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1. Introduction. The object of this note is to prove several re-
sults, which are related in that each is concerned with entire functions
of exponential type. An entire function f(z) is of exponential type τ
if for every ε>0 there is a number A=A(ε) such that

(1) |/(s)|^A<^+ 8 ) 'β l.

The function is of precise type τ if (1) does not hold for any e<^0.
The first result is concerned with entire functions which are bound-

ed at a sequence of points. Miss Cartwright's theorem states that if
f(z) is an entire function of exponential type r, r<ττ, and is bounded
by 1 at the integer points,

(2) 1/(01^1 , ra=O, ±1, ±2, . . . ,

then f(z) is bounded on the entire real axis by a number which depends
only on r,

(3) \f(x)\<M(τ), - c o < a < c o .

Proofs of this and stronger results have been given by Cartwright,
Pflunger, Macintyre, Boas, Korevaar, Duffin and Schaeffer, Levin,
Ahiezer, Agmon, and others. These results are discussed in [2, Chapter
10] where further references are given.

Let N be a sequence of integers. The first question to be con-
sidered in the present note is : what conditions must N satisfy in order
that for every entire function of exponential type less than π the con-
dition

(4) \f(n)\^l, neN,

will imply that f(z) is bounded on the real axis ? To answer this
question we define a function λ(t) for £>0 by means of the given
sequence JV. Let λ(t) be the greatest integer μ such that every inter-
val of the real axis of length t has μ or more elements of N. For any
positive t there is at least one interval, which may be supposed open,
of length t which contains precisely λ{t) elements of JV, and every
interval of length t whether open or closed contains λ(t) or more ele-
ments of N. The following result is to be proved.
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THEOREM 1. If N is a sequence of integers, the condition

( 5 ) limAί^I^i
ί->oo t

is necessary and sufficient in order that every entire function of ex-
ponential type less than π ivhich is bounded on N be bounded on the real
axis.

Slightly more is true than stated in the theorem, for there is a
uniform bound in the following sense. If (5) is true then any entire
function f(z) of exponential type r, τ < ^ , which satisfies (4) must also
satisfy

( 6 ) r\V\

Thus the bound for \f(x)\ depends only on N and the exponential type
of / . Relation (6) also gives a dominant for f(z) over the entire plane.1

As τ approaches π the value of M(τ, N) must approach infinity. This-
was shown by Boas and the author, [2] where further references are
given, in case N consists of all the integers, and is a fortiori true for
any sequence of integers.

The remaining topics to be considered in the present work center
around research problem number 4 in the Bulletin of the American
Mathematical Society [3]. This problem, which is due to Boas, reads as
follows.

"Let f(z) be an entire function of exponential type. It is well
known, and easily proved by Phragmen-Lindelof arguments, that if f(x)
is bounded or approaches a limit as #->oo, then f(% + iy) is bounded or
approaches a limit, for each y, as #->oo. // \f(x)\ approaches a non-
zero limit, does \f(x + iy)\ necessarily approach a limit?''' To answer
this question an entire function f(z) of exponential type will be defined
such that

(7) lim \f(x)\

exists and is finite, but

( 8 ) lim \f(x + iy)\

exists only for y = 0.
In view of this example it is natural to ask what hypothesis in

addition to (7) will imply that (8) exists for all y. It is to be shown
that if (7) exists both for / and one of its derivatives then (8) exists

1 A similar dominant was obtained by Miss Cartwright which strengthens inequality

(3).
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for / and all its derivatives. More precisely, we have the following*
theorem where f(y)(z) denotes the derivative of f(z) of order ι>, with

THEOREM 2. If f(z) is an entire function of exponential type such
that for some m, m^>l9 both \f(x)\ and \f(M)(x)\ tend to finite limits as
x-+co then

( 9 ) l i m \fCv\

exists and is finite for all y and for v = 0 , 1, 2, •••,

2. Proof of Theorem 1. The proof of Theorem 1 will depend in
part on the following result of R. J. Duffin and the author [1], [4], and
[2] where further references are given.

THEOREM 3. Let {λn}, n=0, ± 1 , ±2, ••, be a sequence such that

for some δ, A. If f(z) is an entire function of exponential type r,
, such that

then

\f{xΛ-ίy)\<Reτlίή

ϊvhere R depends exclusively on τ, δ, A.

It is first to be shown that (4), (5) imply the boundedness of f(x)
for any entire function of exponential type less than π. Thus suppose
that N is a sequence of integers for which (5) is true, and consider any
fixed number τ in the range 0<Ir<Cjτ. If f(z) is an entire function of
exponential type τ which satisfies (4) and

π — τa==

then

V 1 — a.

is an entire function of exponential type τ'.

T ^ 2 '

Now F{z) is bounded by 1 at a sequence of points {μn} defined for
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n 6 N, where
neN.

Using relation (5) it then follows that if T is sufficiently large, each
interval of the real axis of length T contains at least T element of
{μn}. Let T be an integer. In each of the intervals

choose T elements of {μn} to form a new sequence {λm}. Then {/m} is
defined for m = 0, ±1, ±2, •••, and

\λm-m\<T, m=0, +0, ±2, . . ,

Since r ' O , Theorem 3 shows that .F(s) is bounded on the real axis,
and indeed

This proves that condition (5) is sufficient in Theorem 1, and since the
sequence {λm} depends only on τ, N we see that R is a function of
r, N only, which gives inequality (6).

In the proof of the necessity of condition (5) in Theorem 1 the
following lemma will be used.

LEMMA. // h is an integer, h^JS, and in the closed interval
— h<Lx<Lh there is a set N' of integers tohose number is f>, (*^>2t then
there is an entire function F(z) of exponential type μ,

μ=π— ι ,
S2h

whose maximum modulus on the real axis occurs at some point xQ satisfy-

ing \xo\<C4:h+l, and F(xo) = l, but

Proof. Since the object is to define a function F(z) which is of
exponential type μ and is small on the integer points except at the set
N' we begin with the function sin πz, which is of exponential type π
and vanishes at all the integers.

If n19 n2, •••, na are integers which belong to N' then the function

do) M z ) = mp-
v-i lQh
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is of exponential type

However, this function satisfies the functional relation /t(.τ-l-16Λ) =
±f1(x) so it attains its maximum modulus over the real axis at points
is each interval of length 16h. If mL, m,, •••, mβ are the remaining
integers which belong to N' then the function

f (z)~ s i n π z

\ί (z-mv) Π s in (zn)

remains of exponental type μ' where μ' is defined by (11), but it is
small when \x\ is large. The function f2(z) vanishes at all integers in
the range \x\<L15h — 1 except those that belong to the set N'. It is
to be shown that if a, β are suitably chosen then a suitable constant
times the function /2(#) is the function F(z) whose existence is asserted
in the lemma.

Let a=fj/2 if p is even and n: = (p + l)/2 if p is odd; and define

-I-Az-ny)
16k

Here mv, ?ιv are together all the integers which belong to N' so we
have

By considering the individual terms of φl{x) separately it is clear that

|φ ](l/2)|<|φ 1(α;)| ,

The function fx(z) defined by (10) may be written

and it therefore satisfies the inequality

(13) |

Since \fi(%)\ is periodic with period 16/J the maximum modulus of fι(x)
on the real axis is attained at some point xx in the interval \xx\<'-βh.
But then (13) shows that

(14) |z
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Also, fι{z) is of exponential type />', and since aί>pj2 we have μf <ijt.
The function f,(z) defined by (12) may be written

φ,(z)

Now f,(x) attains its maximum modulus on the real axis at some point
Xo satisfying \xo\<CAh + l. For if |α;|^>4&+l then using (14), we have

Hence

φ.2(α?)

We also have

where we have used the supposition h^>5. Thus for \%\^A4h — l we
have

Since /3^>(p —1)/2 the function

has all the properties stated in the lemma.
We now complete the proof of Theorem 1 by showing that condi-

tion (5) is necessary. It follows from the definition of λ(t) that for any
sequence of integers we automatically have

limsup λ^ < : i .

Thus suppose N is a sequence of integers such that

(15) liminf ^ =γ<l .

It is to be shown under this supposition that there is an entire function
G(z) of exponential type less than π which is bounded on N, but not
on the real axis. For this purpose the first objective is naturally
to find arbitrarily long intervals \a — h, a + h] in which we can use
translations Fh{z — a) of the functions defined in the lemma. The
required function G(z) will then be a suitable linear combination ^cΊ,Fh

of these functions.
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Let

If Ao is sufficiently large the following statement is true. Given a
positive number r and a positive interger h, h^>hΰf there is a closed
interval / of length 2h lying entirely in ( # | > r and with integer end-
points such that the number of elements of N lying in / is less than

2hTl.

This can be proved by means of (15). The number of integer points
in / which do not belong to N is therefore greater than

(16) 2h + l~2hγι .

Let H be an integer such that H>.hΰ7 H>z5] and, for later pur-
poses, we also choose Iί so large that

(17) Σ A 4 - / i ( L - γ i ) < l .

For each integer h satisfying h>H there is a closed interval Ih of
length 2h with integer end-points and center at xh where

(18) |α Λ + i |> |α Λ |+28A + 14 , h>H,

and the number of integer points in Ih which do not belong to N is

ph, where by (16),

(19)

Take

(20) \xB\>28H.

We now use the lemma, where we can clearly translate the inter-
val. The set Λτ/ of the lemma is the set of integers in Ih which do not
belong to N. There is an entire function Fh{z) of exponential type λ,

16

which satisfies

(21) |i5'ft(Λ ) l^4- ' " ( 1 -n», |a;—a;A|^14A —1.

In the last inequality we have made use of (19). Also,

(22) |F,»|^4-ft(1-γi\ neN.
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We note also that because of (18) the intervals \x — xh\<Ah — l are
disjoint hence at each point x of the real axis the inequality

(23) \Fh(x)\^Λ-»tι-V

is satisfied except possibly for one value of h. Each function Fh(x) has
maximum modulus 1 on the real axis, and this maximum is attained at
some point xh satisfying | ^ - X Λ | < 4 / M - 1 .

How consider the functions

Gm(z)= Σ*hFh(z), m=H, H+l, •••.
// = IJ

If v lies in the range H<^v<^m then by (21),

so (17) yields

(24) \Gm(

To obtain a dominant for Gm(z) on the real axis which is independent
of m we note first that if x lies outside all the intervals \x~xh\<Ll4zh — l
then (23) is valid for all h, and

\Gm(x)\<l .

If, on the other hand, x lies in one of these intervals, say
— 1, then we shall have

But (18), (20) imply that |a?Λ|>28& for all /?,, so the inequality
|ff-a?Λ |<14ft-l shows |a;|>14fc4-l. Thus

(25) |Gw(a?)|<:i+ ^ ' .

Now Gm(z) is an entire function of exponential type /, so a
dominant which is independent of m can be obtained for Gnh{z) over the
entire plane by use of (25). One argument makes use of Theorem 3.
The function {Gvι(z) — Gm(0)}jz is bounded by 3 on the part of the real
axis for which |a?j^l, and it is an entire function of exponential type
λ, λ<^π. Thus the function is bounded by 3 at a sequence {λn} which
satisfies the conditions of Theorem 3. Hence

where Rr is independent of m.
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Since \Gm(0)\<Ll the functions Gm(z), m=H, H+l, •••, are uni-
formly bounded in each bounded domain, hence for some subsequence
of m tending to infinity the functions Gm(z) tend to a limit G(z).
Moreover

\G(x + ίy)<Ll+Rf\z\eλ]y[ ,

so G(z) is an entire function of exponential type λ, λ<Cπ. Inequalities
(22), (17) show that

\G(ri)\<,l , neN,

but inequality (24) shows that

and G(z) is not bounded on the real axis.

3. The question of Boas and proof of Theorem 2 An entire
function f(z) of exponential type is to be defined for which

exists if and only if y=0. This function will be

(26)

where

; = V 2 VΛ"V 4

Here

4 = 7Λ exp( %Jί o.) .

is to be determined. Pairs of zeros of f{z) are replaced by their con-
jugates on changing the sign of dn. Thus the modulus of f(x) is in-
dependent of the choice of δn, but \f(x + iy)\ does in general depend
on δn.

In case δn = l for all n let the function be designated fQ(z), that is,
define

7Γ(1—

Likewise, if δ=—l for all n call the function fι(z),
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Thus we have

(27)

(28)

Λ. C. SCHΛlίl 'FJίtt

lim |/0(a + *?/)|=

nm

The <5n are to be chosen so that in some neighborhoods f(z) will have
approximately the same modulus as fQ(z), while in other neighborhoods
f(z) will have approximately the same modulus as ft(z).

Let Nlt N., be a sequence of integers such that

and choose . Define

This completes the definition of the function f(z). If v is even then
for z in the ring Nl<L\z\^2Nl we have

Σ + Σ log-
— 2zi'jini

Using the estimates

and YHn*<Lks, Σ"n""'-<2/A; we have

ά# log /(*) 18

Likewise, if v is odd we have

& log {[ 18

These inequalities together with (27), (28) show that

lim sup I f(x -f i\
~2τtvr2

and

lim inf

It is also clear that f(z) is an entire function of exponential type.
Indeed,
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I f(reiθ) I <-' r e*r ϊ( (1 -f- ) <^c7^1 + / s j '"

We now turn to proof of Theorem 2. Thus suppose that /(;:)
satisfies the conditions of Theorem 2, so

for some A, r. Since \f(x)\ has a finite limit it follows that the func-
tions f(z)eίτz is bounded on the positive halves of the real and
imaginary axes. Then the Phragmen-Lindelof principal shows that since
this function is of order one it is bounded throughout the first quadrant.
Likewise, f(z)e~ί7Z is bounded in the fourth quadrant, and we have

(29) \f{

write

L=lim \f(x)I , Lm =lim \f°'l)(x)\ .

Now let aif α2, α3, be any sequence of real numbers such that
<V->oo as w->oo. Because of (29) the functions f(z + an) are uniformly
bounded in each bounded domain for large n. Thus there is a sub-
sequence bL, hlf &,<, of the an such that the functions f(z + bn) tend
to a limit F(z) as n becomes large,

Then F(z) is an entire function of exponential type, indeed it satisfies

\F(x + iy)\<LBeτUrι

for all real x, y. We also have

F<v>(s)=lim /Cv)(« + U , ^=0, 1, 2, . . . .

The theorem will follow if it is shown that the value of \FCv)(z)\ is
a function of y only and is independent of the particular sequence

Now F(z) has the constant modulus L on the real axis. If L = 0
then F(z) and all its derivatives vanish identically so (9) is true. Thus
suppose LφO. Then F(z) can have no zero, for it would then have a
pole at the conjugate point. Thus

(30)

where γ, a are real numbers. Now

FOn\z)=Leiy(ia)1Λel(U ,
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and F°n)(z) has the constant modulus Lm on the real axis. This gives
the relation

(31) a=.±(LJL)llm .

If Lnι = 0 then α = 0 for all sequences and (9) is true. Thus sup-
pose L m > 0 . Now consider the values of \f(x + ϊ)\. If one sequence
au a2, ••• leads to a function F(z) of the form (30) with a=(LmIL)xlm,
and another sequence leads to a function with a = — (LJL)1 lm then

lim sup |/(# + ΐ ) | = L e | Λ l , lim inf \f{x-\ i)\ =Le~loί>ι .

Now |/(#-f i)l varies continuously as x increases, so there will be a
sequence xlf x,, ••• with xn-+co as 7i~>co such that |/(α;n-f-i)|=L. A
subsequence of the functions /(z + ί O will tend to a limit F(z) satisfy-
ing \F{i)\=L. But F(z) will be of the form (30), so a = 0. This
contradicts (31) and proves the theorem.

Indeed, the forgoing argument proves slightly more than the
theorem states. First, under the conditions of Theorem 2 we have

where L, a are independent of v, y. Secondly, the requirement that
f(z) is an entire function of exponential type can be replaced by the
supposition that f(z) is regular in some half-plane x^:c, where it is of
exponential growth.
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