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1. Introduction* The famous formula of Rademacher [5] for the
number p(n) of partitions of an integer n states that

y 2 an \ λ J

where ϋΓ=7r(2/3)1/2, λ=(n —1/24)1/2 and the series is absolutely convergent.
The coefficients Ak(n) are defined by

Aτ(n)=l , A2(n)=(-l)n , A3(n)=2 cos [π(12n-1)118] ,

and in general

(1.1) Ak(n)=

where h ranges over those numbers which are less than k and prime
to k. The numbers ωhΛ are certain 24&th roots of unity which arise in
the theory of modular functions and are defined by

(1.2) ^ ) f c

if k is odd, and by

(1.3) ^,, = (^)exp[-^

when k is even. Here (a\b) is the symbol of Jacobi and h is defined

as any solution of the congruence hh = l (mod&).
Because of the intricacy of the numbers ωh k the task of evaluating

Ak{n) for large k directly from its definition in (1.1) is quite formidable.
To surmount this difficulty D. H. Lehmer [3] made an intensive study
of the Ak{n). He was able to reduce them to sums studied by H. D.
Kloosterman and H. Salie. In the first place he factored the Ak(n)
according to the prime number powers contained in k. Secondly, by using
Salie's formulas, he evaluated Ak(n) explicitly in the case in which k is
a prime or a power of a prime. Both results together provide a method
for calculating the Ak(n). It should also be mentioned that another

Received May 10, 1954. This investigation was supported by the Office of Naval
Research. The author is indebted to Professor Atle Selberg who kindly communicated to
him the hitherto unpublished result given in formula (1.4).

159



160 ALBERT LEON WHITEMAN

method for evaluating and factorizing Ak(n) based on a different ex-
pression for ωJhJc is given in [6] and [7].

Some years ago Atle Selberg proved (but did not publish) the result
that Ak{n) may be expressed alternatively in the form

(1.4) Ak(n)=(ϊ-)12 Σ (-1)1 c o s 6 ^ 1 π ,
\ o / csi^ +l~)l2— — nCvcioό. JcΊ Ό/v

where I runs over integers in the range 0<Ll<C2k which satisfy the
summation condition. In this striking formula Ak{n) is expressed as a
sum which involves only cosines and which contains considerably fewer
terms than (1.1). Selberg's derivation of (1.4) is based upon an investi-
gation of the underlying function η(τ) which plays a fundamental role
in the theory of elliptic modular functions. A related investigation has
been made by Fischer [1] for the determination of a 24fcth root of unity
closely connected with ωh}k .

In | | 2, 3, 4 of thfe paper we give a direct pxooΐ of the equivalence
of the two formulas (1.1) and (1.4) for Ak(n). The method of proof
consists in showing that (1.1) is the finite Fourier series expansion of
(1.4). In § 5 we show that (1.4) may be transformed in various ways
(Theorems 1, 2, 3 and 4) so as to yield formulas which are suitable for
the direct computation of Ak(n). These formulas in turn reduce im-
mediately to the formulas of Lehmer in the case in which k is a prime
or a power of a prime. Finally in § 6 we show that the theorems in
§ 5 may be utilized to derive three factorization theorems (Theorems 5,
6 and 7) for the Ak(n). It will be seen that the present approach to
the evaluation of Ak(ri) makes no use of Kloosterman sums.

2. Finite Fourier series expansion of Ak(n). The connection between
the two expressions for Ak(n) given in (1.1) and (1.4) is clear from the
viewpoint of finite Fourier series. The function Ak(n) defined by (1.4)
is periodic in the variable n with period k. Hence it permits of expansion
into a finite Fourier series of the form

We shall prove that the coefficients p^fe are determined by the formula

1 0 ({hy k)^>l) ,

where ωhtk is defined by (1.2) and (1.3). Consequently (2.1) reduces to

(1.1).
Inverting (2.1) we obtain first
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(2.3) Phιk=λ Σ
k 3=0

Then substituting from (1.4) into (2.3) we get

L (-1)' cos k

\£.*x) ===

2(3yfc)1/2 i

Σ
lCmod23fc)

where the sums extend over any complete residue system modulo 2k.
In order to prove the first part of (2.2) we require the following lemma.

LEMMA 1. Let a, b, c denote integers and let the highest common
divisor d of h and k be greater than 1. If d J( c, then

(2.5) Σ expΓ—
I (mod 2fc) L k

Proof. We put h=dh\ k=dk\ Then the summation condition
I(mod2k) is equivalent to the double summation condition 0<Lr<L2kf — 1,
Z =r(mod2&'), 0<IZ<<2&. For each fixed value of r we put l=r + 2jk',

j^d—1. The sum in (2.5) may now be written in the form

(2.6) " Σ 1 exp \ή^- (ar2 4- 6r)Ί Σ exp \πf (r + 2jk')\ .

Since 2πicjk'lk=2πicjjd and d J( c it follows at once that the inner sum
in the right member of (2.6) is equal to zero for each value of r. This
proves the lemma.

Applying the lemma with α=—3, δ = — l and c=k±l to (2.4) we
deduce from (2.5) that ph)k=0 when (h,

Turning to the proof of the second part of (2.2) we now assume
that (h, Jfc) = l. We proceed to complete the square in the two sums in
the last member of (2.4). For this purpose it is convenient to assume
that the solution Ti of the congruence hh^l (mod k) is selected so that
(hh—l)jk is even when k is even. We shall see later that this assumption
entails no loss in generality. From the assumption it follows also that

exp [πil(hλ —1)(&±1)/&]=1. The two sums in the last member of (2.4)
may now be written in the form
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(2.7) Σ expΓ^(-3« a + Z(A-A±l))ΊexpΓ-^ (hh-ϊ){k±l)\
z c d * ) LA; J L & J

which reduces after simplification to

(2.8) ^ ( l M ^ ) Σ exv\^
12k Kmodϊfc) L 12fc

It is therefore natural to introduce the sum

(2.9)

for integers h, k and r with & > 0. This sum has already been employed
by Fischer in his paper cited in the introduction. Combining the results
in (2.4), (2.7) and (2.8) we obtain a formula for ρh,k which is given in
the following lemma.

LEMMA 2. For (h, k)=l let the solution h of the congruence hh = l

(modyfc) be selected so that (hh — l)jk is even when k is even. Then the
finite Fourier coefficient ph,k defined in (2.1) has the value

(2 10) ' )"

^ (2+S/3")]&».

where HhtJc(γ) is defined by (2.9) and a, β are defined by

(2.11) a=l-hk-h , β=l-hk+7ι .

Next we must evaluate Hh>k(γ). This is accomplished in the follow-
ing section.

3 The sum Hhyk(γ). It is evident that the sum HhJc(r) is closely
related to the classical Gauss sum defined by

(3.1) GhΛ= Σ
Kmodfc)

Indeed we shall make use of the following formulas which are taken
from Fischer's paper [1, §3].

If k is odd and 3|Λ, then

(3.2) Hh,k(l)=0, Hhtk(3)= exp(^πi
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If k is odd and 3 Jf k, then

(3.3) fl Λ | t(l) = exp

(3.4) // f t , t (3)=(!) exp

If k=2λk\, λ^>l, Id odd and 3|A;, then

(3.5) ffft.*(2)=0, Hhιk(0)

If k=2λk1, λ^l, k, odd and SJfk, then

(3.6) Hh,,(2)= exp ( i - r iω) Hh,k(0)

(3.7) ffftii(0)=(|-)2*"(|-) exp

We note also the easily established relations

(3.8) Hh,k(r)=Hhtk(-r)

which are valid for any integer n.
For Ght7c defined in (3.1) we shall require the following well-known

formulas which may be found, for example, in [4, Chapter 5].

(3.9)

(3.10) (?,,*== Jfe"**"*-"'"* (Jfeodd).

(3.Π) G>,+ -

We also recall the formulas (-l|/b)=(-l) ( λ :-1 ) / 2 and (2|fc)=(-l)(fc2-1)/8 which
are valid for k odd.

Using (3.9) and (3.10) we may deduce from (3.2) and (3.4) that

(3.12) HΛ ϊ f c(3)=(A)(|-) exp[^"(3λfc- 3fc +l)](3fc)1" (A; odd,

(3.13) flft.*(3)=( * ) ( | ) e x p [ ^ ( 3 M + k - l ψ 1 / 2 (A;odd,

Using (3.9), (3.10) and (3.11) and the law of quadratic reciprocity for the
Jacobi symbol we find after some manipulation that the formulas for
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Hh)k(0) in (3.5) and (3.7) reduce to

(3.14) J ? - Λ ( Λ ( 0 ) - ( ^ ) ( - | ) e x p [ ^ ( 3 Λ + 4 ) ] ( 3 ^ ( λ > 0 , &even, 3|Jfe),

(3.15) H.Λifc(0)-(^)(A)exp[^(-Λ--2)]ft1'a (Λ>0, fceven,

4 Proof of Selberg's formula (1.4). In order to prove the second
part of (2.2) we shall show that ωhfk is equal to the right member of
(2.10) when (h, k)*=l. It is convenient to write the expressions for
ωhiΊc in (1.2) and (1.3) in the form

(4-1) i

U M ] (4even)

where

(fcodd),
(4.2) f{h, fc)=

" [6/kA(A l)(A 2 ) i l ) ( A ) A (Λeven).

We divide the discussion into two principal cases.

Case 1. & divisible by 3. Then 3^Λ and & = & (mod 3). If k is odd,
then a == 3 or — 1 (mod 6) and /? = — 1 or 3 (mod 6) according as h = 1
or — I(mod3). If λ is even, then a = 0 or 2 (mod 6) and /3^2 or
0(mod6) according as h = l or — I(mod3).

If h~\ (mod 3) we see by (3.2), (3.5) and (3.8) that H-hyΊc{β)=0 and
hence (2.10) reduces to

(4.3) ft,,=-3|)T,,exp[1|(2+ *«•,]»_,.,(.).

To show that the right member of (4.3) reduces to ωhtk we replace
H-h)Ίc(a) by its value as given in (3.12) or (3.14). The factor (Sk)1'2 in
the denominator of ph}JC is thereby cancelled. Comparing the result after
simplification with (4.1) we find that it suffices to prove that

( ( ) ( ) (fe odd),

(4.4) /(*,*) H
1 2 - 12fc + 9hk + ha2 (mod 24&) (k even),

where f(h, k) is defined by (4.2). If k is odd it is easily seen that both
members of (4.4) are =3& — 3 (mod 8). With respect to the modulus 3&
the congruence (4.4) reduces after some manipulation to the easily verified
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congruence (h + h—2){hh — 1) == 0 (mod 3k). If k is even (and hence divisible

by 6) the congruence (4.4) reduces to ( A U ~ 2 ) ( M - 1 ) Ξ O (mod24&).
The last congruence follows from the hypothesis of Lemma 2. For we

have hh = 1 (mod 2k) and hence h = & (mod 12). Since h = 1 or 7 (mod 12)

we deduce that A + & = 2(mod 12).

If h = - 1 (mod 3) we have to replace in (4.3) 2 +ha2 by -2 + hβ2

and H-h>Jc{a) by H~htk(β). If & is odd the right member of (4.4) becomes
— 2-f-3& — 9(h + l)k2 + hβ2, and if & is even the right member becomes
— 2-t-hβ* + 9hk. We may complete the proof in Case 1 by an argument
similar to the one used when h ΞΞ 1 (mod 3).

Case 2. k not divisible by 3. If & = l(mod6), then /? = 1 (mod 6).

Furthermore Ti = 0 or 1 (mod 3) implies a==±l (mod 6), and "h Ξ= — 1

(mod 3) implies α = 3(mod6). If fc==-I(mod6), then α = l(mod6).

Moreover fc = 0 or — I(mod3) implies /?= ± l ( m o d 6 ) , and & = l(mod3)

implies β===3 (mod 6). If k = 2 (mod 6), then α == - 2 (mod 6). Further-

more h ̂  0 or — 1 (mod 3) implies /? == ± 2 (mod 6), and h = 1 (mod 3)

implies /9==0 (mod 6). Finally if fe=-2(mod6), then β=-2 (mod 6).

Moreover Λ = 0 or 1 (mod 3) implies a = ± 2 (mod 6), and ^ ̂  — 1 (mod 3)
implies a = 0(mod6).

We now return to the value of phtk in (2.10). In order to evaluate
H-h,Λa) a n d H-hiJc(β) it suffices to use formulas (3.3) and (3.13) when
k is odd and formulas (3.6) and (3.15) when k is even. Unlike the
corresponding situation in the proof of Case 1 the factor 1/3 appearing
in the denominator of ρh>Ίc is not immediately cancelled. Accordingly we
need a device for separating the factor 1/ 3 from the numerator of phtk.
To accomplish this we shall require the following congruences. If k = 1
or —2 (mod 6), then

f 0 (mod 24k) (A = 0 o r l (mod 3)),
(4.5) 4&-4-/Kα 2 -/2 2 )^

116AJfc (mod 24&) (λ = - 1 (mod 3)).

If k= - 1 or 2 (mod 6), then

/ 0 (mod 24k) (h = 0 or - 1 (mod 3)),
(4.6) -4k-4-~h(a2-β2)^\

116A/c (mod 24&) (A = 1 (mod 3)).

To prove (4.5) and (4.6) we first note that the definition of a and β in

(2.11) implies a2 — β2=—4h(l — hk). It is now an easy matter to verify

the various cases which arise. When k is even we again make use of

the assumption that M Ξ Ξ I (mod 2&).
Turning to the case when &==1 or —2 (mod 6) we utilize congruence
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(4.5) in the following manner. Employing (3.3), (3.6) and (3.8) we first

make in (2.10) the substitution H-ϊ1nk(β)=H-htk{a) when Λ = 0 or 1 (mod 3)

and H-hΛ(β)= exp(-4:πihkl3)H-h,k(a) when A = — I(mod3). Next we
multiply and divide the numerator of phyk by exp [πi(2k —2 —ha2)/12k] and

then apply the congruence (4.5). It is not difficult to verify that we

introduce in this way the factor e*'/β-f e~iείl6=y/ 3\ In general the ex-

pression for phιk in (2.10) now reduces to

(4.7) ^ > f c ^ - J

The value of H^k{ά) is given in (3.3) and (3.13) when & = l(mod6)
and is given in (3.6) and (3.15) when fc= —2 (mod 6). We have to prove
that the right member of (4.7) is equal to ωhik.

Suppose first that h = Q or 1 (mod 3). Proceeding as in the proof of
Case 1 we find that it suffices to prove that

() 2 (mod 24fc) (fc = l (mod 6)),
(4.8) f(h,k)=z\

I 2 - (3k + 8)fe - 16hk2 4- ha2 (mod 2Ak) (k = - 2 (mod 6)).

Both members of the first congruence in (4.8) are = 0 (mod 3) and 3&—3

(mod 8). With respect to the modulus k the congruence reduces to

(h + h—2)(hh—1) = 0 (mod k). Both members of the second congruence

are ΞΞO (mod 3). With respect to the modulus 8k the second congruence

reduces to the congruence (h>\ lι~2)(Jih—1) = 0 (mod 8k). To prove the

last congruence we note that h is odd when k is even. Hence hh^l

(mod2&) implies h-hh —2 — 0 (mod 4).

Suppose next that A==~• — 1 (mod 3). The discussion is similar to that

used when & = 0 or 1 (mod 3). In this case, however, it is necessary

to replace {h — 3)U2 in the first congruence of (4.8) by (9h — 3)k2 and to

omit the term —16hJc2 in the second congruence.
Finally we turn to the case when k == —1 or 2 (mod 6). The argument

now proceeds along the same lines as in the case /i: = l or —2 (mod 6).
It turns out in this case, however, that the expression for phtk given in
(4.7) must be modified by replacing exp[ — πi(2k — 2 — haz)ll2k] by
exp [-πi(-2k-2-h

In conclusion we summarize the results established in this section.

When (hy k)=l we have proved that phιk is equal to the right member

of (1.2) if k is odd and is equal to the right member of (1.3) if k is

even. In the proof the assumption was made that (hh — l)ik is even

when k is even. We now point out that this assumption does not lead
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to a loss of generality in the final result. For it is easy to verify that

the right member of (1.3) is independent of the choice of &.

5. Evaluation of Ak(ri) Lehmer [3] has evaluated the sum Ak{n)
in the case when k is a power of a prime. In the present section we
derive from (1.4) formulas for Ak(n) which are valid for arbitrary k, and
which reduce immediately to Lehmer's formulas when k is replaced by
a power of a prime. Four cases present themselves quite naturally
according as the greatest common divisor of k and 6 is 1, 2, 3 or 6.
First it is convenient to note that when k is odd we may write (1.4) in
the form

(5.1) Ak(n)=2^ )1/2 Σ (-1)1 cos

where we have put v=l — 2&n, and where now I runs over integers in
the range 0<I?<& which satisfy the summation condition.

Case 1. k odd and not divisible by 3. In order that solutions exist
of the congruence x2 = v (mod k) it is, of course, necessary that v be a
quadratic residue of every prime factor of k. We now set up a one-to-
one correspondence between the roots of the congruence (61 + lf^v
(mod24&), 0<;Z<C&, and the roots of the congruence (24m)2 = v (mod k).
This correspondence is effected by means of the congruence 6i-fl^24m
(mod A:), which associates each solution I of the first congruence with a
unique solution m of the second. Conversely, to distinct solutions of the
second congruence correspond distinct solutions of the first. We put also
6Γ + l=-2Am(modk)f 0<:Z'</b. Thus if k = l (mod 6), then l'=(k-
1)13-1 when 0<Ll<L(k-l)[3 and Γ=(Ak-l)/3-l when (&-l)/3<Z<&.
But if fcΞ=-l(mod6), then Γ=(2k-l)l3-l when 0 <±l<L(2k-l)l3 and
Γ=(5k —1)13 — 1 when (2k — l)/3<^l<Ck. As I runs over the integers
which satisfy the summation condition of (5.1) so does V'. In the sum
(5.1) we now pair off each I with the corresponding V. Then we have
the identity

(5.2) cos W±p±l«+ cos «
ok bk

^6k 2k

Consider the first cosine factor in the right member of (5.2). Since
3(Z + Z')(& + 1) + 1— ±& o r ± 5k (mod 12k) we see that this factor equals
± cos(7r/6) or ±i/372. More precisely if & = l(mod6), then this factor
equals —1/3/2 unless &=l(modl2) and 0<lZ<I(&--l)/3, but if k~~ 1
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(mod6), then it equals + V 3 / 2 unless k = 5(mod 12) and (2£-l)/3<
I <Ck. As for the second cosine factor we note that {I — Γ)(& + l)/4 is an
integer when & = 3(mod4). It is also an integer when fc = l(modl2),
0 ^ ^ ( & - l ) / 3 and when Λ = 5 (mod 12), (2k-l)l3<l<k. Otherwise
(k-hl-lf)(k + l)I4t is an integer. Since l-Γ =8m(moάk) it is clear that
the integer under consideration^2m(modk). It follows that when
(l—l')(k + l)l4: is an integer the second cosine factor equals cos {Aπmjk).
Otherwise the second cosine factor equals — cos (iπmjk). Collecting these
results we find in general that the right member of (5.2) reduces to
(3\k)VYcos(kπm\k), where we note that (3\k) = ±1 according as k~±l
(mod 12) or k = ± 5 (mod 12). Thus we have proved the following theorem.

THEOREM 1. If k is odd and not divisible by 3, then

3

r=t> (mod fc)

where m runs through integers (mod k) satisfying the summation condition.

Specializing to the case when k is a power of a prime we may prove

the following result due to Lehmer [3, Theorem 5].

COROLLARY 1. If k=pλ and v==l-24n, where p is a prime greater

than 3, then

0 (v a nonresidue of k and prime to k),

ok),

(5.4) Ak(n)=
(S\k)k1}z (v = 0 (mod p) and Λ=l),

0̂ (v == 0 (mod p) and λ > 1).

Proof. By the condition in the first part of (5.4) we mean that no
solution exists of the congruence ^2 = v(mod/c). The sum in (5.3) is
therefore vacuous, and the result in (5.4) follows at once. The second
result in (5.4) also follows immediately from (5.3) and the fact that in
this case the congruence (24ra)2 == v (mod k) has exactly two solutions.
To prove the third part of the corollary we note that the congruence
(24m)2 = 0 (mod p) has the unique solution m = 0 (mod p). The result in
(5.3) now reduces immediately to the result in (5.4). Finally we consider
the proof of the last result of the corollary. When t;=0(modp) and

we first seek the solutions of the congruence x2 = v(modk). Put

pb, where 0 < > < Λ and bφO(modp). In order that solutions of
the given congruence exist it is necessary and sufficient that μ be even,
and b be a quadratic residue of p. Each solution $ may then be written
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in the form x=pμl2c, where e2 = δ (mod pλ"μ). For any such solution x
we now solve the congruence 24m = x (mod k) for a unique value of m.
Then the numbers m+jpλ'μl\ 0 <Lj < pμ'2 are incongruent solutions (mod k)
of the congruence (24m)2 = Ϊ; (mod &). The contribution of these numbers
to the sum in (5.3) is given by

cos^icos^sin^lsiπ,
k j-o p μ / 2 k j-u p μ / 2

and both of the last two sums equal zero. This completes the proof of
the corollary in all cases.

Case 2. k odd and divisible by 3. Let m run over the solutions of
the congruence (8m)2 ~v (mod 3k). With each pair of solutions m, 3k — m
we associate the unique solution I of the congruence 61 4-1 = ± 8m (mod
3&), 0<IZ<&, where the coefficient of 8m is selected to be +1 or —1
according as m==—1 or -f-l(mod3). Then each Z determined in this
manner satisfies the congruence (61-h I)2 ΞΞ V (mod 24&), 0 <11 < &. On the
other hand each I satisfying the last congruence determines a pair of
solutions m, 3k—m of the first congruence. It follows that I runs twice
over integers satisfying the summation condition in (5.1). Consider next
a pair of solutions m, 3k—m for which m = — I(mod3). Then the cor-
responding I satisfies the equation 8m=6l-\-l-h3jk for some integer;?.
The summand in (5.1) may now be written in the form ( — If cos [(j7r)/2 —
(4πm)/3&]. If I is even, then j~k(mod4); if I is odd, then j=—k
(mod 4). Since (m|3)= — l the summand under consideration reduces to
— ( — I\k)(mj3)sin (Aπmβk). We may show similarly that we get the
same result if the pair m, 3k — m is such that m == 1 (mod 3). Accordingly
we may state the following theorem.

THEOREM 2. If k is odd and divisible by 3, then

(5.5, Λ W =
($my=υ (mod 3fc)

where m runs through integers (mod 3k) satisfying the summation condition.

When k=3λ the congruence (8m)2 = v (mod 3&) has precisely two
solutions. Therefore an immediate consequence of Theorem 2 is the
following corollary [3, Theorem 6].

COROLLARY 2. If &=3\ then

Ak(n)=2(-l)λ+1(m\3)(kl3)112 sin (4ττm/3&) ,

where m is an integer such that (8m)2 = 1 — 24% (mod 3k).
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We now return to the sum (1.4) in the case when k is even. In
this case Ak(n) may be written in the form

(5.6) Λ N = | ( | )"2

 i Σ (-1)' cos

where now I runs over integers in the range 0<IZ<C4& which satisfy
the summation condition.

Case 3. k even and not divisible by 3. The congruence 6̂ -f 1 = 3m
(mod 8k) establishes a one-to-one correspondence between integers Z, 0 <
l<C4k, and odd integers m, 0<Lm<^8k. For any such I which satisfies
the congruence (61 + l)2 = v (mod 24&), the corresponding m satisfies the
congruence (3m)2 = ^ (mod8&). Conversely, to distinct solutions of the
second congruence correspond distinct solutions of the first. We put also

Thus if &ΞΞl(mod3), then Γ = (4k-l)l3-l when 0 <: Z<:(4&-l)/3 and
Z'=:(16fc-l)/3-Z if (4&-l)/3<Z<4&. But if fc=Ξ-l(mod3), then ί' =
(8fc-l)/3-Z when 0^/^(8Λ-l)/3 and Γ=(20k-l)l3-l when (8fc-l)/3<
V <^4k. In the sum (5.6) we now pair off each I with the corresponding
I'. We note that in any event l + l' is odd, and we employ the identity

(5.7) co

If fc = l(mod3), then 3(ί + Π + l=4fc or 16fe; if Λ = - I ( m o d 3 ) , then
3(Z-H') +l=8fc or 20fc. The first sine factor in the right member of (5.7)
is therefore ±V 2>\2 according as fc= ± 1 (mod 3). From the congruence
I — V ΞΞΞ m (mod 4k) it follows that the second sine factor in (5.7) is equal
to sin (4τzm/8yk). Also the congruence 61 -f 1 =Ξ 3m (mod 8k) implies that I
is odd or even according as m= ± 1 (mod 4). Hence we have the equation
— ( — iy = ( — l\m). Our results may be combined in the following theorem :

THEOREM 3. // k is even and not divisible by 3, then

(5.8) ^ ( n ) .
(3m)2=υCmod8fc)

where m runs through integers (mod 8k) satisfying the summation condition.

If k=2λ the congruence (3m)2 = v (mod 8k) has exactly four roots.
If m is one such root, then the four roots are given by ±m and ±m
+ 4&. We may therefore state the following corollary [3, Theorem 7] of
Theorem 3.
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COROLLARY 3. // k=2\ ΛI>0, then

Ak{n) = ( - l)λf ~'^) k112 sin (Aπmβk) ,
V m /

m is an integer such that (3m)2 = 1 —24?ι (mod 8&).

4. k even and divisible by 3. Let m run over the roots of the
congruence m? = v (mod 24k). Each such m determines a unique solution
I of the congruence 6£ 4-1ΞΞΞ ±m(mod 24k), 0<l£<4&, where the coef-
ficient of m is ± 1 according a s m ^ ± l (mod 6). The numbers I obtained
in this way are solutions of the congruence (6l + lf = v (mod 24k), 0<l
£<4&. Conversely each solution I of the last congruence determines a
pair of solutions m, 24k —m of the first congruence. As a result the
numbers I run twice over the integers which satisfy the summation
condition in (5.6). Suppose first that a solution m is such that m = l
(mod 6). Then the equation 6l-hl = m + 24jk (for some integer.?) implies
that I is even or odd according as ra^l or 7 (mod 12). Consequently
we have ( — l)ι = (3\m). The summand in (5.6) may now be written in
the form (3|m) cos (AπmfeAk). In a similar manner we may derive the
last result when m = — 1 (mod 6). Thus we have established the following
theorem:

THEOREM 4. // k is even and divisible by 3, then

(5.9) At(n)=±-(^\ Σ
4 \ O / w2=tj (mod 24fc)

where m runs through integers (mod 24fe) satisfying the summation
condition.

6. Factorization of the AJn). The theorems of the preceding
section open a new approach to the factorization of the Ak(n). Alternative
approaches have previously been given by Lehmer [3] and Rademacher
and Whiteman [6]. In what follows we shall derive three theorems for
expressing Ak(ή) as a product of two A's whose subscripts are relatively
prime integers whose product is k. It should be pointed out that our
theorems and Lehmer's theorems overlap to a certain extent. Lehmer's
Theorem 1 is included in our Theorem 5. His Theorem 2 follows from
our" Theorems 5 and 6. His Theorem 4 is equivalent to our Theorem 7.

THEOREM 5. // k==kjcif (kuk2)=lf and if furthermore 8\k in case
k is even, then

(G "Π A (Ύ)λ=zA (v \A (Ύ) λ
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where nx and n2 are determined by the congruences

Ίi^d2en1 == dλen 4- {k\—l)ldι (mod kλ) ,
(6.2)

k\dxen2 ΞΞ dλen 4- {k\ — l)[d2 (mod k2) ,

respectively, and where du d2, e are defined by

(6.3) di=(24, k,), d2=(2A, k2), 2A=d1d2e .

Proof. The assumption 8|& when k is even enables us to write the
summation conditions of Theorems 1, 2, 3 and 4 in the general form

(6.4) (24m/d)2 = v (mod dk) ,

where d=(24, k). Let nlf n2 be two integers to be determined explicitly
later on. We wish to establish the equation (6.1) where, for brevity,
we write Ak{n)=^m, Λ/^iHΣm,, A ^ H Σ ^ The summation indices
m19 ra2 run over the solutions of the two congruences

( / ) = vλ (mod dftj ,
(6.5)

(24m2/eZ2)
2 ̂  v2 (mod d.zk2) ,

respectively, where ^ = 1 — 2Anlf v2=l — 2An2, and dx, d2 are defined in
(6.3). We note also that d=dλd2. For each pair of summation indices
mx, m2 we now define numbers m, mf by means of the congruences

m ΞΞΞ d^kλm2 4- d2k.,m1 (mod dxd2k) ,
(6.6)

m ' ΞΞΞd1k1m2—d2k2m1 (mod d±d2k) .

Our object is to select ^ , v2 in (6.5) so that m or m' runs over the
solutions of the congruence (6.4). It is clear that (6.4) has no solutions
if there exists an odd prime factor p of dk for which (v\p)= — l. Other-
wise it follows from a well-konwn result [2, vol. 1, Satz 88] that if s
denotes the number of odd prime divisors of dk, then the number of
solutions of (6.4) is 2s when k is odd and 2S+2 when k is even. Sub-
stituting from (6.6) into (6.4) and applying (6.5) we get

(6.7) (24m/d)2 = (24m7cZ)2 = k\v2 + J^o1 (mod dk) .

In order to make (6.7) equivalent to (6.4) we need to select vlf v2 so that
the congruence v = k\v2 4- kξv1 (mod dβ.Jϊ) is satisfied. For this purpose
we define vlf v2 by means of the pair of congruences

k\vx ΞΞΞ v (mod dfa),
(6.8)

k\v2 ΞΞΞ v (mod d2k2) .
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With this choice of vlf v.λ we see that the number of solutions of (6.4)
is the product of the number of solutions of the first congruence in (6.5)
multiplied by the number of solutions of the second. Moreover this
number is precisely the number of incongruent integers m or mf defined
by (6.6).

The pair of congruences (6.8) is equivalent to the pair of congruences
(6.2) in the hypothesis of Theorem 5. In order to prove (6.1) we find
it convenient to divide the discussion into the following five cases.
Case 1. d1=d2=l. Case 2. d1=l, <22=3. Case 3. dι=ly cϋ2=8. Case
4. ^==3, cZ2=8. Case 5. d1=l, <Z2=24. The argument proceeds along
the same lines in each of these cases. To illustrate the method we give
the proof in Case 4. In this case the value of Aki(n1) is given by
Theorem 2, and the value of Ak2(n.z) is given by Theorem 3. By (5.5)
and (5.8) the product A^n^A^n^ may be put in the form

y

(6.9) AφJAφ

4 \ Λ 1 / \

where the respective ranges of m1 and m2 are given by the solutions of
the congruences (δm^2 = v1 (mod 3^) and (3m2)

2 = v.z (mod 8k2). On the
other hand the value of Ak(n) is given by Theorem 4. In the sum (5.9)
we now pair off each m ^Sk1m.z + 8k2m1 (mod 24k) as defined in (6.6) with
the corresponding m' = Sk1mz — 8k2m1 (mod 24&). Since (3|m)=( —llSAy?^)
(βfewxIS) and (3|m/)=(~l|3A:1m2)(--8^m1 |3) it follows that (3|m)(3|m/)=
— 1. Hence we get

where m runs over the incongruent solutions of the congruence m2 = v
(mod24&). To complete the proof we show that every term of (6.9) is
equal to the corresponding term of (6.10). This follows at once from
the trigonometric identity

and the number theoretic identity (3|m)=( — l|fci)(fca|^(m^3)( — l |m 2). The
remainder of the proof may be completed in a similar fashion.

The preceding theorem enables us to decompose Ak{ri) for composite
A; if A; is odd or divisible by 23. We now consider the cases in which k
is even but is not divisible by 23.



174 ALBERT LEON WHITEMAN

THEOREM 6. // &=4&i with kλ odd, then

(6.12) A^H-A^OAK),

where nλ and n.z are determined by the congruences

128^ = 8n + 5 (mod kλ) ,
(6.13)

kin., = n - 2 - (jfc» -1)/8 (mod 4) ,

respectively.

Proof. Since & is divisible by 4 but not by 8 the summation con-
ditions of Theorems 3 and 4 may now be written in the general form

(6.14) (24m/<5)2 = v (mod δk) ,

where δ is defined by the equation δ=(2k, 24). Proceeding as in the
proof of Theorem 5 we have in place of (6.5) the pair of congruences

( / ) == v1 (mod djcλ) ,
(6.15)

d

respectively, where dx is defined by (6.3) as before, and where we now
put &2=4. Unlike the situation in the proof of Theorem 5 the analogue
of the pair of congruences (6.6) does not here lead to the analogue of
congruence (6.7). Accordingly we modify our former argument as follows.
For each pair of summation indices ml9 m2 we define numbers m, mf by
means of the congruences

m = djc^m^ 4- 2kλ) + 8k2mι (mod δk) ,
(6.16)

mf = d1fc1(m2 + 2k2) — 8k2mι (mod δk) .

Then we may verify that (24m/5)2 = (24m7^)2 = fe^24-^1 (mod δk). In
order to make this congruence equivalent to the congruence (6.14) we
now define vly v.λ by means of the pair of congruences

k\vx = v (mod dje^ ,
(6.17)

k\v2 + k\ = v (mod 8fc2) .

Exactly as in the proof of Theorem 5 it follows that the numbers m or
mr defined in (6.16) run through the entire set of incongruent solutions
of (6.14). Moreover the number of solutions of (6.14) is the product of
the numbers of solutions of the two congruences in (6.15).

The pair of congruences (6.17) is equivalent to the pair of congruences
(6.13) in the hypothesis of Theorem 6. In order to prove (6.12) we need



A SUM CONNECTED WITH THE SERIES FOR THE PARTITION FUNCTION 175

to consider the two cases ^ = 1 and 6^=3. We now indicate the proof
in the case ^ = 3 . The argument is step by step similar to the argument
given in the proof of Case 4 of Theorem 5. It is necessary, however,
to replace the factor sin (47tmJ8k2) in the right member of (6.11) by the
factor sin(7r4-4πm2/8&2). This change accounts for the presence of the
minus sign in the factorization formula (6.12). This completes the proof
of Theorem 6. We conclude with the following theorem.

THEOREM 7. If k=2k1 with kλ odd, then

(6.18) A^rή^A^n^A^n,) ,

where nλ and n2 are the respective solutions of the congruences

32^ = 8rc + l (mod kλ) ,
(6.19)

Proof. Since the proof of this theorem is very much like the proof
of Theorem 5, it will suffice to sketch it briefly. The summation con-
ditions in Theorems 3 and 4 are now expressed by the congruence
(24mlDf = v (mod Dk), where D=(4k, 24). The second congruence in
(6.5) is replaced by (3m2f = v2 (mod 8k2), where this time we take &2=2.
The pair of congruences (6.6) is replaced by the pair m = d1k1m2+8k2m1

(mod Dk), m! ^d1k1m2 — 8k2m1 (mod Dk). These two congruences, in turn,
lead to the congruence (2AmlD)2 = (2Am/1Df^klv^kKv,-A) (mod Dk).
In order to reduce the right member of the last congruence to v (mod Dk)
it suffices to define vl9 v2 by means of the pair of congruences

k\vλ == v (mod djtϊ) ,
(6.20)

k\v2 = v (mod 8k2) .

Finally the two congruences (6.20) are equivalent respectively to the two
congruences (6.19) in the hypothesis of the theorem. It is convenient
to treat separately the two cases d1=lf d1=3. Then the rest of the
proof goes through without difficulty.

REFERENCES

1. W. Fischer, On Dedekind's function 9?(r), Pacific J. Math., 1 (1951), 82-95.

2. E. Landau, Vorlesungen ύber Zahlentheorie, S. Hirzel, Leipzig, 1927.

3. D. H. Lehmer, On the series for the partition function, Trans. Amer. Math., Soc, 43

(1938), 271-295.

4. T. Nagell, Introduction to number theory, John Wiley and Sons, New York, 1951.



176 ALBERT LEON WHITEMAN

5. H. Rademacher, On the partition function p(n), Proc. London Math. Soc. (2), 4 3 (1937),
241-254.
6. H. Rademacher and A. L. Whiteman, Theorems on Dedekind sums, Amer. J. Math.,
6 3 (1941), 377-407.
7. A. L. Whiteman, A sum connected with the partition function, Bull. Amer. Math.
Soc, 53 (1947), 598-603.

THE INSTITUTE FOR ADVANCED STUDY AND

UNIVERSITY OF SOUTHERN CALIFORNIA




