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1. Introduction. A complete mapping of a group G is a biunique mapping

x —>®(x) of G upon G such that x ®(x) =* η(x) is a. biunique mapping of G

upon G. The finite, non-abelian groups of even order are the only groups for

which the question of existence or non-existence of complete mappings is un*

answered. In a previous paper [4] , some progress toward the solution of this

problem has been made. We shall show that a necessary condition for a finite

group of even order to have a complete mapping is that its Sylow 2-subgroup be

non-cyclic, and that this condition is also sufficient for solvable groups. We

shall also prove that all symmetric groups Sn(n > 3) and alternating groups

An possess complete mappings. In the light of these results the following con-

jecture is advanced:

CONJECTURE. A finite group G whose Sγlow 2-subgroup is non-cyclic

possesses α complete mapping.

It is interesting to compare this conjecture with the results of Bruck [2, p.

105].

2. Complete mappings for the symmetric and alternating groups. The follow-

ing theorem is a generalization of Theorem 4, [4] and will be necessary for

considerations of this and other sections.

THEOREM 1. Let G be a group, H a subgroup of finite index {G:H) =k .

Let u\, U29 , w/c be a s e ί °f elements of G that form both a right and left

system of representatives for the coset expansions of G by H. Let S and T be

permutations of the integers 1, 2, , k such that

Ui(us{i)H) =uτ{i)H, i = 1,2, . . . , & .

1ΓΓhe restriction that the index be finite is unnecessary. However, P. Bateman [ l ]
has shown that all infinite groups possess complete mappings and so we have chosen
the present restriction for simplicity. In fact, the restriction that G be finite would
seem appropriate.

Received December 18, 1953. The work of L. J. Paige was supported in part by the
Office of Naval Research.

Pacific J. Math. 5 (1955), 541-549
541



542 MARSHALL HALL AND L. J. PAIGE

Then, if there exists a complete mapping for the subgroup H$ there exists a com-

plete mapping of G.

COROLLARY 1. Let G be a factorizable groups that is, G = A B9 where

A and B are subgroups of G with A n B = 1. If complete mappings exist for A

and B9 then there exists a complete mapping for G.

COROLLARY 2. If H is a normal subgroup of G, and both H and G/H pos-

sess complete mappings then G possesses a complete mapping.

Proof. By hypothesis,

(1) G = u\H + u2H + • + u^H = Hui + Hu2 + + Huk

and thus the equation

(2) i t s ( i ) P = p* i t [ s ( j ) t p ] , ( i = 1,2, • • • ! * ) , P€H,

uniquely defines p* and ^fs( ) π as functions of p and ι. Here, wr<j/.\ i = ut for

some 1 <_ t fC k. Moreover, p is uniquely defined by p * and i, for if

usϋ)Pι

then we would have

Since the w's form a system of representatives this would imply

u [ s ( i ) , p ι ] " U [ s ( ) .p a ]

and consequently pί = p 2

We have assumed that there exists a complete mapping for H; hence, there

is a biunique mapping ®ι of H upon H such that the mapping ηγ{p) = p Θ i ( p )

is a biunique mapping of H upon H.

Let us define a mapping of G upon G in the following manner:

O)

where p, p*, w[ s( ι ) 1 a r e defined by ( 2 ) .
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In order to show that Θ is biunique, assume that

ΘUίP*) = eu / P*).

Then,

u[sU),Pι] ' ei{Pi] = uίs(j),p2] ' &ι{P2

)I

and t h i s can h a p p e n o n l y w h e n u[sd) ]~u[s(~) ] i m p l y i n g Θ t ( p t ) = Θ L ( p 2 )

or p t = p 2 . Now,

and it would follow from (2) that i =/. If G is finite we may conclude immedi-

ately that Θ is a biunique mapping of G upon G. If G is infinite, we note from

(2) that if p is kept fixed, then as i ranges over 1, 2, . ., k; u[s(^ l ranges

over all coset representatives. Thus for any element ut p', we first find p

from p ' = Θ i ( p ) ; and then holding p fixed we vary i to find the p* such that

ιι . v . p = p* . Ufr For this i and p* we have

ΘUjp*) =Mt ®ι(p) =ut p\

and every element of G is an image of some element of G under the mapping Θ.

Let us now show that Θ is a complete mapping for G. Consider

η(uiP*) =uiP* Θ U p*) = ttip* " [ s (0 ,p] ' Θ ^ P ^ =uiuS(i) ' P Θ l ( p )

First, if ηiuip*) = ηiujp*), we have

(4) ^ ^ ( ί ) P i Θ ι ( P i ) = = w / z x S ( / ) P 2 Θ ι ( P 2 ) ' O Γ uT(i)H = uT(j)H>

and this is impossible unless i = /. Consequently from (4),

P 1 Θ 1 ( P l ) = P 2 θ 1 ( p 2 )

and Θ t being a complete mapping implies pγ - p2. Again the finite case is

completed and if G is infinite we note that there is but one i such that UiUς,ί.\H —

Uj>ί\H and the subsequent solution for p* is straightforward.

Corollary 1 follows from the observation that the elements of A form a sys-

tem of coset representatives satisfying the hypothesis of the theorem.
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Corollary 2 is proved by noting that if

in G/H, then

We will use Theorem 1, to show that an earlier conjecture [4, p. 115] con-

cerning complete mappings for the symmetric groups Sn(n > 3) was wrong.

THEOREM 2. There exist complete mappings for the symmetric group Sn if

ifn > 3.

COROLLARY. (See conjecture [4, p. 115]). There exist Latin squares

orthogonal to the symmetric group Sn for all n > 3.

Proof. The proof will be by induction and we note first that S3 has no com-

plete mapping [3, p. 420], Thus we must exhibit a complete mapping for S 4 .

We may express S4 = A B9 where

A=\\9 (123), (132) ! ,

B = U , (12), (34), (12M34), (1324), (1423), (14)(23), (13)(24) },

are subgroups of S4 with AAB = 1. Moreover, there exist complete mappings for

A and B given by:

β ( l ) = l, 6(123) = (123), Θ(132) = (132)

for A; and

Θ ( l ) = l, Θ(12) = (34), Θ(34) = (1324), Θ( 12)(34) = (13)(24)

Θ(1324) = (14)(23), ©(1423) = (12)(34),

Θ( 14)(23) = (12), Θ(13)(24) = ( 1 4 ) ( 2 3 ) ,

for B. The fact that S4 has a complete mapping now follows from the corollary

of Theorem 1.

Let us now assume that Sn has a complete mapping with n > 3. Then,

Sn+X =Sn + ( 1 , n + 1)Sn + (2, n + 1)S n + + (n t n + 1)Sn ,

= Sn + Sn (1 , n + 1) + Sn (2, n + 1) + + Sn (n9 n + 1) .
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Clearly, two cosets (/, n + l)Sn and (k% n + 1 )Sn (j φ. k) being equal would

imply (/, k, n + 1) G Sn and this is impossible.

Now note that

(/, n + 1) (/ + 1, n + 1) Sn = (/, j + 1, n + 1) Sn = (/ + 1, n + 1) Sn

if 1 < / < re - 1. Also, U , n + l ) ( l , n + l)Sn = ( 1 , n + l)Sn.

We now see that the coset representatives of Sn+ γ by Sn satisfy the con-

ditions of Theorem 1 under the obvious mapping S ( l ) = l , S{i)=i + 1 for

2 <. i <. n and S(n + 1) = 2. Hence, S π + X has a complete mapping and our in-

duction is complete.

The corollary follows from Theorem 7 of [ 4 ] ,

It should be pointed out that the coset representat ives used for Sn+ι in the

argument above do not form a group and hence Theorem 1 is sufficiently stronger

than the corollary to be of decided interest.

THEOREM 3. There exists a complete mapping for the alternating group

Λn$ for all n.

Proof. Aι, Ait a n d A3 (the cyclic group of order 3) possess complete

mappings. Hence assume that there exists a complete mapping for An. Then,

r̂c+ 1 = An + ( 1 , n, n + 1) An + ( 1 , n + 1, n) An + (2, n + 1) ( 1 , n) An

+ (3, 7i + l ) ( l , n)An + . . . + U - 1 , Λ + 1 ) ( 1 , n)An

and the coset representatives are valid for either a right or left coset decom-

position for An+ι by An,

It is a simple, straightforward verification that the permutation S, given by

S ( l ) = l, $ ( 2 ) = 2 , S(3) = 3, S ( ί ) = i + 1 (4 < i < n), S U + D - 4

satisfies the conditions of our Theorem 1. Here we meet a slight difficulty if

n = 3, but it is known [3, p. 422] that there exists a complete mapping for

/14 and we may take n — 4 as the basis for our induction.

3. Groups of order 2". Although it has been indicated in the literature [4]

that the results of this section are known, it seems desirable (and necessary

for completeness) to include the proofs of these results.

LEMMA 1. Let G be a non-abelian group of order 2n and possess a cyclic
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subgroup of order 2n~ι. Then a complete mapping exists for G.

Proof. It is known [5, p. 120] that G is one of the following groups:

( I ) Generalized Quaternion Group (n > 3) , A 2n~l = 1, B2 =A2n'\ BAB'ι = A'\

(II) Dihedral Group U > 3), A2n'1 = 1, B2 = 1, BAB'1 = A'\

(III) (n > 4 ) , A2n'1 = 1, β 2 = 1, BAB'1 =A 1 + 2 * ' 2 .

(IV) U > 4) , ^ 2 " " 1 = 1, β 2 = l,

In each case, the elements of the group are of the form

Λ D^ \CL — Ό9 1, , z = 1 ; p = 0, l j .

Let us define a mapping Θ as follows: ( let m ~ 2n~ ),

®(Ak)=Ak; A = 0 , l , . . . , m - l ;

Θ ( / 4 * ) - i 4 * I B β ; A = m, m + 1 , . - . , 2 m - l ;

Clearly, Θ is biunique and we will show that it is a complete mapping for

groups I and II. Thus,

Ak >®(Ak) = Ak .Ak = A2k; A = 0 , l , . . . f m - l .

Ak . Θ(Ak) = Ak - Ak'mB = A2k'mB k = m, m + 1, . . •, 2m - 1 .

>2 i . D 2 _ J2" 2

We see that we have a complete mapping if B = 1 or β = A

A slight calculation in the evaluation of Ak B®(AkB), will show that this

mapping is also a complete mapping for the group IV. It is necessary to use the

fact that n > 4.
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In order to obtain a complete mapping for group III, we define:

β(Ak > B)=Ak+m; for /c =

* . β) = 4 * δ ; for A; =

The verification that this mapping is a complete mapping for group III is straight-

forward and will be omitted.

This completes the proof of the lemma.

THEOREM 4. Every non-cyclic % group G has a complete mapping.

Proof. This theorem is known to be true for abelian groups [4] , We may use

induction to prove the theorem if G has a normal subgroup K such that K and

G/K are both non-cyclic Corollary 2, Theorem 1).

In view of Lemma 1, we assume that G is a non-abelian group of order 2n

and does not possess a cyclic subgroup of order 2n~ this implies n >̂  4. If

G contains only one element of order 2, G would have to be the generalized

quaternion group [5, p. 118] contrary to our assumption. Hence G contains an

element of order 2 in its center and another element of order 2. These elements

together generate a four group V.

If V is contained in two distinct maximal subgroups Mi and M2, then Mγ n M2 —

K D V is a normal subgroup of G such that both G/K and K are non-cyclic. In

this case the theorem would follow by induction.

We now suppose that V is contained in a unique maximal subgroup M\. Gt

being non-cyclic, contains another maximal subgroup M2 and if Mγ n M2 is non-

cyclic our induction again applies. Taking Mί n M2 to be cyclic, we see that

Mi is a group of order 2n" containing a cyclic subgroup of order 2n~ and also

the four group V. Thus Mt is of the type II, III or IV of Lemma 1 or possibly

an abelian group with A2*1'2 = 1, B2 = 1, BAB"1 = A. In all cases, Mx n M2 = {A \.

Now let C be any element of M2 not in \A\. Then by the normality of {A \,

C2 = Ar, where r is even since otherwise C would be of order 2n~l and G has no

cyclic subgroup of order 2n~ι. Also C"1 AC ~ Au with u odd.

Now consider the group H ~ \ A2, B }, which is non-cyclic since n >̂  4. Here,
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Λfi = # + HA = # + AH, and

Thus,

G = H +HA+HC + HAG = H + AH + CH + CAH,

where CAH = ACH since

We see that the elements 1, /4, C, AC are two-sided coset representatives for

flinG.

Define

Θ ( l ) = l , ®(A) = C, Θ(C)=AC9&(AC)=A,

and c o m p u t e :

1 . Θ ( l ) / / = 1 .H;

A Θ ( A ) H = A CH

C Θ( C)H = CACH = C C" AC — Ar AUH = /4/Z since r is even, w odd;

4C .ΘUC)//=/lC4tf = C . C ιACH = CAuH = CAH = ACH.

Hence, with these representatives the hypotheses of Theorem 1 are satisfied

and G has a complete mapping.

4. Solvable Groups. The existence of complete mappings for solvable groups

is answered in the following theorems.

THEOREM 5. A finite group G whose Sylow 2-subgroup is cyclic does not

have a complete mapping.

Proof. Let a Sylow 2-subgroup S2 of G be cyclic of order 2m. Then the

automorphisms of S2 are a group of order 2 m - 1 . Hence in G, S2 is in the center

of its normalizer. By a theorem of Burnside [5, p. 139], G has a normal sub-

group K (of odd order) with S2 as its coset representatives. Since G/K = 5 is

cyclic, the derived group G' is contained in K; and clearly,

Π g
gee
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S is cyclic of order 2m and hence Π s = p, where p is the unique element

of order 2 of S2. Thus, s G S

Π g Ξ p U : ° H P (modK);
gGG

and since G'CX, the Corollary of Theorem 1 [4, p. I l l ] is violated and G does

not have a complete mapping.

THEOREM 6. A finite solvable group G whose Sylow 2-subgroup is non-

cyclic has a complete mapping.

Proof. By a theorem of Philip Hall, a solvable group has a p-complement

for every prime p dividing its order. Thus, if S2 is a Sylow 2-subgroup of G

and H is a 2 complement, G — H S and H n S = 1. S has a complete mapping

by Theorem 4 and //, being of odd order, has a complete mapping. By Corollary

1 of Theorem 1, G has a complete mapping.

As further evidence in support of our conjecture we have the following

special theorem.

THEOREM 7. Let G be a finite group whose Sylow 2-subgroup is not cyclic.

If G has (G:S2) Sylow 2-subgroups and the intersection of any two Sylow 2-

subgroups is the identity, G possesses a complete mapping.

Proof. By a well known theorem of Frobenius, G is a factorable group;

that is, G = N S 2 , where N is the normal subgroup consisting of all elements

of odd order. We now apply Corollary 1 of Theorem 1.
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