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O Introduction. The purpose of this paper is the presentation of
a structure theory for a class of Banach algebras which we define be-
low and call G£-algebras. This class includes the commutative regular
jB-algebras of Silov [9] and many of our results generalize theorems and
techniques of that author. In addition, several interesting types of
non-commutative J5-algebras (listed in § 1) which have been studied pre-
viously only individually and from rather widely deffering points of
view are included in the class of GS-algebras. In § 1 we introduce
some basic definitions and prove several fundamental theorems. § 2
contains some theorems on the structure of closed two-sided ideals in
certain GS-algebras, and in § 3 we present a decomposition theory for
such^algebras.

1. Preliminary definitions and results. It is assumed that the reader
is familiar to a certain extent with the theory of rings and ideals and
the basic theory of J5-algebras. The theory of regular commutative B-
algebras can be found in [5], [6], or [9]. In this paper ideal will mean
two-sided ideal. Consider a β-algebra R with structure space S(R).
S(R) is the collection of maximal regular ideals of R with the standard
Stone-Jacobson topology which is defined as follows: the closure FG of
a set FCS(R) is {M e S(R)\ M^> f\M', M'eF}. The terminology is
rendered somewhat more manageable by defining the kernel k{F) of a
set F in S(R) to be the intersection of all maximal regular ideals in F
and the hull h(I) of an ideal / in R to be the set of all elements of
S(R) which contain /. Then the hulls are the closed sets in S(R). If
F=h(I) we say that / belongs to F. S(R) is, in general, a TVspace and
it is compact if R contains an identity. We say that R is strongly-
semi-simple (s.s.s.) if the intersection of all maximal regular ideals is
zero.

If R has an identity then the theory we present below can be car-
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ried through under the single basic condition
(A) S(R) is Hausdorff.

However, in case R has no identity further conditions are necessary,
and, while individual theorems can be proved under various weaker
conditions, one needs for any substantial part of the theory properties
at least as strong as condition

(B) every point in S(R) is contained in an open set whose closure
has regular kernel. (An ideal / is regular if Rjl has an identity.)

A β-algebra which satisfies Conditions (A) and (B) will be called a
GS-algebra.

The following is a device which will be useful in subsequent proofs.
Let S'(R) be the space formed by adding to S(R) a point oo and defin-
ing a neighborhood of ω to be c» together with the complement in S(R)
of a hull whose kernel is regular.

THEOREM. S'(R) is a compact T^space homeomorphic to the struc-
ture space of the algebra R' formed by adjoining a unit to R. If R is
a GS-algebra then S'(R) is Hausdorff, and conversely. In this case Sf(R)
is the ordinary one-point compactification of S(R).

Proof. The proof of the first statement is contained in [8, Th. 2.8]
and we will omit it here. It is evident that Conditions (A) and (B)
are equivalent to the Hausdorff conditions in S'(R). The last statement
follows from the fact that the intersection of two neighborhoods of co
is a neighborhood of co which is equivalent to the assertion that if Fλ

and F2 are hulls with regular kernels then k(Fλ\JF%) is regular. This,
in turn, is equivalent to the assertion that the intersection of two re-
gular ideals, Iλ and IZ1 is regular, which follows from the observation
that if e% is a unit modulo I% then eι-\-ei — e^eι is a unit modulo IiΓ\I>.
Knowing this one verifies immediately that in a GS-algebra the kernel
of a compact set in S(R) is regular from which the last statement of
the theorem follows.

While we will avoid in statements of theorems the somewhat
artificial device of adjoining a unit to R, it will help us to recall the
above facts in later proofs.

For xeR and MeS(R) we denote by x{M) the image of x in the
difference algebra R\M and by || x(M)\\ the norm of this element of RIM.
We shall make extensive use of the functions x(M) for fixed xeR de-
fined on the space S(R) and having values in the algebras RjM, and of
the real valued functions || x{M)\.
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DEFINITION 1.1. The GS-algebra R satisfies condition (P) if for any
compact subset K of S(R) covered by open sets Vu ••• , Vn there exist
elements 2/τ, ••• , yn of R such that ( l )Σ2/iW = l, MeK, and (2) y^M)
= 0 outside F« .

LEMMA 1.1.1. (a) Any proper regular ideal in R is contained in a
maximal regular ideal, that is, h{I)Φφ.

(b) If I is a closed ideal in R then M->MjI is a homeomorphism of
h(I) onto S(RjI). (See [2] or [8].)

THEOREM 1.1. If Ily , In are ideals in R with at least one I%

regular and f\t h(Ii)=^φ then IλΛ +In=R.

Proof. h(IxΛ hIn)=Γ\i h(Ii)=Φ and Iλ 4- -f In is a regular
ideal. Lemma 1.1.l(b) completes the proof.

COROLLARY 1. 1. 1. Let I be an ideal in R, F=h(I), and FQ be a
hull with regular kernel and disjoint from F. Then there exists an
element xel such that x(M) = l for all MeF0.

Proof. I+k(F0)=R by Theorem 1.1 so there exist xl9 x% in / and
k(F0) respectively such that xx + x>z is a unit modulo each MeFQ. The
conclusion follows immediately.

By the above remarks, if R is a GS-algebra then the set Fo in
Corollary 1.1.1 can be any compact hull disjoint from F.

COROLLARY 1.1.2. If R is a GS-algebra then R satisfies condition (P).

Proof. Let K be compact and covered by Vu , Vn. Since
S'(R) is normal we can obtain a refinement Ul9 ••• , Un of Vlf •••, Vn

covering K and such that UidVt. By Condition (B) we can assume
that U\ is compact. Let Ct be the complement of Ut, then Ct is a hull.
If I^kiC,) then f\ι &(!,)= Γ\χ Ci=

c^{\jι UJC&iK). Thus Λ ^ + .
+ In)Γ\K=φ so there exist xteli such that (xλΛ +xn)(M) = l on K.
But xi(M) = 0 for MQk{It)y that is, for M outside Ut. But

DEFINITION 1.2. An ideal / is primary if it is contained in a
unique maximal regular ideal. A S-algebra is primary if S(R) consists
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of a single point. (By Lemma 1.1.1 /is primary if and only if Rjl is a
primary algebra.)

We proceed to show the existence of certain special primary ideals
in GS-algebras.

DEFINITION 1.3. Let F be a hull in S(R). We define J(F) to be
the set of all xeR such that x(M)=0 in some open set containing F.
J(oo) is the set of all x such that x(M)=0 outside a compact set.

THEOREM 1.2, Let R be a s.s.s. GS-algebra and F be a hull in
S(R). Then

(a)

(b) h(S(F))=h(J(F))=F, and

(c) if h{I)=F then

Thus the closure $C(F) of $(F) is the smallest closed ideal belonging
to F.

Proof, (a) is a simple consequence of Corollary 1.1.1. To esta-
blish (b) it is sufficient to show that FZ^h{J{F)) since the opposite in-
clusion and the first equality of (b) are both obvious. If M0Z^J(F) then
let G be an open set containing F, and pick xek(G). Then x is in
J{F) by definition so x is in Mo. Thus Mo is in the closure of an
arbitrary open set containing F. S(R), being a subspace of the topologi-
cally regular space S'(R), is topologically regular, so it follows that Mo

is in F. Thus F^)h(J(F)). We verify (c) as follows. Let h(I)=F and
let y be in Ϊ$(F). Then there exist an open set U containing F and a
compact hull K such that y(M)=0, Me U\J ctf{K). Let Fx=

 ctf{U)f\
K, a compact hull disjoint from F. By Corollary 1.1.1. there exists
xel such that x(M) = l for MeFι and it follows that y(M)=x(M)y(M)
on S(R). By semi-simplicity, then, y^xy so y is in /. Thus $(F)CZI.

If F is the hull in S(R) consisting of the single point M we denote
$(F) by $ί(M). Thus in a s.s.s. GS-algebra every maximal regular
ideal M contains a minimal closed primary ideal £f(Λf).

We conclude this section with some examples of GS-algebras.

1. As we have observed above, any commutative regular β-algebra
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is a GS-algebra. Examples of these can be found in [5], [6], or [9]. An
important example is the group algebra (ZΛalgebra) of a locally compact
abelian group.

2. Any c.c.-algebra (right and left multiplications are completely
continuous operators) has discrete structure space [3]. It follows im-
mediately that the algebra is a GS-algebra. An example is the group
algebra of a compact group.

3. The group algebra of the direct product of a locally compact
abelian group and a compact group is also a G$-algebra. It is our in-
tention to include a proof of this fact in a future note.

4. Certain C*-algebras studied by Kaplansky (see [3] and [4]) are
GS-algebras. In particular, any C*-algebra with identity for which the
functions ||#(Λf)|| are continuous satisfies Condition (A) and is therefore
a GS-algebra. Also, any weakly central C*-algebra (see Definition 1.4
below) is a GS-algebra as we note in Theorem 1.3. Examples of such
algebras can be found in [3].

5. Misonou [7] shows that any TF*-algebra is weakly central (hence
a G&-algebra) and Wright has proved [10] that the same is true for
any AW ^-algebra.

6. The jB-algebra D'n of all n by n matrices with entries which
are continuously differentiable complex functions on [0, 1] is a GS-
algebra. The norm is || x || = sup | x(t) | + sup | x'{t) | where | x(t) | =
Σ«, J\ xu $) I a n ( i I χt(f) 1= Σi, j i xίj (01 A maximal regular ideal MtQ is the
set of all xeD'n such that xit Xίo)=O, all i, j and some ί0 in the inter-
val. S(D'n) is homeomorphic with the interval under the mapping t-+Mt.
This is an algebra in which primary ideals arise quite naturally. The
ideal Jc(tc) consists of all x such that xtt £tv)=x'it j(to)=O .

DEFINITION 1.4. The 5-algebra R with center Z is weakly central
if maximal regular ideals of R intersect Z in distinct proper ideals of
Z, that is, if (1) M[\ZφZ for all MeS(R) and (2) MX^M2 implies that
M

The following is a generalization to our setting of a theorem due
to Kaplansky [3, Th. 9.1]. We omit the proof since Kaplansky's proof
suffices with comparatively few changes.
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THEOREM 1.3. Let R be a B-algebra with regular center Z. Then
the mapping M-+Mf\Z is a continuous mapping of S(R) onto T, a
closed subset of S(Z). If R is s.s.s. then T=S(Z). If R is also weakly
central then S(R) is homeomorphic to S(Z) and R is a GS-algebra.

2. Ideal Structure. Frequently much can be learned about the
structure of an algebra if information about the structure of its ideals
is available. The type of information which is most commonly sought
is that which says that an ideal is the intersection or direct sum of
more special ideals (for example, primary or maximal regular ideals).
Concentrating on intersection as the method of decomposition we prove in
this section some results of this nature. The following questions
naturally arise:

(a) Is every ideal (not necessarily regular) contained in a maximal
regular ideal ?

(b) When can a closed ideal be written as an intersection of maxi-
mal regular ideals or an intersection of closed primary ideals ?

(c) When is a closed primary ideal necessarily maximal regular?

Some of the theorems in this section are generalizations of theorems
due to Silov which can be found for the commutative case in [5].
Theorems 2.7 and 2.8 were suggested to the author by Kaplansky's use
in [4] of partitions.

If R is a GS-algebra, Theorem 1.2 applied to the case where F is
the vacuous set shows that the answer to (a) is in the affirmative if
J(co)=R. In this case we shall call R Tauberian. The statements of
many subsequent theorems are somewhat simplified in a Tauberian GS-
algebra. The algebras in examples (1), (2), and (3) in § 1 are Tauberian.

DEFINITION 2.1. The 5-algebra R is called an N-algebra if every
closed ideal with non-vacuous hull is an intersection of maximal regular
ideals. R is called an N*-algebra if every closed primary ideal is
maximal.

It is clear that an iV-algebra is an A7*-algebra. The converse is
not true in general, but it is the purpose of some of the theorems below
to exhibit circumstances under which it is. From the definition and
Theorem 1.2 we have the following criteria. For xeR define h(x) to
be {M\xeM}.

THEOREM 2.1, The s.s.s. GS-algebra R is an fy-algebra (N*-algebra)
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if and only if for every xeR (and every Moe h(x)) there exists a se-
quence [xn] in R such that xn(M)=x(M) on a neighborhood Gn of h{x)
(of Mo) and outside a compact set Kn, and such that || xn ||->0.

Proof. Simply note that by Theorem 1.2 an ideal / in R is the
kernel of its hull if and only if for every xe I there exists a sequence
{xn} in R such that xn(M)=x(M) on a neighborhood Gn of h(I) and
outside a compact set Kny and such that | |#w | |->0.

DEFINITION 2.2. Let / be a function defined on S(R) such that
f(M) is an element of R/M for each MeS(R). f belongs locally to the
ideal I (which may be all of R) at the point Mo e S(R) (at oo) if there
exists a neighborhood U of MQ (of oo) and an xel such that f(M)=
x(M) on U. f belongs locally to I if it belongs locally to / at every
point of S(R) and at oo.

THEOREM 2.2. Let R be a s.s.s. GS-algebra with xeR. If x(M)
belongs locally to the ideal I at every point in h(I) and at oo then x is
in I.

Proof. We note first that since S(R) is topologically regular x be-
longs locally to / at any point in S(R) — h(I). Let Mo be such a point.
Then there exists a neighborhood U of MQ whose closure is compact and
does not intersect h(I). By Corollary 1.1.1 we can find uel such
that u(M) = l on U. xu is in / and x(M)=(xu)(M) on U. Thus, under
the assumptions of the theorem, x belongs locally to /.

There exists y^el such that yoΰ(M)=x(M) outside a compact hull
K. By compactness and assumption, K can be covered by n open sets
Vu ••• , Vn and ylf , yneI can be chosen so that yi(M)=^x(M) on
Vt. By Corollary 1.1.2 there exist xlf ••• , xn such that ^Xi(M)=l
on K and xί(M)=0 outside F 4 . Now xiyι(M)-=xi(M)x(M) on \J% V%.
Thus Yjxiyι(M)=x(M) on \J { Vt. Let 2/=Σ#i2/t. Another application of
Corollary 1.1.1 yields an element h of R such that h(M)=l on F,
h(M) = 0 on ^(^JVi). Let z=h(y — y^)-hy00. z is in / since both y and
y^ are, and it can easily be seen that z(M)=x(M) for all MeS(R).
This implies, by semi-simplicity, that x=zel.

COROLLARY 2.2.1. In a s.s.s. GS-algebra any ideal with nonvacuous
hull is an intersection of primary ideals.
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This corollary follows immediately from the theorem and its proof
is left to the reader. The primary ideals are the ideals I+^(M) for
Meh(I). By Theorem 1.2, I±$(M) is the smallest primary ideal con-
taining / and contained in M.

The following theorem is a small step in the direction of express-
ing a closed ideal as an intersection of closed primary ideals.

THEOREM 2.3. Let I be a closed ideal in the s.s.s. GS-algebra R.
If h(I) can be written as the union of two disjoint hulls Fu F2 at least
one of which is compact then I is the intersection of closed ideals Il9 Iz

with

Proof. Let It = [3(Ft)f Γ\ be the closed ideals generated by the
ideals in the brackets. Clearly all that needs to be verified is that/if\

Let x be in hΓ\U Then aj=lim(2/c

n

1) + 2c

w

1)) and also x=lim (y
where y™ is in / and tfp is in 3(Fi). Suppose that F1 is compact.
Since S'(R) is normal there exist open sets Gx and Gλ such that G θ F t

and GlΓ\Gl=φ. We may assume that G\ is compact. Thus by Corollary
1.1.1 there exists heR such that h(M)=l on Gλ and h(M) = 0 on G2.
Then α;=a?λ+(α?-sλ)=lim[2#>Λ + ̂  The first
and third terms are in I since the yff are in I and it can easily be seen
that the remaining terms vanish at oo and in a neighborhood of FAJF2

=h(I). By Theorem 2.2, then, x is a limit of elements of / and hence
is in / itself.

COROLLARY 2.3.1. Let R be a s.s.s. GS-algebra and I be a closed
ideal in R. If Mo is an isolated point of h(I) then xe[$(M0), I] implies
that x belongs locally to I at MQ. If h{I) is compact then x also belongs
locally to I at oo.

COROLLARY 2.3.2. Under the above hypotheses, if h(I) is discrete
then xeI*=Γ\\jj(M), I ] , Meh(I), implies that x belongs locally to I at
all paints of S(R). If h(I) is compact then / * = i , that is, I is an in-
tersection of closed primary ideals.

THEOREM 2.4. Let R be a s.s.s. GS-algebra and I be a closed ideal
in R. Let hCk\I) be the kth derived set of h{I). Then if xu ••• , xm

(ra^fe-fl) are all in I* = Γ\lζs(M), / ] , Meh(I), their product belongs
locally to I at every isolated point of the set Λ(*°(/). If hik\I) is compact
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then the product also belongs locally to I at oo.

Proof. If k=0 this reduces to Corollary 2.3.1. We perform an
induction on k. Suppose the statement is true for all integers up to
and including k. Let Mύ be an isolated point of the set ha+Ό(I) and let
U(M0) be a neighborhood of Mό with compact closure not intersecting
h^+Ό(I)~-M0. Suppose xL, ••• , xm are all in 2* with m>/i;-f2. We can
find another neighborhood Vx of MQ such that VΊCVlCZU. Let heR
be chosen so that h{M) = l for M e V\ and h(M) = 0 outside U. By as-
sumption xx is in [$(Λf0), I] so xι = \im{yn'\-zn), ynel, zne^(Mϋ). Thus
XιX> - -xmh=\Ίm{ynx2- - -xmh-hznx2- - xmh). The first term is obviously in
/ and it is easy to see that the second term belongs locally to / on
S(R) and at oo. Hence x^x^ * xmh is in / and, since h(M) = l on a
neighborhood of Mo, xLx2 xm belongs locally to / at Mo. The induction
at a? is similar to the above, the important point being that if hQk\I)
is compact then oo is an isolated point of /&Cfc)(/)\J {°°}

COROLLARY 2.4.1. Let R he a s.s.s. GS-algcbra and I be a closed
ideal in R such that ha\I) is void and hCk~ι\T) is compact (that is,
ha~ι\I)\J {00} is discrete). Then, if (I^Y is the ideal generated by pro-
ducts of k elements of I*, (I*)kC.I-

Next we turn our attention to the question of when a given N*-
algebra is an iV~algebra. First we indicate briefly how Ditkiri's theorem
and Condition (D) [9] for commutative β-algebras generalize to our
case.

DEFINITION 2.3. The s.s.s. GS-algebra R satisfies Condition (D) if
for any MoeS'(R) (Mo may be 00) and xe^c(M0) we have xe[I(x)d
3(-Mυ)]β where I(x) is the principal two-sided ideal generated by x.

THEOREM 2.5. Any s.s.s. N-algcbra satisfies Condition (D).

Proof. If x is in 3c(M0) then by Theorem 2.1 we can find \yn}
such that yn->x and yn is in %(h(x)). But I(x) belongs to the hull h(x)
so ^(h(x))ClI(x) Thus ynel(x). An almost identical argument takes
care of the case Λf0 = oo.

For xeR and / a closed ideal we denote by P(x, I) the subset of
S(R) consisting of all M at which x does not belong locally to 1.
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THEOREM 2.6. Let R be a s.s.s. GS-algebra satisfying Condition
(D). Let x be in R and I be a closed ideal in R. Then any element Mo

in P(x, I) for which 3f(^Ό) contains x is a point of accumulation of
P(x, I).

Proof. Suppose that x is in 3c(Λf0) and Mo is isolated in P(x, /).
Choose U and V open in S{R) such that M, e VCVCCJJ, Uc compact
and Ucf\P(x, I)=(M0). Let yeR be such that y(M) = 0 outside U and
y(M) = l on V% and let zn be chosen in I(x)Γ\^(Mΰ) according to Condi-
tion (D) so that zn-+x. Let yn=zny, then it can easily be seen that yn

belongs locally to / on S(R) and at oo. Hence xy is in / so x belongs
locally to / at Λf0. This is a contradiction.

COROLLARY 2.6.1 (Generalized Ditkin's Theorem). Let R be a s.
s.s. N ̂ -algebra satisfying Condition (D), and let I be a closed ideal in
R. If the boundary of h(I) contains no perfect set then I=k(h{I)).

Proof. Pick yek(h(I))> then xeJc(oo) since R is JV*. Thus, by
Condition (D), a?=lim xn, xn e [/(aOΠ^°°)]C3W> all Meh{I). Thus
P(xn, I) is perfect by Theorem 2. 6. P(xn, /)C boundary of h(I) by
Corollary 1.1.1 and the fact that xn belongs locally to / trivially at any
point in the interior of h(I). Thus P(xn,I) = φ and xn belongs locally to
/ on S(R) and at oo (since xnej(oo)). Thus xn is in / and hence x is
in /, also.

We conclude this section with examples of the type of theorem
one can prove using partitions in cases where property (P) holds in a
strengthened sense. These theorems were suggested to the author by
Kaplansky's use in [4] of partitions. However, to apply his results we
would have to assume continuity of the functions ||#(.M)||. Kaplansky
is primarily interested in studying C*-algebras relative to the structure
space of primitive ideals in which case this continuity is equivalent to
the structure space being Hausdorff. However, there is no assurance
that this is true in general, so we restrict ourselves to the hypothesis
that the above mentioned functions are continuous at zero. We will
see in § 3 that this much continuity arises in a natural way.

DEFINITION 2.4. Let R be a GS-algebra.
(1) For xeR and MeS(R) we define \\x\\M to be the norm of the

image of x in the S-algebra R!%C(M), that is, ||a?||lf=g.l.b.{|^|| | y(M')
=a?(ilf')f Mf in some neighborhood of M}. We define |||a?||| to be
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sup II x \\M, Me S(R). Clearly ||| x | | H | x ||.
(2) If the norm ||| ||| is equivalent to the original norm || || then

we say that R is of type C.

DEFINITION 2.5. The β-algebra R is closed under multiplication by
C(S(R)) if for xeR and / a bounded continuous real function on S(R)
there exists an element yeR such that y(M)=f(M)x(M) on S(R). We
denote this y by (fx).

The prototype, in a sense, of algebras of type C is the algebra D'n
in Example 6 of § 1 . Here ||| x |||<I||α||<I2 |||a?|||. Also, any weakly
central C*-algebra is of type C and closed under multiplication by
C(S(R)). Commutative regular i?-algebras of type C have been studied
by Silov in [9] and later papers.

THEOREM 2.7. // R is an N*-algebra of type C which is closed
under multiplication by C(S(R)) then any ideal with compact hull is the
kernel of its hull. {In particular, if R has an identity then it is an N-
algebra.)

Proof. Let x be in R and F be a compact hull with xek(F). Then,
by Theorem 2.1, for any M' eF and integer w>0 there exists xn,M,eR
such that \\xn, M,\\<Clln and xntM,(M)=x(M) for all M in a neighborhood
Gn of M' and all M outside a compact set Kn. Since F is compact
there exist m such open sets Gn(Mi)=Gi9 i = l, ••• , m covering F. Let
K be the compact set which accompanies Gλ as above. Let {Vt} cover
F with ViCVtClGi, V\ compact. If we let Gm+1=

 rέf[{JVf} then Gu

••• , Gm, Gm+1 cover S(R) and Gm+1 is a neighborhood of oo. By a well
known lemma [1, p. 66] there exist m-\-l continuous real functions f%

on S(R) such that 0<LΛ<:i, Σ/t = l on S(R), and / t = 0 outside Gt. Let

»Λ==ΣΓ-i(Λ«».ir<) + C/'»+i»»,iί1). Clearly α?n(M) = [Σ?.i/*(Λί)MΛί)==»(-M) on
\JVt, a neighborhood of F, and also xn(M)=fm+1(M)x(M)=x(M) outside
K\J ^ΊVJT-iGίl, & compact set. It is also clear that ||| a?Λ |H=sup || α?w (̂
= sup I a?n(Λf) || since R is N*. Finally, || xn(M) \\ ^ Σ Λ W II «». JT, II
+ /m+i| |^n,jf1 | |<l/w so |||a?n | | |<l/% and, since 22 is of type C, | |^ | |->Q.
Thus the proof of Theorem 2.1 applies to any ideal with compact hull.

COROLLARY 2.7.1. // the weakly central algebra R satisfies Con-
dition (2) of Definition 2.4 and has center isomorphic to Cϋ(Γ), the
algebra of all complex continuous functions vanishing at oo on the local-
ly compact Hausdorff space Γ, then if R is an N*-algebra the conclusion
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of Theorem 2.7 holds.

Proof. Since C0(Γ) is a commutative regular 5-algebra with struc-
ture space Γf Theorem 1.3 tells us that R is a GS-algebra and Γ=
S(R). Thus the hypotheses of Theorem 2.7 are satisfied.

The condition that R is an JV*-algebra which appears above can be
dropped with an appropriate strengthening of the other conditions.

THEOREM 2.8. Let the GS-algebra R satisfy
(1) || I is equivalent to the norm sup || *(M)||, MeS{R),
(2) the function \x{M)\ on S(R) for fixed arbitrary xeR is con-

tinuous at zero, that is> at any point Meh(x), and at oo, and
(3) R is closed under multiplication by C(S(R)).

Then R is Tauberian and the conclusion of Theorem 2.7 holds.

This follows readily from Theorem 2.7 when we observe (following
Theorem 3.4) that the above conditions imply that R is a Tauberian
ΛP-algebra. Condition (1) implies type C.

3 Structure Theorems. In this section we discuss the construction
out of primary S-algebras of more general J9-algebras.

DEFINITION 3.1. Let Γ be a locally compact Hausdorff space and
for each ae Γ let there correspond a primary Z?-algebra PΛ with norm
|| ||Λ and unique maximal regular ideal Ma. The complete direct sum
Σ*ε/- P« is the totality of functions x defined on Γ which satisfy:

(1) x(a) e Pa for all a e Γ and

( 2 ) I
ccer

A standard elementary proof shows that Σ P Λ is a i?-algebra. A
closed subalgebra (denoted by ^Pa) of Σ P α is a sub-direct-sum of the
Pα's if for each fixed a the set {x(a)\xe Σ'P*} is all of PΛ.

We list in one definition some additional properties of sub-direct-
sums which will be useful below.

DEFINITION 3.2. Σ 'P Λ (or, for brevity, ΣO satisfies Condition
(a) if \\x(a)(MΛ)\\Λ is a continuous function of a on Γ for each fixed
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(b) if x(a)eMa, all α, implies that x=0,
(c) if Σ ' distinguishes between points of Γ in the (weak) sense

that aφβ implies that there exists an a?eΣ r s u c h that x(a)(MΛ) = 0 and

(d) if Σ ' is closed under multiplication by C(Γ), that is, fx is in
Σ ' if / is a real bounded continuous function on Γ and x is in Σ'>

(e) if || #(α)||α; is a continuous function of # at any point aύ such
that a?(αo) = O and at oo (for any #e Σ ' w e define α (oo) to be zero).

DEFINITION 3.3. The GS-algebra R is of %pβ Co if .# is of type
C and the real functions ||α?(Λf)|| are continuous on S(R).

We denote a general element of S(R) by α and the corresponding
maximal regular ideal by M*. The ideal 3(M") will be denoted by

THEOREM 3.1. Let R be a GS-algebra of type C. Then R=*ΣlΛzΓP
Λ

where Γ=S(R) and PΛ=β/3c(^) (that is, R is isomorphie and hom.eo-
m^orphic to a sub-direct sum of the primary B-algebras R/^c(a), <xeS(R))
and the sum satisfies Conditions (b), (c), and Condition (e) at finite
points. If R is of type Co then the sum satisfies Condition (a). // R
is Tauberian then Condition (e) is satisfied at oo.

We omit the proof of this theorem since it is entirely straightfor-
ward. It is of interest to note that Condition (e) does not depend upon
the GS-condition, but only upon the definition of $(α) Also, using the
full power of Corollary 1.1.1 we can get a stronger type of separa-
tion than that of Condition (c). If aφβ then one can show that there
is an xeR such that x(a)=0 and x(β) = l. However, we shall need
only the weaker type of separation.

We turn next to the converse question.

LEMMA 3.2.1, Let ]Γ/ denote Σ * e Λ as above. Define M* in Σ '
to be {x e Σ Ί x{a) e MΛ=S(Pa)}. Then M« is in S(Σ')

This lemma follows immediately from Lemma 1.1.1. In the fol-
lowing we shall always assume that Γ is a I.e. Hausdorff space, PΛ is
a primary Z?-algebra with maximal regular ideal MΛ1 and Σ ' ^s a s u b-
direct sum of the Pa. Unfortunately, we see no way of proving that
Σ ' is a GS-algebra. Indeed, if no other restrictions are placed on the
sum there are examples (commutative) where S(Σ r) is not Hausdorff.
We can ask, however, whether there is any close tie between Γ and

n certain cases get a partial answer.
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THEOREM 3.2. // Σ ' satisfies Conditions (a) and (c) then a->MΛ

is a one-to-one continuous map of Γ into £(Σ0 V Σ ' satisfies Condi-
tion (b) also then the image of Γ is dense. If ΎJ is a GS-algebra and
satisfies Conditions (a), (b), and (c) then Γ is homeomorphic to S(Σ')

Proof. Condition (c) obviously implies that the mapping is one-to-
one. Let Γs be the image of Γ in S(Σ') I f FΓ is in Γ and FΓ~>FS

=FΓ\ΓS where F is a hull in S(Σ') let a0 be in Γ-FΓ. Then M"° is
not in Fs so it is not in F. Thus there exists α; e Σ ' such that #(ikP)
=0, MΛeFs and α?(ilfΛ°)τ£0. This is equivalent to saying that x(a)(MΛ)
=0 for aeF and x(oc0)(MaQ)y^0. Hence, by Condition (a), aQ is not in
Fcr and so FΓ is closed. Similarly one shows that if the kernel of F is
regular then FΓ is compact, that is, FΓ is closed in the one-point com-
pactification Γ' of Γ. We conclude that a->Ma, co-*oo is a one-to-
one continuous map of Γ' into ^'(ΣO Condition (b) insures that /^ is
dense in Si^ΣJ) and the rest of the theorem follows from the fact that
a one-to-one continuous map of a compact space onto a Hausdorff space
is a homeomorphism.

THEOREM 3.3. Let Σ ' satisfy Conditions (b) and (d). Then Σ ' ^
of type C. If Σ ' ^s a GS-algebra and S(^) = Γ then Condition (d) can
be dropped.

Proof. Let Ka be the kernel of the natural homomorphism of Σ ' onto
PΛ. The map α->MΛ is continuous as we have seen. Let xe J{a) then
#(ikf)=O for M in a neighborhood of ΛfΛ. This implies that x(β)(Mβ) =
0 for /5 in a neighborhood JV of a. Let feC(Γ) be such that 0</(/5)
^ςi for all β, f(a) = l and f(β) = 0 for 0 outside JV. Then if yeΣf is
such that y(β)=f(β)x(β), βeΓy it is clear that y(β)(Mβ)=0 for all /?.
Thus, by (b), y=0 so that %(a) = 0. Hence J(a)dKΛ and, since Ka is
closed, Jc(a)CZKa. Now let 2/-a; be in 3c(α:). Then (?/-^)(α:)=0 so
||a?(α)||Λ=||2/(α)|rt^||2/||. Thus l l ^ α ) ! ^ ! ^ ! ^ (the last norm as in Defini-

tion 2.4). Taking the sup over Γ we have

II x ||=sup II x(a) H^sup || x \\M« =||| a? | .

But by definition |||α?|||<;||α?|| so Σ ' is of type C.
In case Σ ' is a GS-algebra 3c(α) has the minimal properties of

Theorem 1.2 so, since iζ* is primary, we can conclude that £f(α)Ciζ*
without assuming Condition (d).

Finally, we consider the question of whether the above mentioned
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decomposition is in any way unique.

THEOREM 3.4. Let ^ be a GS-algebra and satisfy Conditions (a),
(b), (c), (d), and (e). Then ^ = S ( ^ ' ) > Σ ' ^s Tauberian and of type C,
and, for each α, P^ is equivalent as a B-algebra to

Proof. Conditions (d) and (e) at oo clearly imply that Σ ' is Tau-
berian, so there remains only the last conclusion. This will follow
readily if we can prove that the kernel KΛ of x->x{a) equals ^$c{a) for
any ae Γ'. In this event Pa and Σ'/ίvf (tf) a r e isomorphic and the
observation (proof of Theorem 3.3) that || x(a)\Λ<J\ x \\M* together with
the interior mapping theorem show that the isomorphism is an
equivalence.

Let x be in KΛJ then x(a) = 0. Hence by (e) there exists a neighbor-
hood Un of a and a compact set Kn such that \\x(β)\\β<CXIn for βe Un\J
<έ?(Kn)=Gn. If we choose feC(Γ) such that 0^/( ) ^ l , f(β) = l
outside Gn, and f(β)=0 on Vn\Jί?(Fn), where VlCUn, Fn^Kn and Fn

is compact, then it is evident that ||2/n— #||<I2/?2, and yn is in ^s(a). Thus
x is in $:(a) and ^c((x) contains Ka. The opposite inclusion was esta-
blished in the proof of Theorem 3.3.

We can now complete the proof of Theorem 2. 8. The hypotheses
of that theorem insure that the sub-direct sum decomposition of R into
the simple S-algebras RjM which is then possible satisfy all the condi-
tions of Theorem 3.4. The resulting uniqueness conclusion implies that
for each MeS(R), M=SC(M), that is, R is an iV*-algebra.

Finally we observe that the above structure theory has been
developed under in one sense the weakest possible condition on the
norm of ff. For if we attempt to weaken the type C assumption by
using even smaller ideals than the £f(M) we lose the fact that the
ideals are primary ani thus the important connection with the structure
space.
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