A SUM CONNECTED WITH THE SERIES FOR
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1. Introduction. The famous formula of Rademacher [5] for the
number p(n) of partitions of an integer n states that

sinh (,Kl/_k))

—_ 17 _ < 1 2,,7d,
p)=_ s 2 A ( A

where K=nr(2/3)"?, 1=(n—1/24)"* and the series is absolutely convergent.
The coefficients A,(n) are defined by
A (n)=1, A(m)=(-1)", Ayn)=2 cos [#(12n—1)/18] ,
and in general
1.1) A (n)= (h,kz)lLl w1, €xp (—2xihn(k) ,
where % ranges over those numbers which are less than £ and prime

to k. The numbers w, , are certain 24kth roots of unity which arise in
the theory of modular functions and are defined by

(1.2) wh,k=<~—?€é>exp[—{%(k—l)+i}é(k—%~)(2h+7a——h2ﬁ)}ml]
if k£ is odd, and by

(1.3) w,,,,c=(-fﬁk) exp [— {%(2—;@15— n) + llvz(k—%)(zk S Z0) m':'

when % is even. Here (a]d) is the symbol of Jacobi and % is defined

as any solution of the congruence 2% =1 (mod %).

Because of the intricacy of the numbers o, , the task of evaluating
A,(n) for large & directly from its definition in (1.1) is quite formidable.
To surmount this difficulty D. H. Lehmer [3] made an intensive study
of the A4,(n). He was able to reduce them to sums studied by H. D.
Kloosterman and H. Salié. In the first place he factored the A,(n)
according to the prime number powers contained in k. Secondly, by using
Salié’s formulas, he evaluated A,(n) explicitly in the case in which % is
a prime or a power of a prime. Both results together provide a method
for calculating the A,(r). It should also be mentioned that another

Rec&;;,d May 10, 1954. This investigation was supported by the Office of Naval
Research. The author is indebted to Professor Atle Selberg who kindly communicated to
him the hitherto unpublished result given in formula (1.4).
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method for evaluating and factorizing A,(n) based on a different ex-
pression for o, , is given in [6] and [7].

Some years ago Atle Selberg proved (but did not publish) the result
that A,(n) may be expressed alternatively in the form

(1.4) am=5" s (capes®ila,

(312 +1)/2= = n(mod ) 6k

where ! runs over integers in the range 0<7<(2k which satisfy the
summation condition. In this striking formula 4.(r) is expressed as a
sum which involves only cosines and which contains considerably fewer
terms than (1.1). Selberg’s derivation of (1.4) is based upon an investi-
gation of the underlying function 7(r) which plays a fundamental role
in the theory of elliptic modular functions. A related investigation has
been made by Fischer [1] for the determination of a 24kth root of unity
closely connected with w,,; .

In §§2, 3, 4 of this paper we give a direet proof of the equivalence
of the two formulas (1.1) and (1.4) for A,(n). The method of proof
consists in showing that (1.1) is the finite Fourier series expansion of
(1.4). In §5 we show that (1.4) may be transformed in various ways
(Theorems 1, 2, 8 and 4) so as to yield formulas which are suitable for
the direct computation of A,(n). These formulas in turn reduce im-
mediately to the formulas of Lehmer in the case in which % is a prime
or a power of a prime. Finally in § 6 we show that the theorems in
§ 5 may be utilized to derive three factorization theorems (Theorems 5,
6 and 7) for the A,(n). It will be seen that the present approach to
the evaluation of A,(n) makes no use of Kloosterman sums.

2. Finite Fourier series expansion of A,(n). The connection between
the two expressions for A.(n) given in (1.1) and (1.4) is clear from the
viewpoint of finite Fourier series. The function A,(7) defined by (1.4)
is periodic in the variable » with period k. Hence it permits of expansion
into a finite Fourier series of the form

k—1 .
2.1) Ay (n)= n% Onx €XD (——2”@@§> .

.
We shall prove that the coefficients p, ., are determined by the formula
(o ((hy B)>1)

2.2) Ph,k=1
w’l,,k ((/Z” k)=1) ’

where w, , is defined by (1.2) and (1.3). Consequently (2.1) reduces to
(1.1).
Inverting (2.1) we obtain first
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_ 1 4y exp (27
(2.3) ori— - s Au(g) exp (220

Then substituting from (1.4) into (2.3) we get

1 (—1)° cosﬁ_l-'l'l nexp[——@@(?»l%l)]

P (G it 6k k

_exp (xif6h) %3 1l
@2.4) = T exp[k( S +1(k k+1))]
exp (—ni/6k)

+ 2(3]5‘)”"" 1 (mod 2k)

exp [ifki(-—ghzzu(k—k-.n)] ,
where the sums extend over any complete residue system modulo 2k.
In order to prove the first part of (2.2) we require the following lemma.

LEMMA 1. Let a, b, ¢ denote integers and let the highest common
divisor d of h and k be greater than 1. If d } ¢, then
(2.5) S exp [’52 (ahl? + bl + cl)]=o .

1 Cmod 2k) k

Proof. We put h=dh', k=dk’. Then the summation condition
I(mod 2k) is equivalent to the double summation condition 0 <»r <2k —1,
{ =r(mod 2k"), 0 <1< 2k. For each fixed value of » we put [=r+2jF/,
0<7<d—1. The sum in (2.5) may now be written in the form
2.6) S exp [% (ar + br)] S exp [m (r+ 2jk’)] :

r=0 k, Jj=0 k

Since 2ricjk’[k=2ricj/d and d } ¢ it follows at once that the inner sum

in the right member of (2.6) is equal to zero for each value of . This
proves the lemma.

Applying the lemma with a=—3, b=—1 and c¢=k+1 to (2.4) we
deduce from (2.5) that p, =0 when (%, k) >1.

Turning to the proof of the second part of (2.2) we now assume
that (h, k)=1. We proceed to complete the square in the two sums in
the last member of (2.4). For this purpose it is convenient to assume
that the solution % of the congruence sk =1 (mod k) is selected so that

(hh—1)/k is even when k is even. We shall see later that this assumption
entails no loss in generality. From the assumption it follows also that
exp [mil(hh—1)(k+1)/k]=1. The two sums in the last member of (2.4)
may now be written in the form
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@n s eXp[”( 3hl‘—|—l(lc—hi1))]exp[ml (Wi 1)(1&1)]

1 (mod 2k)

which reduces after simplification to

(2.8) eXp[”ka _RRERY S exp[ ’”k(fsz+(1 hk;h))ﬂ

1 (mod 2k)

It is therefore natural to introduce the sum

(2.9) H,, k(T)_—‘ >

G+7) |
2 Jcmodwc) [1210( J+7)

for integers %, k and 7 with £>>0. This sum has already been employed
by Fischer in his paper cited in the introduction. Combining the results
in (2.4), (2.7) and (2.8) we obtain a formula for p, , which is given in
the following lemma.

LEMMA 2. For (h, k)=1 let the solution h of the congruence hh =1

(mod k) be selected so that (hh—1)[k is even when k is even. Then the
Jfinite Fourier coefficient p, . defined in (2.1) has the value

2.10)  p.= 2+ ha )]H (@)

,L{ ox [
(8k)!2 12k

+exp| Il @+hf) [Hoan(®)]
where H, (r) is defined by (2.9) and «, B are defined by
(2.11) a=1—hk—h, B=1—hk+h.

Next we must evaluate H, .(y). This is accomplished in the follow-
ing section.

3. The sum H, (r). It is evident that the sum H, ,(r) is closely
related to the classical Gauss sum defined by

GRY Gro— 5 exp (2.

J (mod k)

Indeed we shall make use of the following formulas which are taken
from Fischer’s paper [1, § 3].
If k£ is odd and 3|k, then

(3.2) H, (1)=0, H, (3)= exp (%m‘hk)Gm,% .
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If £ is odd and 3 } k, then

(3.3) H, (1) = exp (inihk)ﬂh,k(a) ,
3
Ik (k=1 3hk
(3.4) H,,,,c(3)—<»§—) exDp m<777772~ +2 )Gm,k.
If k=2, 2>1, k, odd and 3|k, then
A
@5 Ha@=0, Hy(0=2"(2) exp(Sritk:)Gonn,

If k=2, 2>1, k, odd and 3 t%, then

(3.6) H, «(2)=exp (-é-nikk) H, .0),
_(F\or:(2) (=1 3k,

(3.7) H, (0) (3)2 (k) exp m< — )szl.

We note also the easily established relations

(3.8) H, .(r)=H, (—7)=H, (r+6n),

which are valid for any integer .
For G, , defined in (3.1) we shall require the following well-known
formulas which may be found, for example, in [4, Chapter 5].

(3.9) G, k=( ;‘)Gk (k 0dd).
(3.10) G, =R 2=’ (% odd).
0 (hodd, 1=1),
(3.11) Gy 2{ gaart
2(}”‘1)/2(% ) emn/; (h Odd, A x>: 2)

We also recall the formulas (—1|k)=(—1)*-""* and (2|k)=(—1)**-V® which
are valid for % odd.
Using (3.9) and (3.10) we may deduce from (3.2) and (3.4) that

(3.12) H,,,k(3)=(f;z )(g ) exp [’Z (Bhk— Sk + 1)] @k (kodd, k),
(3.13) H,L,,c(g):( Z )( ’;) exp [’Z@hk +k— 1)]1&/2 (kodd, 3.4 J).

Using (3.9), (8.10) and (3.11) and the law of quadratic reciprocity for the
Jacobi symbol we find after some manipulation that the formulas for
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H, ,(0) in (3.5) and (8.7) reduce to

(3.14)  H._,.(0)= ( )exp[m(3k+4)](3k)"’ (>0, k even, 3|k),

(3.15) H-h,k(0)=<7&k>(§—) exp [’; i(-h—z)]k”z (>0, I even, 3 t k).

4. Proof of Selberg’s formula (1.4). In order to prove the second
part of (2.2) we shall show that o, , is equal to the right member of
(2.10) when (%, k)=1. It is convenient to write the expressions for
w,,; in (1.2) and (1.8) in the form

—h b} A
W ( A ) oxp [12kf 2, k)] (k 0dd),
. WDy, == _
(th) exp [12kf (%, k)] (k even),
where
—[8k(k— 1)+ (B —1)(2h + h— h*h)] (k odd),

42 s k>={ ]
—[6k—h(k+ 1)(k+2)— (B*—1)(2*—1)Ah] (k even).

We divide the discussion into two principal cases.

Case 1. k divisible by 8. Then 3 A and A=~% (mod 8). If k is odd,
then « =3 or —1(mod 6) and f= —1 or 3 (mod6) according as r=1
or —1(mod3). If £ is even, then @a=0 or 2(mod6) and =2 or
0 (mod 6) according as Z=1 or —1 (mod 3).

If 2=1(mod 3) we see by (3.2), (3.5) and (3.8) that H_, .(8)=0 and
hence (2.10) reduces to

1

4.3 S [
(48) =gy P L1ok

@ + ha )]H_h (@) .

To show that the right member of (4.3) reduces to w,, we replace
H_, .(a) by its value as given in (3.12) or (8.14). The factor (8%k)'* in
the denominator of p, , is thereby cancelled. Comparing the result after

simplification with (4.1) we find that it suffices to prove that
2—9k—9(h+ 1)k’ + ha* (mod 24F) (k odd),
(4.4) [, k)=
' 2—12k 4+ 9hk + ha* (mod 24Fk) (k even),

where f(k, k) is defined by (4.2). If k is odd it is easily seen that both
members of (4.4) are =3k—3 (mod 8). With respect to the modulus 3k
the congruence (4.4) reduces after some manipulation to the easily verified
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congruence (k+h—2)(hh—1)=0(mod 8k). If k is even (and hence divisible
by 6) the congruence (4.4) reduces to (h+%—2)(hkh—1)=0 (mod 24k).
The last congruence follows from the hypothesis of Lemma 2. For we
have hh =1 (mod 2k) and hence & =/ (mod 12). Since ~=1 or 7 (mod 12)
we deduce that % +7% =2 (mod 12).

If 2= —1(mod 3) we have to replace in (4.3) 2+ha* by —2+ A
and H_, («) by H_, ,(8). If k is odd the right member of (4.4) becomes
—24+3k—9(h+1)E*+np% and if k is even the right member becomes
—2+h3*+9hk. We may complete the proof in Case 1 by an argument
similar to the one used when %=1 (mod 3).

Case 2. k not divisible by 3. If k=1 (mod6), then f=1 (mod 6).
Furthermore ~2=0 or 1(mod3) implies a@= +1(mod6), and 2= —1
(mod 3) implies a=38(mod6). If k= —1(mod6), then a=1(mod6).
Moreover 2 =0 or —1 (mod 3) implies #= +1(mod 6), and A =1 (mod 3)
implies =3 (mod 6). If k=2 (mod 6), then o= —2(mod 6). Further-
more ~2=0 or —1(mod3) implies f= +2 (mod6), and Z=1 (mod 3)
implies =0 (mod 6). Finally if k= —2(mod 6), then S = —2 (mod 6).
Moreover A ==0 or 1(mod 3) implies @ = +2 (mod 6), and ~= —1 (mod 3)
implies a =0 (mod 6).

We now return to the value of p,; in (2.10). In order to evaluate
H_, .(a) and H_, (B) it suffices to use formulas (3.3) and (3.13) when
k is odd and formulas (3.6) and (3.15) when % is even. Unlike the
corresponding situation in the proof of Case 1 the factor 1/ 8 appearing
in the denominator of p,,; is not immediately cancelled. Accordingly we
need a device for separating the factor 1/ 8 from the numerator of p, ;.
To accomplish this we shall require the following congruences. If k=1
or —2(mod 6), then

0 (mod 24k)  (2=0 or 1(mod 3)),
(4.5) 4k —4—h(a*—f?) = { 3

164k (mod 24k) (A= —1 (mod 3)).
If k= —1 or 2(mod 6), then ‘

0 (mod 24k) (=0 or —1 (mod 3)),
(4.6) — 4k —4—h(*— ) = { _

16Ak (mod 24Fk) (A =1 (mod 3)).

To prove (4.5) and (4.6) we first note that the definition of « and £ in
(2.11) implies a*— = —4h(1—hk). It is now an easy matter to verify
the various cases which arise. When % is even we again make use of

the assumption that 4% =1 (mod 2k).
Turning to the case when k=1 or —2(mod 6) we utilize congruence
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(4.5) in the following manner. Employing (3.3), (3.6) and (3.8) we first
make in (2.10) the substitution H_, (8)=H_,, () when =0 or 1 (mod 3)
and H_, .(f)= exp (—4mihk(3)H_, (a) when h= —1(mod3). Next we
multiply and divide the numerator of p, , by exp [#i(2k —2—ha?)/12k] and
then apply the congruence (4.5). It is not difficult to verify that we
introduce in this way the factor ¢®*+e¢-"=1/3. In general the ex-
pression for p,, in (2.10) now reduces to

4.1 p,b,,c:klm exp [— o @h—2- haZ)]H_h,k(a) .
The value of H_, ,(«) is given in (3.3) and (3.13) when k=1 (mod6)
and is given in (3.6) and (3.15) when k= —2(mod 6). We have to prove
that the right member of (4.7) is equal to o, .

Suppose first that 2=0 or 1 (mod 8). Proceeding as in the proof of
Case 1 we find that it suffices to prove that

2— 5k — (h—3)k* + ho* (mod 24F) (k=1 (mod 6)),

(4.8)  f(h, k)=
2— (3% +8)k—16Ak*+ ha® (mod 24k) (k= —2 (mod 6)).

Both members of the first congruence in (4.8) are =0 (mod 3) and 3k —3
(mod 8). With respect to the modulus % the congruence reduces to

(h+h—2)(hh—1)=0(mod k). Both members of the second congruence
are =0 (mod 3). With respect to the modulus 8% the second congruence

reduces to the congruence (%+A—2)(h2—1)=0 (mod 8%). To prove the
last congruence we note that % is odd when % is even. Hence hh=1
(mod 2%) implies A+%—2= 0 (mod 4).

Suppose next that 2= —1(mod 8). The discussion is similar to that

used when 2=0 or 1(mod 3). In this case, however, it is necessary
to replace (2—3)k* in the first congruence of (4.8) by (92—3)k* and to
omit the term —16A4%* in the second congruence.

Finally we turn to the case when k= —1 or 2 (mod 6). The argument
now proceeds along the same lines as in the case k=1 or —2 (mod 6).
It turns out in this case, however, that the expression for p,; given in
(4.7 must be modified by replacing exp[—nmi(2k—2—ha?)/12k] by
exp [ —mi(—2k—2—ha?)[12k].

In conclusion we summarize the results established in this section.
When (%, k)=1 we have proved that p, , is equal to the right member
of (1.2) if £ is odd and is equal to the right member of (1.8) if £ is

even. In the proof the assumption was made that (hh—1)/k is even
when % is even. We now point out that this assumption does not lead
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to a loss of generality in the final result. For it is easy to verify that
the right member of (1.3) is independent of the choice of 4.

5. Evaluation of A,(n). Lehmer [3] has evaluated the sum Ag(n)
in the case when %k is a power of a prime. In the present section we
derive from (1.4) formulas for A,(n) which are valid for arbitrary %, and
which reduce immediately to Lehmer’s formulas when % is replaced by
a power of a prime. Four cases present themselves quite naturally
according as the greatest common divisor of % and 6 is 1, 2, 3 or 6.
First it is convenient to note that when % is odd we may write (1.4) in
the form

(5.1) Ak(n)=2(!§ )”2 P (—1) cos 6l6+ 1,

(6L+1)%=v (mod 24k) k

b

where we have put v=1—24n, and where now [ runs over integers in
the range 0 <7<k which satisfy the summation condition.

Case 1. k odd and not divisible by 3. In order that solutions exist
of the congruence z*=v (mod k) it is, of course, necessary that v be a
quadratic residue of every prime factor of k. We now set up a one-to-
one correspondence between the roots of the congruence (6/+1)=v
(mod 24k), 0 <l <k, and the roots of the congruence (24m)*=v (mod k).
This correspondence is effected by means of the congruence 6/ +1=24m
(mod k), which associates each solution / of the first congruence with a
unique solution m of the second. Conversely, to distinet solutions of the
second congruence correspond distinct solutions of the first. We put also
6l'+1=—24m (mod k), 0V <k. Thus if k=1 (mod 6), then I'=(k—
1)/8—1 when 0 <[ < (k—1)/3 and I'=(4k—1)/3—1 when (k—1)/3 <I<k.
But if = —1 (mod 6), then I'=(2k—1)/83—1 when 0 <1<(2k—1)/3 and
I'=(5k—1)/83—1 when (2k—1)/3< 1< k. As [ runs over the integers
which satisfy the summation condition of (5.1) so does I’. In the sum
(5.1) we now pair off each ! with the corresponding /. Then we have
the identity ~

6Uk+1)+1 6'(k+1) +1
(5.2) cos o7 7+ cos ok T
— 9 cos 30”/)5,-];:1”1“08 (l—l’;(:+1)n.

Consider the first cosine factor in the right member of (5.2). Since
3I+U)k+1)+1= +k or +5k(mod 12k) we see that this factor equals
+ cos (7/6) or +1/3/2. More precisely if k=1 (mod 6), then this factor
equals —1/8/2 unless k=1 (mod 12) and 0 <[ < (k—1)/3, but if k=-1
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(mod 6), then it equals +1/3/2 unless k=5 (mod 12) and (2k—1)/3
I <k. As for the second cosine factor we note that ({—I')(k+1)/4 is an
integer when k=3 (mod4). It is also an integer when k=1 (mod 12),
0<<I<(k—1)/3 and when k=5 (mod 12), (2k—1)/3<I<k. Otherwise
(k+1—=U)k+1)/4 is an integer. Since [—I’=8m (mod k) it is clear that
the integer under consideration=2m (mod k). It follows that when
(I=U')%k+1)/4 is an integer the second cosine factor equals cos (4zm/k).
Otherwise the second cosine factor equals — cos (4xm (k). Collecting these
results we find in general that the right member of (5.2) reduces to
(31k)V/ 3 cos (4mm/[k), where we note that (3|k)=+1 according as k==+1
(mod 12) or k= +5 (mod 12). Thus we have proved the following theorem.

THEOREM 1. If k is odd and not divisible by 3, then

(5.3) Ak(n)=( 2)1# s cos47;m,

24m>’=v (mod k) ]

where m runs through integers (mod k) satisfying the summation condition.

Specializing to the case when % is a power of a prime we may prove
the following result due to Lehmer [3, Theorem 5].

COROLUARY 1. If k=p* and v=1—24n, where p is & prime greater
than 3, then

0 (v anonresidue of k and primetok),

23k cas (dzm k) (0 =(24m.) (mod k) and prime to k),
(5.4)  Adn)— |

3lk)k" (v =0 (mod p) and 2=1),

0 (v==0 (mod p) and 2> 1).

Proof. By the condition in the first part of (5.4) we mean that no
solution exists of the congruence z*==v(mod%). The sum in (5.3) is
therefore vacuous, and the result in (5.4) follows at once. The second
result in (5.4) also follows immediately from (5.3) and the fact that in
this case the congruence (24m)'=v (mod%) has exactly two solutions.
To prove the third part of the corollary we note that the congruence
(24m)* =0 (mod p) has the unique solution m =0 (mod p). The result in
(5.3) now reduces immediately to the result in (5.4). Finally we consider
the proof of the last result of the corollary. When v==0(mod p) and
2>1 we first seek the solutions of the congruence a*=v (mod k). Put
v=p"b, where 0<p< 2 and b5£0 (mod p). In order that solutions of
the given congruence exist it is necessary and sufficient that z be even,
and b be a quadratic residue of p. Each solution # may then be written
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in the form x=p*%c, where ¢*=>5(mod p*~*). For any such solution 2
we now solve the congruence 24m =z (mod k) for a unique value of m.
Then the numbers m+j5p**2, 0 < 5 < p*'* are incongruent solutions (mod k)
of the congruence (24m)*=v (mod k). The contribution of these numbers
to the sum in (5.3) is given by

®

B -
drm Pit 4drj . Aam &Y . Ay
cos ~=— 3>, cos J _ gin 27 sin **J
j=0 p#/2

iz pulz ’

and both of the last two sums equal zero. This completes the proof of
the corollary in all cases.

Case 2. k odd and divisible by 8. Let m run over the solutions of
the congruence (8m)* = v (mod 3k). With each pair of solutions m, 3k—m
we associate the unique solution ! of the congruence 6l+1 = +8m (mod
3k), 0 <l <k, where the coefficient of 8m is selected to be +1 or —1
according as m= —1 or +1(mod3). Then each ! determined in this
manner satisfies the congruence (6/+ 1)* = v (mod 24k), 0 <! <k. On the
other hand each [ satisfying the last congruence determines a pair of
solutions m, 8k—m of the first congruence. It follows that ! runs twice
over integers satisfying the summation condition in (5.1). Consider next
a pair of solutions m, 3k—m for which m = —1(mod 8). Then the cor-
responding [ satisfies the equation 8m=6{41+3jk for some integer j.
The summand in (5.1) may now be written in the form (—1) cos [(j=)/2—
(47m)/3k]. If I is even, then j=k (mod4); if [ is odd, then j=—Fk
(mod 4). Since (m|3)=—1 the summand under consideration reduces to
—(—1lk)(m/3) sin (47m[3k). We may show similarly that we get the
same result if the pair m, 3k—m is such that m =1 (mod 3). Accordingly
we may state the following theorem.

THEOREM 2. If k is odd and divisible by 3, then

9 A== <—kl)<l§)m (Sm)zzt%nod 3) (773?’) sin %]? ’

where m runs throuwgh integers (mod 3k) satisfying the summation condition.

When k=3* the congruence (8m)*=wv (mod 3k) has precisely two
solutions. Therefore an immediate consequence of Theorem 2 is the
following corollary [3, Theorem 6].

COROLLARY 2. If k=3*, then
Ay(n)=2(—1)*(m|3)(k/3)"" sin (4zm[3k) ,

where m s an integer such that (8m)*=1—24n (mod 3k).
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We now return to the sum (1.4) in the case when % is even. In
this case A,(n) may be written in the form

(5.6) Ak(n)=%7<]i)’“ S (=1) cos GZ‘;';Gl z,

3 61+ 1)?=v (mod 24k)

where now [ runs over integers in the range 0<.7< 4k which satisfy
the summation condition.

Case 3. k even and not divisible by 3. The congruence 6/+1 = 3m
(mod 8%) establishes a one-to-one correspondence between integers 7, 0 <
{ < 4k, and odd integers m, 0 <m < 8k. For any such [ which satisfies
the congruence (6/+1)*=v (mod 24k), the corresponding m satisfies the
congruence (3m)’=wv (mod 8%). Conversely, to distinct solutions of the
second congruence correspond distinet solutions of the first. We put also

60’ +1= —3m (mod 8%) , 0 <l < 4k.

Thus if k=1 (mod 3), then I'=(4k—1)/3—! when 0<1< (4k—1)/3 and

U'=(16k—1)/8—1 if (4k—1)/83 <l<4k. But if k= —1(mod 3), then I'=

(8%4—1)/8—1 when 0 <! <(8k—1)/3 and I’=(20k—1)/3—1 when (8k—1)/3 <

I" <4k. In the sum (5.6) we now pair off each ! with the corresponding

U’. We note that in any event I+’ is odd, and we employ the identity
6l+1 6'+1 _ _ oqp B0H)+1

A
5.7 e -
(5.7) cos ok cos o T ok 7 sin o

T .

If k=1 (mod3), then 3(l+!')+1=4k or 16k; if k= —1 (mod 3), then
3(1+1')+1=8k or 20k. The first sine factor in the right member of (5.7)
is therefore +1/ 8 /2 according as k= +1(mod 3). From the congruence
{—U'=m (mod 4k) it follows that the second sine factor in (5.7) is equal
to sin (47m/8k). Also the congruence 6l+1==3m (mod 8k) implies that /
is odd or even according as m=+1 (mod 4). Hence we have the equation
—(—1))=(—1|m). Our results may be combined in the following theorem :

THEOREM 3. If k is even and mot divisible by 3, then

(5.8) A(n)— .i (k)k’ 5 (—1) sin 7

3 GmY’=v (mod 8k) ~ M 8k

where m runs through integers (mod 8k) satisfying the summation condition.

If k=2 the congruence (3m)*=wv (mod 8k) has exactly four roots.
If m is one such root, then the four roots are given by +m and +m
+4k. We may therefore state the following corollary [3, Theorem 7] of
Theorem 3.
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COROLLARY 3. If k=2* 1>0, then

4%00=(—1Y(_1)M“ﬁnMﬂmBkL
m
where m s an integer such that (3m)*=1-—24n (mod 8k).

Case 4. k even and divisible by 3. Let m run over the roots of the
congruence m*=v (mod 24k). Each such m determines a unique solution
l of the congruence 6l+1==+m (mod 24k), 0 <! < 4k, where the coef-
ficient of m is +1 according as m = +1 (mod 6). The numbers ! obtained
in this way are solutions of the congruence (64 1)*=v (mod 24k), 0 <
{ <4k. Conversely each solution ! of the last congruence determines a
pair of solutions m, 24k—m of the first congruence. As a result the
numbers ! run twice over the integers which satisfy the summation
condition in (5.6). Suppose first that a solution m is such that m=1
(mod 6). Then the equation 6!+ 1=m+ 245k (for some integer j) implies
that [ is even or odd according as m=1 or 7 (mod12). Consequently
we have (—1))=(8|m). The summand in (5.6) may now be written in
the form (3|m) cos (47m/24k). In a similar manner we may derive the
last result when m = —1 (mod 6). Thus we have established the following
theorem :

THEOREM 4. If k is even and divisible by 3, then

< 37> cos dnm
m 24k’

where m runs through integers (mod 24k) satisfying the summation
condition.

(5.9) AAM=1<@y22

3 m*=v (mod 24k)

6. Factorization of the A,(n). The theorems of the preceding
section open a new approach to the factorization of the 4,(n). Alternative
approaches have previously been given by Lehmer [3] and Rademacher
and Whiteman [6]. In what follows we shall derive three theorems for
expressing A,(n) as a product of two A’s whose subscripts are relatively
prime integers whose product is k. It should be pointed out that our
theorems and Lehmer’s theorems overlap to a certain extent. Lehmer’s
Theorem 1 is included in our Theorem 5. His Theorem 2 follows from
our Theorems 5 and 6. His Theorem 4 is equivalent to our Theorem 7.

THEOREM 5. If k=kk, (k,k)=1, and if furthermore 8|k in case
k is even, then

(6.1) A(n)= Alcl(nl)Akz(nz) ,
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where n, and n, are determined by the congruences
kd.en, =d,en+ (ki—1)/d, (mod k,) ,
©2 Kden, = d,en+ (ki —1)/d, (mod k) ,
respectively, and where d,, d,, e are defined by
(6.3) d,=(24, k), d,=(24, k,), 24=dd.e .
Proof. The assumption 8|k when % is even enables us to write the
summation conditions of Theorems 1, 2, 3 and 4 in the general form
(6.4) (24m/d)* =v (mod dk) ,

where d=(24, k). Let n,, n, be two integers to be determined explicitly
later on. We wish to establish the equation (6.1) where, for brevity,
we write Ay ()=, Ap(m)=n, 4i,(7)=>.m,. The summation indices
m,, m, run over the solutions of the two congruences

(24m,/d,)* =v; (mod d.,k,) ,
(24m,/d,)* = v, (mod d,k,) ,

(6.5)

respectively, where v,=1—24n,, v,=1—24n,, and d,, d, are defined in
(6.3). We note also that d=d,d,. For each pair of summation indices
m,, m, we now define numbers m, m’ by means of the congruences

m =dk;m,+ d,k;m, (mod d,d,k) ,
m’ =d kym,—d,k,m, (mod d,d,k) .

(6.6)

Our object is to select v, v, in (6.5) so that m or m’ runs over the
solutions of the congruence (6.4). It is clear that (6.4) has no solutions
if there exists an odd prime factor p of dk for which (v|p)=—1. Other-
wise it follows from a well-konwn result [2, vol. 1, Satz 88] that if s
denotes the number of odd prime divisors of dk, then the number of
solutions of (6.4) is 2° when %k is odd and 2°** when % is even. Sub-
stituting from (6.6) into (6.4) and applying (6.5) we get

(6.7) (24m]dy = (24m’ |dy = k2w, + kv, (mod dk) .

In order to make (6.7) equivalent to (6.4) we need to select v,, v, so that
the congruence v ==Fkiv,+ kv, (mod d.d,k) is satisfied. For this purpose
we define v;, v, by means of the pair of congruences

ke, =v (mod d,k,) ,
(6.8)
kv, =v (mod d,k,) .
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With this choice of v,, v, we see that the number of solutions of (6.4)
is the product of the number of solutions of the first congruence in (6.5)
multiplied by the number of solutions of the second. Moreover this
number is precisely the number of incongruent integers m or m’ defined
by (6.6).

The pair of congruences (6.8) is equivalent to the pair of congruences
(6.2) in the hypothesis of Theorem 5. In order to prove (6.1) we find
it convenient to divide the discussion into the following five cases.
Case 1. d,=d,=1. Case 2. d,=1, d,=3. Case 3. d,=1, d,=8. Case
4. d,=8, d,=8. Case 5. d,=1, d,=24. The argument proceeds along
the same lines in each of these cases. To illustrate the method we give
the proof in Case 4. In this case the value of A4, (n,) is given by
Theorem 2, and the value of A,(n.) is given by Theorem 3. By (5.5)
and (5.8) the product A4; (n,)4;,(n.) may be put in the form

6.9) A, (m)A,n)

—= 3 GEN) 3 (56 s Gt sin S5

1

where the respective ranges of m, and m, are given by the solutions of
the congruences (8m,)*=7v, (mod 3%;) and (3m,)=v, (mod 8%,). On the
other hand the value of A,(n) is given by Theorem 4. In the sum (5.9)
we now pair off each m = 3km,+ 8k,m, (mod 24k) as defined in (6.6) with
the corresponding m' = 3km,—8k,m, (mod 24k). Since (3|m)=(—1|3km,)
(8k,m,|8) and (3|m’)=(—1|3k,m,)(—8k,m,|3) it follows that (8|m)(8|m’)=
—1. Hence we get

where m runs over the incongruent solutions of the congruence m?=v
(mod 24%). To complete the proof we show that every term of (6.9) is
equal to the corresponding term of (6.10). This follows at once from
the trigonometric identity

(6.11) cos AT _ gog AT _ g gin A7 g 47,

24k 24k 3k, 8k,

and the number theoretic identity (3[m)=(—1|k,)(%.|8)(m,|8)(—1|m,). The
remainder of the proof may be completed in a similar fashion.

The preceding theorem enables us to decompose A,(n) for composite
kif k is odd or divisible by 2°.. We now consider the cases in which %
is even but is not divisible by 25.
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THEOREM 6. If k=4k, with k, odd, then
(6.12) Ay(n)=—4; (n)A(n,) ,
where n, and n, are determined by the congruences

128n, =8n+5 (mod %)) ,
km,=n—2—(k}—1)/8 (mod 4) ,

(6.13)

respectively.

Proof. Since k is divisible by 4 but not by 8 the summation con-
ditions of Theorems 8 and 4 may now be written in the general form

(6.14) (24m[8) =w (mod 6k) ,

where 0 is defined by the equation 0=(2k, 24). Proceeding as in the
proof of Theorem 5 we have in place of (6.5) the pair of congruences

(24m,/d,) =, (mod d,k,) ,
(6.15)
(8m,)* =v, (mod 8k,) ,

respectively, where d, is defined by (6.3) as before, and where we now
put k,=4. TUnlike the situation in the proof of Theorem 5 the analogue
of the pair of congruences (6.6) does not here lead to the analogue of
congruence (6.7). Accordingly we modify our former argument as follows.
For each pair of summation indices m,, m, we define numbers m, m’ by
means of the congruences

m = d,k(m,+ 2k,) + 8k,m, (mod ok) ,
(6.16)
m' = d k,(m,+ 2k,) —8k,m; (mod k) .

Then we may verify that (24m/0) =(24m’[8) = klv,+ kv, (mod 6k). In
order to make this congruence equivalent to the congruence (6.14) we
now define v, v, by means of the pair of congruences

kv, =wv (mod d.k,) ,
kv, + ki =wv (mod 8%,) .

(6.17)

Exactly as in the proof of Theorem 5 it follows that the numbers m or
m’ defined in (6.16) run through the entire set of incongruent solutions
of (6.14). Moreover the number of solutions of (6.14) is the product of
the numbers of solutions of the two congruences in (6.15).

The pair of congruences (6.17) is equivalent to the pair of congruences
(6.13) in the hypothesis of Theorem 6. In order to prove (6.12) we need
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to consider the two cases d;=1 and d,=8. We now indicate the proof
in the case d;=38. The argument is step by step similar to the argument
given in the proof of Case 4 of Theorem 5. It is necessary, however,
to replace the factor sin (4nm,[8k,) in the right member of (6.11) by the
factor sin (74 4nm,/8k,). This change accounts for the presence of the
minus sign in the factorization formula (6.12). This completes the proof
of Theorem 6. We conclude with the following theorem.

THEOREM 7. If k=2k, with k, odd, then
(6.18) Ay (n)=A4; (1,)Ay(n,) ,
where n, and n, are the respective solutions of the congruences

32, =8n+1(mod k) ,

(6.19)
n,=n—(ki—1)/8 (mod 2) .

Proof. Since the proof of this theorem is very much like the proof
of Theorem 5, it will suffice to sketch it briefly. The summation con-
ditions in Theorems 3 and 4 are now expressed by the congruence
(24m|Dy =v (mod Dk), where D=(4k,24). The second congruence in
(6.5) is replaced by (83m,)*=w, (mod 8k,), where this time we take k,=2.
The pair of congruences (6.6) is replaced by the pair m =d,km,+8k.m,
(mod Dk), m' =d.ym,—8k.,m, (mod Dk). These two congruences, in turn,
lead to the congruence (24m/DY = (24m’|D) = kv, + k}(v.—4) (mod Dk).
In order to reduce the right member of the last congruence to v (mod Dk)
it suffices to define v, v, by means of the pair of congruences

kv, =v (mod d;k,) ,
(6.20)
v, =v (mod 8E,) .

Finally the two congruences (6.20) are equivalent respectively to the two
congruences (6.19) in the hypothesis of the theorem. It is convenient
to treat separately the two cases d,=1, d,=38. Then the rest of the
proof goes through without difficulty.
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