
FLOWS AND NONCOMMUTING PROJECTIONS ON HILBERT SPACE

F. H. B R O W N E L L

1. Introduction. Let \E(A)\ over A G B^ the Borel subsets of the real

line Rl9 be a resolution of the identity for the Hubert space X, and consider

the flow

ut =Utu0 =7*°° β i t λ d E ( λ ) u o f

over t real for fixed UQ € X. Let P be an orthogonal projection in X. Our problem

is to study the asymptotic behavior of \\Put | |2 as t —> + oc or t—> — oo. If P

commutes with all E (A ), then

PUt = UtP and | | P « t | |
2 = | | P « o | | 2 ,

a constant, so we are interested only in the case where P fails to commute.

It is easy to see that this asymptotic behavior depends upon the nature of

γ through the equation

| | P U t | | 2 = /

integrated in a Riemann sense over the plane R2, where

γ ( A x B ) = ( P E ( A ) u 0 , E ( B ) u 0 ) .

If γ admits a σ-additive and bounded extension over B2, the Borel sets of R29

standard procedures enable us to say that 11 Put 112 converges densely to C as

t —» + oo or t —> ~ oo if and only if γ(Ds ) = 0 for s £ 0 and γ{Do ) = C, where

the diagonal

D s = { ( x , y ) e R 2 \ x - y = s }.

The interesting fact here is, as we shall see by example, that γ need not in

general be either σ-additive or bounded, although it is always both if P is
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compact. Also if γ is not both σ-additive and bounded, it can happen that

11 Put 112 —> C densely as t —> + oo and —> C ' densely as t —» — oo with C φ C.

These results, particularly the last, seem to be of some interest in quantum

physics. Here the vector ut = Ut uQ represents the state of the physical system

at time t for the initial state uo; and, for | | α 0 | |
2 = 1, we can take \\Put | | 2 to

the probability of the system at time t being in the situation which corresponds

to the range space of P.

2. Principal results. As above, let E(A) be a spectral measure L4, p. 58]

over A € B t for the Hubert space X. Thus

eitλdE(λ)u0

exists as the X norm limit of the Lebesgue sums for every u0 G X, and we de-

fine

= L / eitλdE(λ)u0,
J

so Vι is a unitary operator on X. Also since each term in a Lebesgue sum for

e corresponds to a countable disjoint union of equal intervals equally spaced

»itλdE(λ)u0

for the latter defined as the X norm limit of Riemann sums. Thus for P an or-

thogonal projection,

eitxdPE(x)uΌ,

although PE(A) is generally not a projection. Define for a given u0 € X the

complex-valued set function γ by

γ(A xB) = (PE(A)u0, E(B)UQ),

so that y clearly has a unique, finitely additive extension over the finite algebra

generated by product Borel sets, which includes the finite algebra 3 of finite

unions of intervals of R2, ( [ 3 , p. 149, ( 8 ) ] . Using the continuity of the inner

product we thus see that
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(2.D \\Put\\2 = Rf eit{*-y)dγ{χ,y),

where the integral on the right is of the Riemann type defined as the limit as

h9 I —» 0 , hNt IM —> + oo of the Riemann sums

with

An={U-Dh,nh] and Bm = ( U - 1) Z, ml]

and xn G An and ym G β m arbitrarily chosen. We shall call a complex-valued

set function over 3 tractable if it is both σ-additive and bounded over 3, and

thus also of bounded variation over 3. For tractable y we have the Jordan de-

composition of γ into its four nonnegative variations, each one of which is

clearly σ-additive over 3. Thus, applying the well-known Borel-Hopf extension

theorem [ 3 , p. 49-54], we see that γ possesses a unique, σ-additive, and

bounded extension at least over B 2 , the Borel subsets of #2 =/?i x/?i Thus

applying dominated convergence to the Riemann sums, for tractable y we have

7
JR

x, y) ,

defined in the ordinary Lebesgue sense. Hence letting

Ds ={U,y) eR2 I x -y =s \,

the diagonal in R2 having x intercept s, and

U D8\
£A I

we see that γ is bounded and σ-additive over B 1 and (2.1) becomes

(2.2) \\PUt\\2 =L[ eitsdγ(s)
JR

for tractable y.

LEMMA 1. // P is compact (that is, the range space of P has some finite
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dimension k), then γ is tractable, and in fact ( v a r γ) < k | | z z o | | 2

Proof. Clearly the orthogonal projection P is compact if and only if the

unit sphere of the range space is compact, or thus equivalently the range space

has some finite dimension k. Hence taking {vp \ a complete orthonormal system

in the range space of P, we see that

VP ^ VP

so

δ ) = ^ (E(A)uo, vp)(E(B)uOsvp)

p=l

for A, B G 131. But E (A ) being a spectral measure over A G B t ,

ηp(A)=(E(A)u0,vp)

has 77 a σ-additive, complex-valued set function over 13̂  which is bounded,

Thus

is a finite sum of product measures of this sort, and hence is σ-additive and

bounded over S 2 D_ 3,

k

(var γ) < 52 p —

this completes the proof.

As usual we say that a complex-valued, measurable function / ( ί ) converges

densely to C as t —> + oc if, for every p > 0,

0 = lim - μ ι ( [ 0 , 7 ' ] n { ί | |/ ( t ) - C | > p}),
T-.00 T
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where μ is ordinary Lebesgue measure on Rχ9 and similarly as t—> — oc if

0 = l i m - μ ι ( ί ~ T i 0 ] n \ t \ \ f ( t ) - C \ > p \ ) .

We collect some well-known results [2, p. 25, Theorem 8] in the following lem-

mas.

LEMMA 2. A bounded^ measurable fit) converges densely to C as t—»+cc

if and only if

0 = lim (lfT\fU)-C\*dt),
T-4OO \ 1 Ό /

and similarly as t —> — oc if and only if

0 = lim - / ° \fit)-C\2dt.
r-»oo TJ-T

LEMMA 3. //

eίtsdφis),

where φ is a bounded and σ-additive complex-valued set function over Bχf

then fit) converges densely to C as t —»+oc if and only if φi\s \) = 0 for

s ^ 0 and φ ({0 }) = C, and the same is true as t —> — oc»

Proofs. For Lemma 2, if we let

ATfP=[0,T]n{t I | / ( f ) - C | >p\,

and

| / ( ί ) | < M < +oo

for the bound of / ( ί ) , we clearly get the result from the following inequali t ies :

For Lemma 3, we note that the Fubini theorem applies. Thus if we define
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eits dφΛs) for φ t (A ) = φ ( A ) - Cδ(A ) ,
' i ' 1 0

a n d ,

δ o ( / 4 ) = l if OeA, δ Q = 0 if O j έ ^ ) ,

a n d

i
if y ^ 0 , Λ(0) = l ,

iy

we get

- Γ \f(t)-C\2dt = L[ Y \lfT e i t { s '
I Jo JRx J Ri I I Jo

v)dt\dφι(s)dφΛv)
J

h(T(s-v))dφAv)dφΛs).

B u t l i m y ^ + oo A ( y ) = O, s o t h a t , by d o m i n a t e d c o n v e r g e n c e , | A ( y ) | < 2 a n d

φ b o u n d e d , w e h a v e

lim \

which shows that Lemma 3 follows for t —> + oo from Lemma 2. As t —¥ — oo

the same argument holds except that then

l - ey
h(y) = fory ^ 0 .

iy

We can now state our main affirmative result for tractable y, (that is, γ σ-

additive and bounded over 9, the finite algebra generated by the intervals of

R2.)

THEOREM 1. If γ as defined by E(A) and UQ$ and P is tractable, then

each of the following three statements implies every other one:

( a ) I l ^ " ί l | 2 — * C densely as t —> + oc;
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(b) . | | P u t | |
2 — > C densely as t—»-co;

( c ) y ( { s } ) = y ( D * ) « 0 for s ^ O and γ (\ 0 )) = γ(D0 ) = C.

This theorem is an obvious consequence of Lemma 3 applied to equation

(2.2). Because this answer for tractable y lies so close to the surface, it is

desirable to see what can happen if γ is not tractable. This appears of parti-

cular importance for quantum physics in studying transitions, for if y is tractable

then ( a ) <==Φ (b) in our theorem shows in a certain sense that no change can

take place in the probability of the system being in the situation of which P is

the projection. Unfortunately, as one might suspect, if y is not tractable there

seems to be no general procedure applicable to all possible cases. We shall

content ourselves by giving in the next section a few examples of what can

happen.

3. Examples. The first example is constructed for the Hubert space X =

L2(-π, π), using Fourier series, and here we get a nontractable y, being neither

σ-additive nor bounded over 9. We also have \\Put \\2 —» 0 densely as t —» — oc

and H P u f l l 2 — > l = | | u o | | 2 densely as t—» + oc here, so that ( a ) no longer

is equivalent to (b) as in Theorem 1. The second example gives a nontractable

γ for X = L2(— oo, oo), but here this γ "blows up at oc," whereas in the first

example it is only in the neighborhood of the main diagonal Do that γ behaves

badly. The different behavior of γ in these two examples illustrates the diffi-

culty of getting any general result like Theorem 1 for nontractable y.

EXAMPLE 1. Let

X = L 2 ( - 77, 77), vΛx

so that \ Vp } is a complete orthonormal system for X9 and let the projection P

be defined by

VP ^ VP

convergent in X norm. Also let

[E(A)u](x)--χA(x)u(x) for A
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\ ^ being the characteristic function of A9 so E(A) is a spectral measure.

Finally let u$ = v0. The γ which E(A),P9 and UQ define is not tractable^ being

neither σ-additive nor bounded over 3 γ is given for subintervals A and B of

[- π, π] by

(3.1) γ(A χ β ) = μ . U n β )
477

1 f Γl+cos(y-*) 1
— \μ2(AxB) J . , rfμ2(*,y)
2τ7)2 I ^ * sin(y -%) J

where μ2 is ordinary Lebesgue measure on R-2 and the integral ranges over

A xB - U n iB) x U n B);

(3.2)

I /• 77 r 7τ f [l-i- cos ( y —x ) J sin t{y-x) ]
+ / / | - cos t(y -x) + \dydx;

2 (2 7r)2 J-πJ-πi sin(y-Λ ) J

in the ordinary sense9 which implies dense convergence^

\\Put\\2—»0 os t—> - en and—-»l = | | α o | | 2 as t—>+oo.

To prove these assertions we shall first establish (3.1). Here

= (PE(A)uo,E(B)uo) = Σ, (f uo(x)vp(x)dx\ (j uo(y)vp(y)dy

1 Γ e^y"*)-- ei(n +
/

π)2 JΛXB 1_eUy-x)

1 Γ e e

= lim / dμAx$y).
n ^ o c ( 2 ) 2 J Λ B U) 2

Now if A and B are subintervals of [~ π, π] having A n B = φ (or actually con-

taining at most one point), then

xB, μ2)

is easily verified. Hence rotating coordinates and applying the Riemann-
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Lebesgue lemma to evaluate the previous limit for γ, we get

B) // dμλx,y)
{ 2 π ) 2 J A B i ' ( y - ^ ) r 2

1 f *ί(y-x)-1

(2π)2 i x δ I j _ e i ( y - x ) i
^ y)

1 Γ cos (y — x) — 1 + i sin (y - x)

π)2 h B 2 ( l ( ) ) ^2 ^ 7
(2π)2 h x B 2 ( l - c o s ( y - * ) )

Thus for disjoint intervals A and S we have

1 Γ ί 1 +cos(y-%)
δ ) / 1+ ^(3.3) y ( x δ )

2{2π)2

A t t h e o t h e r e x t r e m e , f o r i n t e r v a l A = B , u s i n g t h e f a c t t h a t γ ( A x A ) i s r e a l ,

w e c a n v e r i f y

y(/4x/ί)= lim

»-~ (2τr)2

= lim ( \ / I 1 - cos n(γ - x)
\ O ί̂  *? ^^ / *vl x /4 I

sin (rc(y — Λ)))
- LI +cos(y - * ) ] — — \dμ{x9y).

sin (y - x ) J

Rotating coordinates and using the Riemann-Lebesgue lemma and known proper-

ties of the Dirichlet kernel to evaluate this limit, we get

(3.4) γ(A xA)= j μ2(AxA)+ μχ(A).

Finally, (3.3), (3.4), and the finite additivity of γ over 3 imply (3.1) as de-

sired.

Using (3.1) in (2.1) and noting the obvious cancellations we readily see

that (3.2) results, with the integrand now bounded, unlike (3.1). But from (3.2)
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by the same evaluation leading to (3.4), we get

as ί

and

\-\ = ° as

as desired.

It only remains to show from (3.1) that γ is neither bounded nor σ-additive

over 3. To see this, bisect

[ - 77, 77] X [ - 77, 77] = C 0

into four equal closed squares, bisect those of these squares whose diagonals

are segments of D o , and continue the operation to get a sequence of squares

Fjtp above the main diagonal, explicitly

for 1 < / .< 2P" ι and 1 < p. The open subset

V = \{x,y)eC0 \y > x\

of C o clearly has [1 + cos (γ - x) ] /sin (y - x) integrable Lebesgue over V,

with

Γ 1 + cos(y - x)

* 1/ esi
dμ2 (x9 γ) = + oc.

'V sin (γ - x)

Thus (3.1) and the σ-additivity of the Lebesgue integral, since

00 2

VC U _U FitP,

show that

N 9 P - 1

1 / 2 \
y u u Fj>p)

\p=l ;=i /
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so γ is not bounded over 3 .

It is only slightly more complicated to see that γ is also not σ-additive over

c3. For this, define the upper right corner square

of Cn and also

Γ 2π 1 Γ 2π 1
L p = 7 7 , 77 X 77 , 77

p I 2P J I 2P I

KD = L- π,π\ x - 77, π .
P I 2P 1

Define / (p) as the least integer k > p + 1 having

q <k

such k existing from (3.1) since

Γ 1 + cos (y -x)

sin (y - Λ; )
= + oo.

Now define the sequence of se t s Wn £ 3 by taking fF0 = {(ττ> tf) I, a point inter-

val, and

fip) 2" l

V2p.ι= U U FUq, W2p=Kp, forp > 1 .

These in turn define the disjoint sequence W ' G <3 by

and we clearly see that

U JT= U
0 0

Also clearly f ( p ) < / ( p + 1) and Kp C A'p+ ι ? so we see that
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2p 2p
U ί T = U Wn =

jf(p) 2«
u Kp U U U

u U

and similarly

2p+l
u » ; = ! r o u ( c o - L p ) u u

But hence γ( f0 ) = 0; and <5ί [y( Co - Lp) ] = 0 from ( 3.1) make

« = 0

ί u

|Fj,,CLp

U ( 1 0 ) P

and likewise

|

2p+l
Σ
π=0

Thus we see that

U Fi

lim A = + oc,

although disjointly U~β() ^ = Co 6 9 and cSt [ y ( C 0 ) ] = 0 by (3.1), so γ is not

σ-additive over 3.

This completes our discussion of Example 1.

E X A M P L E 2. Let

X = L 2 ( R ι ) , [E(A)u](χ) =
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for u G X and A G I31 as in Example 1,

A 1 ΓL

u{ ω) = X norm limit — / eιωx u (x)dx ,

tAe Fourier transform of u9 and u <—> u is a Hilbert space isomorphism of X onto

X. Let

[Pu] (cύ) = Xj- - i ( ω ) M ( ω )

define the orthogonal projection P in X? and consider UQ € X. Then \\Put\\ — * 0

densely as \t\ —> + oo for every initial uo G X; γ defined by E (A), P, and UQ is

tractable for UQ G L 1 ( / f ι ) π Z / 2 ( / ? t ) ;

1 LΓ sin(^--y)
γ(C)=— I uo{x) uo(γ)dμΛx9y)

π Jc x-γ 2

for all C € 3 for u0 G L 2 ( / ϊ ι ) π t i ( / ί i ) , or for all bounded C E 3 for any u0 £ X;

but there exist u0 Gλ ; = L 2 ( / ? i ) for which γ is not tractable, being unbounded

over 3 .

We first need to verify (3.5). Here we note that for R.χ intervals A and B,

γ(A xB)=(PE{A)uo,E(B)uo)=Γ ί\2'uo](

[[ f
Λ JAJB

for any u0 £ L2{Rι) n Lχ(A u B). T h e F u b i n i theorem now a p p l i e s , y i e l d i n g

y ( 4 χ β ) = / / uo(x)uQ(y)dxdy
2π JA Jβ i{χ -y)

= — / / uQ(x)uo(γ)dxdy.
π JAJB x-γ

T h u s ( 3 . 5 ) fol lows a s s t a t e d , e i t h e r for u 0 E L 2 ( / ? i ) n L ι ( / ϊ ι ) and any C G 3 ,

or for any IXQ G L 2 (/? i ) and bounded C G c5.

Now from ( 3 . 5 ) for UQ G L 2 (Rι)n Lι(Rί), it i s c l e a r t h a t γ i s t r a c t a b l e and
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II Put 112 —* 0 densely as 11 | —> oc, since

for all real s. For general initial u0 E L2(Rι ), consider uQ' € L2(/ί ι ) n L

and let ut = t/^ 0 and u£' = ί^i^', SO that we have

\\Put-Puί\\ <\\ut-u't\\ = \\uo-u^\\.

Thus

But U P u ' l J 2 — > 0 densely as | ί | —» + oo implies the same for | | ^ M / | | \ so

by Lemma 2, and hence

l i m s u p ί — / | | PKJ | | A ] < | | uo
T->oo \2T J-T I

Thus the density of L2(/?χ)n LγiRi) in L2(Rί) shows

so Lemma 2 shows that | | P α t | | ^^ hence \\Put | | 2 — > 0 densely as 11 \ —>+oc

for every initial UQ € L2\Rι)

It only remains to show the existence of u0 £L2(Rι) for which γ is not

tractable. F i r s t notice that ( 3 . 5 ) for bounded C ^ 3 implies, for the total varia-

tion of γ over 3 ,

( 3 . 6 ) v a r y
77 7 ? 9

in {x - y )s i n

x-y
^ ) | \uo(y)\dμ2(x$γ)

for u0 E L2(Λi ), so that if y is always tractable this is always finite for every

UQ =U G L 2 (/? i ). Hence
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L
sin (x ~ y )

x - y
\u(x) I |v (#, y)

L s i n (Λ; — y )

- y
\υ(x)\)(\u(y)\ + | t ; ( y ) | ) < / μ 2 ( * , y )

is also finite for every u and v G L2KR\ ). Thus

11
[FU)](y) = -

sin (y - x)
u ( Λ ) dx ,

c l e a r l y e x i s t e n t , h a s [F {u)](y) v(y) ELί(Rι ) by the F u b i n i t h e o r e m for e v e r y

u a n d v G L 2 ( i ? ι ) , S O F (U) G L2(Rι) a l s o . L i k e w i s e ( F K , V) = (U9 FV) f o l l o w s

from the F u b i n i t h e o r e m , s o F i s a s y m m e t r i c , e v e r y w h e r e d e f i n e d , l i n e a r opera-

tor on L2(R\), a n d h e n c e a b o u n d e d H e r m i t i a n o p e r a t o r . Now d e f i n e f G L2(R\)

u n i q u e l y by r e q u i r i n g

2
[ Co) = —

π

sin ω
i n L2{Rχ),

and note that

/

Since F is bounded from L2(Rι) into L2(Rι), we can by using the density of

L2(Rι ) n Lι(Rγ ) in L2{Rι) for approximation, get the usual convolution result

[F(u)](ω)=f(ω)u(ω).

Thus

and F bounded makes

ess sup I / ( cύ) I = 11 F 11 < + oo ,

so f€Loo(Ri ) n L2(Rι ). But thus the easy extension of Bochner's theorem

[ 1 , p. 20, Theorem 9] from LiiRi) to Lp(Rι), and p = 2 in our case, requires

our nonnegative / ( ω) to have
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contradicting

sin cύ

Cύ

s i n

= f(ω)GLι(Rι),

Thus in (3.6) we must have var y = + oo and y nontractable for some u0 £ L2{Rι )•

This completes our discussion of Example 2.
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