF ORTHONORMAL FUNCTIONS (II)

N. J. Fine

An orthonormal group on a measure-space Ω is defined as an orthonormal system of functions which is simultaneously a group with respect to multiplication. In an earlier note [1] we showed that, essentially, all such systems are derived from character groups of compact abelian groups. ${ }^{1}$ It may be of interest to know, for a given Ω, what orthonormal groups it can support. The answer to this question for $\Omega=I$, the unit interval, is given by the following theorem.

Theorem. Let G be any countable abelian group. Then there exists on the unit interval I an orthonormal group G^{\prime} isomorphic to G. If G is infinite, then G^{\prime} is complete in $L^{2}(I)$.

Proof. Assign the discrete topology to G, and let H be its character group. If G is of finite order n, then H and G are isomorphic. To each $h_{k} \in H, k=1$, $2, \cdots, n$, we associate the interval $l_{k}=[(k-1) / n, k / n)$, and define the n functions f_{j} by

$$
f_{j}(x)=h_{k}\left(g_{j}\right) \quad\left(x \in I_{k}\right),
$$

where g_{j} are the elements of G. Then $\left\{f_{j}\right\}$ is the required orthonormal group.
If G is infinite, H is uncountable. The measure-algebra of H (with respect to normalized Haar measure) is non-atomic, separable, and normalized. Hence [2, p. 173] it is isomorphic to the measure-algebra of l. Now H is a complete separable metric space, and the outer Haar measure is a regular Caratheodory outer measure; the same is true of Lebesgue measure on I. Therefore we can apply a theorem of von Neumann [3, Th. 1] to obtain a measure-preserving transformation from H to I. The characters of H, transferred to l, then form the required orthonormal group, complete in $L^{2}(I)$.
${ }^{1}$ Only the case of a countable orthonormal group was considered in [1], but the proofs carry over to the uncountable case with slight modification.

Received March 14, 1954. This paper was written while the author was a National Science Foundation Post-doctoral Feillow, 1953-1954.

Pacific J. Math. 5 (1955), 61-65

We shall now examine a special case of this theorem, in which we can construct G^{\prime} explicitly. Let G denote the additive group of rationals mod $1 . G$ is the (weak) direct sum of the primary groups G_{p} consisting of all the rationals $\bmod 1$ with denominators powers of the prime p. The character group of G_{p} is H_{p}, the group of p-adic integers

$$
\begin{equation*}
\xi_{p}=c_{p 0}+c_{p 1} p+c_{p_{2}} p^{2}+\cdots \quad\left(c_{p m}=0,1,2, \cdots, p-1\right) \tag{1}
\end{equation*}
$$

and H is the (strong) direct sum of all the H_{p}. The value of the character ξ_{p} at $1 / p^{m}, m>C$, is given by

$$
\begin{equation*}
x_{1 / p^{m}}\left(\xi_{p}\right)=\exp 2 \pi i A_{m}\left(\xi_{p}\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{m}\left(\xi_{p}\right)=\frac{1}{p^{m}}\left(c_{p 0}+c_{p 1} p+\cdots+c_{p, m-1} p^{m-1}\right) \tag{3}
\end{equation*}
$$

For $n \leq m, p^{n} A_{m}\left(\xi_{p}\right) \equiv A_{m-n}\left(\xi_{p}\right)(\bmod 1)$, so the definition

$$
\begin{equation*}
\chi_{k / p^{m}}\left(\xi_{p}\right)=\chi_{1 / p^{m}}^{k}\left(\xi_{p}\right) \tag{4}
\end{equation*}
$$

is unambiguous. For $h=\left(\xi_{2}, \xi_{3}, \xi_{5}, \ldots\right) \in H$, and for $r \in G$, we decompose r into

$$
\begin{equation*}
r=\frac{k_{1}}{p_{1}^{m_{1}}}+\frac{k_{2}}{p_{2}^{m_{2}}}+\cdots+\frac{k_{t}}{p_{t}^{m_{t}}} \tag{5}
\end{equation*}
$$

and have

$$
\begin{equation*}
\chi_{r}(h)=\prod_{s=1}^{t} \chi_{k_{s} / p_{s}}\left(\xi_{p_{s}}\right) \tag{6}
\end{equation*}
$$

Next we construct a mapping λ of h onto l. For this purpose we remark that, given any sequence of integers $n_{k}>1, k=1,2, \cdots$, it is possible to get a representation of $x \in I$ by sequences $c_{k}(x)$ which generalizes the representation to the fixed base b. We divide l into n_{1} equal intervals, each of these into n_{2} equal intervals, and so on. If x falls in the j th interval $\left(j=0,1,2, \cdots, n_{k}-1\right)$ at the k th stage, we define $c_{k}(x)=j$. We then have

$$
\begin{equation*}
x=\frac{c_{1}}{n_{1}}+\frac{c_{2}}{n_{1} n_{2}}+\frac{c_{3}}{n_{1} n_{2} n_{3}}+\cdots \tag{7}
\end{equation*}
$$

and the representation is unique except for a countable set. We can remove the ambiguity by choosing the finite expansion where two are possible. It is easy to see that the measure of the set of $x \in I$ for which $c_{1}, c_{2}, \ldots, c_{k}$ have given values is $\left(n_{1} n_{2} \cdots n_{k}\right)^{-1}$, so that the functions $c_{k}(x)$ are statistically independent.

Returning to the mapping λ to be defined, let $h=\left(\xi_{2}, \xi_{3}, \xi_{5}, \ldots\right) \in H$ be given. We run through the integers $c_{p m}$ by the diagonal method, taking $n_{k}=p$ whenever we reach $c_{p m}$. Thus $n_{1}=2, n_{2}=3, n_{3}=2, n_{4}=5, n_{5}=3, n_{6}=2$, $n_{7}=7$, and so on. This defines a number $x \in I$ which we designate as $\lambda(h)$. Thus

$$
\begin{gather*}
\lambda(h)=\frac{c_{20}}{2}+\frac{c_{30}}{2 \cdot 3}+\frac{c_{21}}{2^{2} \cdot 3}+\frac{c_{50}}{2^{2} \cdot 3 \cdot 5}+\frac{c_{31}}{2^{2} \cdot 3^{2} \cdot 5}+\frac{c_{22}}{2^{3} \cdot 3^{2} \cdot 5} \tag{8}\\
+\frac{c_{70}}{2^{3} \cdot 3^{2} \cdot 5 \cdot 7}+\cdots=\sum_{\substack{p \text { prime } \\
m \geq 0}} \frac{c_{p m}}{D_{p m i}}
\end{gather*}
$$

$D_{p m}$ is defined, for $p=k$ th prime p_{k}, by

$$
\begin{equation*}
D_{p m}=\prod_{j=1}^{k-1} p_{j}^{m+k-j} \prod_{j=k}^{m+k} p_{j}^{m+k-j+1} \tag{9}
\end{equation*}
$$

empty products being interpreted as l. With the convention given above, λ is one-to-one, and the inverse μ is given by

$$
\begin{equation*}
c_{p m}(x) \equiv\left[D_{p m} x\right](\bmod p) \quad 0 \leq c_{p m}(x)<p \tag{10}
\end{equation*}
$$

It is easily verified that λ is continuous. More important, however, is the fact that it is measure-preserving, since the $c_{p m}(h)$ are statistically independent with respect to Haar measure on H, and have the same distribution as the $c_{p m}(x)$ on I; the measures on both spaces are determined by the measures on the sets of constancy of finite collections of $c_{p m}$. It follows that the functions

$$
f_{r}(x)=\chi_{r}(\mu(x)) \quad(r \in G ; x \in I)
$$

form a complete orthonormal group on I.
It may be of interest to note the following Fourier expansion of the function $((x))=x-[x]-1 / 2$:

$$
\begin{equation*}
((x))=-\sum_{p, m, n}\left\{p^{m} D_{p m}\left(1-e^{-2 \pi i n / p^{m+1}}\right)\right\}^{-1} f_{n / p^{m+1}}(x) \tag{12}
\end{equation*}
$$

where the summation is extended over all primes p, all $m \geq 0$, and $0<n<p^{m+1}$, with $(n, p)=1$. To derive (12), write

$$
\begin{aligned}
& M=c_{p 0}(x)+c_{p 1}(x) p+\cdots+c_{p m}(x) p^{m} \\
& N=c_{p 0}(x)+\cdots+c_{p, m-1}(x) p^{m-1}
\end{aligned}
$$

so that

$$
\begin{equation*}
c_{p m}(x)=\frac{M-N}{p^{m}} . \tag{13}
\end{equation*}
$$

On the other hand, from (2), (3), and (11),

$$
f_{k / p^{m}}(x)=\exp 2 \pi i \frac{k N}{p^{m}} .
$$

Thus

$$
\begin{aligned}
N & =\sum_{r=0}^{p^{m}-1} r \delta\left(r_{s} N\right)=\frac{1}{p^{m}} \sum_{r=0}^{p^{m}-1} r \sum_{k=0}^{p^{m}-1} e^{-2 \pi i k r / p^{m}} f_{k / p^{m}}(x) \\
& =\sum_{k=0}^{p^{m}-1} f_{k / p^{m}}(x)\left\{\frac{1}{p^{m}} \sum_{r=0}^{p^{m}-1} r e^{-2 \pi i k r / p^{m}}\right\} .
\end{aligned}
$$

There is a similar expression for M. Combined with (13), they yield the Fourier expansion for $c_{p m}(x)$. Substituting this in (8) and rearranging, we obtain (12). The series converges uniformly and absolutely for all x. This, incidentally, furnishes an alternate proof of the completeness of $\left\{f_{r}\right\}$, since every power of x has an expansion of the same kind, and the polynomials are dense in $L^{2}(I)$.

If we wish to exhibit the rationals $i \mathbb{A}$ a complete orthonormal group, this time on the unit square I_{2}, we need merely take

$$
\begin{equation*}
g_{r}\left(x_{s} y\right)=e^{2 \pi i r y} f_{r}(x) \quad\left(r \in R ;(x, y) \in I_{2}\right) \tag{15}
\end{equation*}
$$

To see this, let \hat{R} denote the character group of R. Every element $\sigma \in \hat{R}$ determines a number $y, 0 \leq y<1$, by $\sigma(1)=\exp 2 \pi i y$, and an element $h \in H$, defined by $\chi_{r}(h)=\sigma(r) \exp (-2 \pi i r y)$. Conversely, every pair (h, y) determines a unique σ. If $h=\left(\xi_{2}, \xi_{3}, \ldots\right), h^{\prime}=\left(\xi_{2}^{\prime}, \xi_{3}^{\prime}, \ldots\right)$, then $\sigma(h, y) \cdot \sigma\left(h^{\prime}, y^{\prime}\right)=$ $\sigma\left(h^{\prime \prime}, y^{\prime \prime}\right)$, where $y^{\prime \prime} \equiv y+y^{\prime}(\bmod 1)$ and $h^{\prime \prime}=\left(\xi_{2}^{\prime \prime}, \xi_{3}^{\prime \prime}, \ldots\right)$ is given by $\xi_{p}^{\prime \prime}=\xi_{p}+\xi_{p}^{\prime}+\left[y+y^{\prime}\right]$. Using these relations, we can show that the mapping $\sigma(h, y) \longrightarrow(\lambda(h), y)$ is a continuous and measure-preserving transformation from \hat{R} to I_{2}. Under this transformation R, realized as the character group of \hat{R}, goes over into the system (15). We could, of course, map I_{2} onto I, preserving measure, and thus realize R as an orthonormal group on I.

References

1. N. J. Fine, On groups of orthonormal functions (I), Pacific J. Math. 5 (1955), 51-59.
2. P.R. Halmos, Measure theory, New York, 1950.
3. J. von Neumann, Einige Sätze über messbare Abbildungen, Ann. of Math. 33 (1932), 574-586.

University of Pennsylvania and
The Institute for Advanced Study

