THE SLOW SHEARING MOTION OF A LIQUID
PAST A SEMILINFINITE PLANE

G. Power aAND D. L. ScorT-HUTTON

The problem of slow shearing motion of liquid past a semi-infinite
plane, which was first attempted by Dean [1], is treated in a rather
more straightforward manner, and a different type of solution is found.
The stream-function is biharmonic and vanishes, together with its normal
derivative, at all points of the fluid boundary ‘and must be such as to
yield uniform shearing at a great distance from the boundary. It has
not been found possible to satisfy all boundary conditions exactly, but a
solution, involving an infinite number of arbitrary constants, is obtained
which satisfies most of the necessary conditions. These arbitrary con-
stants, here restricted to eight as a first approximation, are chosen to
give the best possible result. Expressions for the stream-function and
fluid pressure are obtained for specific regions, verifying known results
including those for shear flow, for flow between parallel planes and for
flow at a sharp corner. Finally, a plane elastic state analogy is pointed
out.
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Fig. 1.

We shall here consider the slow two-dimensional flow of a viscous
incompressible fluid bounded by the infinite plane AB, and the semi-
infinite plane CD, as shown in Fig. 1. The motion at great distances
from the planes is that of uniform shearing, and between the planes
is that due to a uniform pressure gradient. W. R. Dean [1] has con-
sidered a similar type of boundary, but with the flow between the
planes at great distance from the origin being due to a constant pressure,
so that the type of motion produced here is fundamentally different, as
is the method used to solve the problem.

We have to find a stream function satisfying the biharmonic equation
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328 G. POWER AND D. L. SCOTT-HUTTON

and giving zero velocities on the boundaries. We may take AB, CD
to be respectively the stream lines ¢=0, ¢=1, and we must also have

r:%’-==0 on AB, CD where aa denotes the normal derivative.
n n

That is to say, we seek solutions of

(1) Vig=0

where

(2) ¢=0 when y=0,

@.1) °9_0  when y=0,
oY

(3) =1 when y=1,
Y

3.1) —T =0 when y=1,
oy

The transformation

(4) me=w—logw+ir—1,
where
d=x+ , w=u+w=re’,
gives
ny=v—0+m, rx=u—logr—1,

and so transforms the area in the upper half of the z-plane in Fig. 1
into the upper half of the w-plane as shown in Fig. 2, the boundaries
becoming the real axis of the w-plane.

w-plane +

> U
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Now we have

0 _°u 9 n v 9
oy oy ou oy ow

where

Therefore when

and so

L)l

A satisfactory solution is
(5) =y'+y(V-0)+U,

provided that U and V are harmonic functions, chosen so that y(V—U)+U
does not tend to infinity as y tends to infinity.
We easily see that on 4B

(6) y=0, O=m, ¢=0, so that [Uls.,=0,
and on B'CD (
(6'1) 2/:1 ’ =0 ’ ¢=1 s SO that [V]g=0=0 .

Also we have

W oy 2V -0 vy,

oy dy oy oy

so that when y=0, 0=n,

o0  mu U
6.2 I = T e V=F ,
62 dy u—12d say
and when y=1, =0,
(6.3) o _op AV _p_p o sy,

Y u—12ov

The boundary conditions require that equations (6) and (6.1) are satisfied,
together with E=F=0.

It has not been found possible to find functions such that all the
boundary conditions are satisfied exactly. However, expressions are
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determined for U and V which will satisfy (6) and (6.1) exactly, and
the arbitrary constants contained in them will be chosen so that E and
F are as small as possible at all points of the boundary. Physically
this means that in the fluid motion represented by the solution there
will be a small velocity of slip along the boundaries, which can be
made as small as desired.

Let
U=U+U.,, V=V, +V,,
where
K 12 T2
(7) U= Af[log 2w /T+B/ [logfzﬂ : 1
+w'” 3+ w'
+C7 [log 1/2J+D[log w—in] ,
127
(7.1) U,— /Zan[l-l-’LWI ‘J 7
w=1 L1 —qt?
/2 T2
(7.2) V- A%[log 2w ]+By [log 2w ]
14+ w’ 1+ wlll
+GF \:bg-%’ 1/_!+H‘/ logw ,
oo 1 wl/z "
7.3 V= 7 b,,l: ]
(7.3) : n§=]1 1w

A, B, C, D, H, G, a,, b, are real constants to be determined.

It is assumed that the amplitude of w'* is between 0 and =/2 and
those of logw'?, logw, log (1+w'*), log (¢+w'?) between 0 and =. These
expressions satisfy (6) and (6.1) exactly at any point of the boundary,

2w'"* > 14dw'?
P+w) 1—qw
2wt 11—l
1+ 14wt

for on AB, w'*=ur'"? so that the functions log( , are

real, and on B'CD wY*=1"*, giving real values to log =~

Now we have

AT pe 2w i

dw i+ w'? 2w(z+w" )’
and

d [1+7,w”_1 '5

dwl1—dw™) w1 —dqwlye

Using these results and the fact that
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oU . d
=1~ w
o dwf( )
where
U=_ f(w),
we obtain
aU 3 , 1 [ 2@0”2 ]z
3 = A log -=
(8) v 2 w(i+w'?) £ i+ w'h?
, 1 [ 20t :l
—B. 7 og| =2
w(i +w''?) o 1+ w'?
~C, 1 apst,
2 w(i+ w'?) w
o0 Tapyl /27— 1
(8.1) D L SN el
v a=1 (1 — ') L1 — '

In a similar manner, we get

(8.2) aVl _ —3—/1(,/’; ) l:lo 200112 :!z

ov 2 w(l _l_,LUi/z) g 1+w”"
poo b Jog 0T
w(l+w'?) T 14!
~G,J’ Z‘ - +H</" v )
2 w1+ w'?) w
‘ 2V, & —inb [1_wuzj|u-1
8.3 2= e n )
( ) a’l) n%-l‘wl/z(l_*_wllz)z 1+w1/z
We note that on 4B
W=uU=~—1, w'=qgp'?

and

7)) 8U= =r U
w—1ov r+1 o

Hence we obtain

(9) r [EU] — —73ATZ' 7 [log 21!l ilz
P41l 2o Joor 21414 LT Tt
— Br l:logr 2 ]_ Cn
(1+7r")1+7) T+ 20+ (1+7)

—_ D . - na, I:,,l,—_ ,ﬂ/f]mq
(1+7) amt (1+2) (1 PPl L+ 22
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Now put

then as » varies between 0, 1 and + oo, p takes values between 1, 0
and —1. Also we see that

. 2 2(1+ %)
14 r2= , 149p= )
(1+p) " ey
2 4(1+p% 2112
1+2)(1+7)=" , —=1—-p),
A+7")A+7) (L py 14 e (1-p)
v _(1=p)(1+p) il _(1-p)1+py

A+7)A -+ 4d+p) T QAE)A 4B 81+p)
leading to

oU (L+D)
1 — 3 40P e 1 -
(9.1) L] = st oy
Bzgﬂo) ] o7 (Lpy
L) =P =C i
_Dl(lip) 4 - = P)A+)
2 (1479 Tnzls (1+p?)
For V, we have
20112 22 P
9.2 Vilow= [1 B [1 ,4_~]
(9-2) R Ogl + a9t _J+ Ogl—i-zr”
+ G [log 2™ :I+Hn,
14312

where
2ir'”
log|- <" |=log 2+¢ " + log (1—p)— log [(1+p)+i(1—p)] .
1+l 2
It is easy to see that

log [1+p+i(1—p)]= L log [2(1+p*)]+4 tan-' L~ P
2 1+p

—_—% log 2+% log (1+p“’)+i<—Z—— tan“p) ,

and so

201 1 1 o, o T _
1'+77;75/2=~2—- log 2+ log(l—p)—AZA log (1+9p )+’L(—4—+ tan ‘p)

=a+if, say .
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We can thus write
(9.3) [Vileee=A(Ba*S— )+ 2Baff+ G + Hr

In the same way we get

(9.4) Vim0 100

— o[ 1+p=il=D) T
_fzbn[1+p+’i(1—p)1

<< [ 2p—i(1—pY) ]
— 7% bn|: -
7;1 1 +pz

Subsituting these values in the expression for K, the velocity of slip
along AB is

(10)  E=- 3An(1+p) [log (1—p)J'— B”““’) log (1)

8 1+p 4 1+
cF (Ln) _pr (Leppy Som o (L)L)
8 1+ 2 1+p n=1 8 1+

+ABaf— ) +2Bag+Gp+ Hr+. 7 S)b [ 2p _1zilp ) ]

We shall chose the constants involved so that E=0 when p=+1, and
then expand E in powers of p. Equating to zero the confficients of 2°,
p', p*, etc. we will thus obtain a set of simultaneous equations for the
determination of the arbitrary constants. By this procedure E can be
made as small as we please in the range —1<p<1. When p=-1,
we see that

p=0,
and
E=Hr,
so therefore
(11) H=0

As p tends to 1, we see that 8 tends to —727—, and « can be taken to be

log,(1—p)=1{, say,

so that E approximates to

—347 = Brl—C 7 —Dr+ A(3 ’?zz—lff)+ I+G ™ .
5 /3 ( 5 g Brm +G2
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Therefore we must have

(12) AT 4Dzt CT —GT =0 .
8 2”7 9

Before continuing with the calculation by expanding in terms of p, it

has been found convenient at this stage to obtain a similar type of

expression for £. Along the boundary B'CD we have w=uwu=7, so that
W=yl

Now set

1-—s
1+s’

P2 =

so that as »'* varies between 0, 1, and + o, s takes values between
1, 0, and —1. Using the relations

4s . 8s
—1=—_—=_ r—1) 1+ =— ,
" (1+s) =D+ ==
P (1=s)(1+s) o (=9 (s
(r—1)(L+2"%) 8s T (PR —1) 165 ’
we get
09 DL b= e (O Tom (10T

Br . Gn )
— 1 ‘log (1—8)— 1+s)
83( +5)’ log (1—5s) 168( s)

=1

Hr ., & N s ny
— 1+s8)*+ b (1—8)(1+8)’s" =
s+ 33 T b (=) (L)'

Again, we have

12
log “3_7—.'1"1—]7=10g2+10g(1—s)—10g[(1-—8)+?l(l+s)] ,
FRISIE
=Iog2+1og(1—s)—-—%- 1og(1+sz)—a:(z +tan‘1s> ,
=a—if .
so that

(13.1)  [Ulo=A(f*—8a*B)—2Baf—~Cf—zD+ 7 i“B iifiﬁ :3 ]

Finally we obtain



THE SLLOW SHEARING MOTION OF A LIQUID 335

_3Ax

13.2 F=2
( ) 16s

(L+s)og (L —=s)— 2’::(1 +8) log (1—5)
S
Gn . Hm , = nrT .
— 14+8)— 1 T+ P p (1=8)(1+s5)s"?
16s ( +9) 4s ( +S) ;:"’1 16 ( 9)( 9) S

+A@aw_ﬂﬁ+23aﬂ+0ﬂ+nD—ufﬁyh[%+ﬁfj”3]ﬂ
~1 g’

3

We must have F’=0 when s=+1, and also /' must be finite when
s=0. When s=-1,

I'=2+n=D,
and since this must vanish,
(14) D=-2/x .

As s tends to 1, 8 tends to =/2, and « may be taken to be log,(1—s)=1
as before, so that F' approximates to

2—3nAF—Bd—ﬂG—B&+Ah”ﬁ—”j+8ﬂ+0”+nn.
2 2 12" " g o

Using equations (11) and (14), we see that

(15) GT —CT + AT =0,
2 "27 g

Also we notice that F' contains the term —1’2 (,—G), and since F' is
S

to be finite when s=0, we must have
(16) b=G .

Adding equations (12) and (15) we get

(17) Azﬁ+pn=0,

giving

an) a=8.
~

We also have from (15)
(18) C=b+ 2 .
T

Using these results, the velocities of slip on AR and B'CD become



336 G. POWER AND D. L. SCOTT-HUTTON

19)  E=-30 P nogapyppm TP 101 p)

GASEE 4 (1)
1 (1+p)y(8—p) o T (1+D)], 80 rn g |
+ 4 A+ +bl[ﬁ 3 (1+p‘l)]+ ”3(305,8 3%+ 2Baf

2[)—@(1—})1) T, n-1 (1 t p)3
+ 7 bn el b Ayn -P 1—- p) . ———,
,;;1‘1 1+p° 7; 8 ( ) 1+ p?

@) F=— 3 W neeq_gp_p® 15 0 (1-g)
2r* s 8 s

+b1[,9—i%(1 +s)3:]+ 2—§-+-§~3(3a2ﬂ—ﬁ3)+ 2B

S somr 2s+1(1—s%) ]”
+ b.(1—=s)(1+ P 7 B_,an‘:w .
216 MmO H =L 14

3

As a first approximation, we will restrict the infinite series to four
terms each. We will expand these results for £ and F in powers of
p and s, equate to zero the coefficients of »°, p!, p° and s s!, s*, and
ignoring the remaining terms of O(p®), O(s®), we will get a set of
simultaneous equations for which a,, a,, as;, b, b, b;, are determined in
terms of a,, b, and B. The conditions at infinity will give the values
of a, b, in terms of B. If greater accuracy is required more terms
may be included in the series and higher powers of p and s neglected.
Expanding £ in powers of p as far as p®, we have

E=-2)+B ’f'<p+-7 pg) +L@esp—2p)
s 4 2 4

b[” T ] Sf[tﬂi ' Ty
+14+p 8(+3p+2p)+ﬂ313 4+p<t 2)

3 2
+ 2(”—”t—2t>]—,” 37T p_37 pl o [tﬂ (t-”)
Py 2 YREST L E R L d G

—p2<rZ—+ 1>]+a,~—7§-(1 +2p—p’)+a, Z (p+2p)+3 ; a,p*
—b(1—-2p")—bAp +b(1-18p") +b,8p ,

where

1
t=—log,2 .
g %

Equating to zero the coefficients of 2°, p', p*, we have the equations
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21 b(.ﬁ—-l) Tt b=— 2 —g U —tT R
( ) 1 8 + 8a+b3 8 67[2 tzB

=—0.69802—0.54441B ,

(22) b,(l—g_”.-)+ s+ 4b__-.,5__.3<8,ti’_4-é__;1,)
g Tyt 4 R\ T T

+B( Z-m)-sm ,
— —0.44416+0.09224B— 8D, ,

( ) 1 (11+ 5 az 3= + 1 \

T T
+ 6 +B(2+1——Zn> ,
T 2 8
~1.76168+0.82193B .

Similarly expanding I’ in powers of s, as far as s*, we get

3 , T 7 29 2s
—— 3 4 +BT (147 $)+
Py (s+4s%) 3 28 + -

6 2 T
+b,[z (1+3S+38‘):|+b (1+2s)+b4(e+2s)
b, " s 3[# +< t) ”,—Et—zt]

* 4 4 d 2 (4 2 >

—~£3~—3 733——3 T sz}+2B[tf7T +s<t~— >—s~( +l>]
64 16 4 4 4 4
—a(1—2s*)—4a,s—a,(—1+18s*) +8as .
Equating to zero the coefficient of s, s', %, we get
(24) 37 bt T by—ty k= — L —6 t2+1—B<”+t”>
16 8 2 T 8 8

=—0.44802—-0.937118B .

SR R g _3( 1 _gt 4t
= b‘<1 316>+‘4b2+316b“—4“””ﬂ<n 87r'“’+47r)

—  ~B(2t—")-8a,,
2m 16

=0.32121—-0.49681B —8a, .
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@) =376+3 7 br2m—180="(2 14" 16!
+B(2= ) n)= ",
487)7 4

—=1.56564+1.672758 — %b,l )

Solving the equations (21)-(26) we obtain

(27.1) a,=2.41918 4+ 3.29530B + 0.88575a, + 2.18575b, ,
(27.2) @,=0.32523 + 0.60601B + 2.24986a, + 0.67766b, ,
(27.3) a;=0.09389 + 0.176118 + 0.08255a, + 0.24184b, ,
(27.4) b,=2.83764 +3.30740B8 + 0.98227a, + 1.64053b, ,
(27.5) b,=0.52365+0.59576 B + 0.57194a, + 2.48922b, ,
(27.6) b,=0.07535+0.17003B + 0.24870a, + 0.137990b, .

The coefficients a, and b, will be found in terms of B by considering
the conditions for ¢ when |w]| is large. B will be chosen so that E and
F' are small at all points of the boundary.

When w is large, we have the following expansions:—

201 —~1/2 1 -3/2
log 1+w17§:10g2_[w i ~ w '+ O(w=% ):l ,
1/2
log LzlogZ—[iw‘l’2+ 1 w‘l+0(w“3“):| ,
7+ w? 2
N ' ) . o
log _] — (log 2)'—2 log 2"+ (1 + log 2)w="+ O(w-"") ,
L 14w
r 201 P v op _2 -1 302
log - _ | =(log 2)*~ 27 log 2w-"*— (1 +log 2)w~"+ O(w=*?) ,
L i+w'?
i 2w'* P . TR I )
log “*— | =(log 2)*—3(log 2)~w‘1f~+[ (log 2)*+ 3 log Z}w“
L 14w 2

+O(w=*"?)

2

[108' -
?

4w

”2]3: (log 2)*—3i(log 2)* 2w~ —[ 2 (log 2)*+ 3 log Z:Iw“1

+O(wP) .

On setting L=log 2, and neglecting terms O(w-*?), we get
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VU=, f{ B 31— 1)L~V 4 3(L + 2Ly "]

+ B[2(i— 1)L+ 2(1 + Lyw~"]+ b[(s — L)yw=""* +20-"]

+ 727[7310'”2 + 1 w”:[} + 20—,
T 2 T

=7 {w”z(i - 1)[24 " +2LB+ bl} + 2 g

T T

+1U-1[24(L2+2L)+2(1+L)B+bl+71 :I} + 2 (0—m) .
Tt T

T

Again we have

l_wllz n— u 1_10_1/2—‘,1
)~ ]
=(—1)"[1-2nw ">+ 2w+ O(w™")] ,
and

L'
1—gw'?

:In =(=1)1—2niw""* —2n*w=" +O(w~*")] ,
so that
V,—U,=_7 {(2b, —4b,+ 6b,— 8b,)w~""* — (2a, — 4at, + 6a, — 8at, )i ="*
+207(2b, — 8b, + 18b, — 82b, + 2, — 8, + 18a, — 324,)} ,
neglecting O(w=*?). Also when y is large
U2 (0—m).
™

Now we know that ¢ must tend to y* when y is large. This means
that the coefficients of »w™'* and dyw-"* in yw(V,—U,+V,—U, must
vanish. We therefore have

(28) 245 L orB+b,+ 2 —(20,—4a,+ 60,—8a)—0
T w

and

(29) 24 9LB b, (2b,—4b,+ 6b,—86)=0 .
T

Using equations (27) these last two equations become
(28.1) 0.25461+0.52952B—15.71491a,+1.47187b,=0 ,
(29.1) 0.82323+0.55824B+0.18671a,—15.488415,=0 ,
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which give

(30) a,=0.02120+0.037128 ,
and

(30.1) b,=0.05341+0.03641B .

Also y.Zw™ is proportional to sin*# when y is large, so that we see
that the stream function tends to

¢=y2+y(2~q-——2>+(Constant) sin® 0 +2—2 0 ,
T T
. v <y 0
=y(2-"- —y )+ (Constant) sin?d+2—-2 " .
T e

Now when y is large Y 4y, so that the most important term in the
T

stream funection is %° the other terms being always finite, thus giving
uniform shearing motion above the points A and D.

With the values of a, and b, given by (30) (30.1), the other coef-
ficients are

(31.1) 4,=2.55469+3.40794 B ,
(31.2) 0,—0.40912+0.71426 B,
(31.3) 4,=0.10855+0.18799 B ,
(31.4) b,=2.94607 +3.40372 B,
(31.5) b,=0.66870+0.70782 B ,
(31.6) b,=0.08799+0.18430 B .

With these values of a,, b,, n=1, 2, 3, 4 the velocities of slip at
different points on the boundary are calculated in terms of B. Table
1 gives the values of £ and F' at the points

D, S : +0.1, +0.3, +0.7, +0.8, +0.9.

Using the method of least squares, the mean value of B is —0.52,
and the velocities of slip are shown in Table 2.

The values of E and F' are small, and can be made still smaller if
more than four terms are included in the series for U, and V,.

It will be noticed that F' is exactly zero at the sharp edge C where
s=0. The values of the coefficients are given in Table 3,
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0.9
0.8
07
| 0.3
L0
-0l
| 0.3
-0

—-0.0684
—0.0920
—-0.0122
—0.0002
0.0020
0.0036
0.0007
0.0056
0.0048

|
=
© 00 N W = — W N 0 O

. 13946 +
22416+ .
. 18632+
.00738+
00078+
.00313+
.00128++
.00303 -+
.00711+
.00487 +

Table 2.

-0.0272

K

.32042 B
56262 B
.53530 B
.03768 B
.00196 B
.00214 B
.00930 B
.00444 B
.00286 B
.00014 B

Table 1.

—0.0504
0.0664
0.0492
0.0133
0.0002

—0.0001

—0.0001

—0.0001

—0.0001

341

0.0004

0.22003+-0.32776 B

0.32998+-0.50692 B
0.33664-+0.55284 B
0.05672+-0.08351 B
0.00148+-0.00192 B
—0.00065-0.00122 B
—~0.00503 - 0.00958 B
—0.00063 -0.00100 B
—-0.00088-0.00152 /3
~0.00013-0.00105 B

Table 3.

An

\
| 0.78257 |
b0.03771 |
©0.01080 |
~0.00190 |

bn

1.14148
0.30063
0.00788
0.03462

The motion between the barriers at a great distance from 0 is con-
sidered next, that is to say the motion in the region w=0.
When |w| is small, we have the following expansions

2w 1

1 -
Eirwn 2
2w 1

le =
2w 2

—log w+log 24+ O(w'"?) ,

log w+log 2— ; in+Ow'") .

Als6 when |w| is small, the transformation (4) may be taken as

which gives

log

2001/
1+

mz=—logw+ir—1,

y1/2

. =log 2+

1
2

(I —1—m2)+ Ow'?),

=10g2— 7%7(1+7Tx)+ 1227T(1_y)+0(w1/2) 9
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2wt 1 _ in 2
log i =log 2+ o (14 zz)— ° Y+ 0w .

We thus have approximately

V1=A{—— ;3(1—y)3+ 32” (logz— é - )2(1—y)}
+Ba(l-p)(log2- L =)+ "0 (1),

s dm 1 ax\ ) 1 7z
jlﬂ = (1 2 > ( )
U=A g ¥ 5 o8 0" o )Yy Bry(log2— -~ 9
—-:;y—-Dny,

and

I n . 37 1 Y
v, UI—A{ T (1-8y+8y)+ <log2 ; 2)}

+Bn{log g1 _ ”m_]+y<cﬂ +Dre Cn>+ Gr ’
2 2 2 2/ 2

since all other terms tend to zero as w—0 because Lt w'*logw=0.
w0
The stream function thus becomes

¢=y“’+A’§[—y+ 3y’-’—2y3]+y2[ C—%-!—Dn—- (Z”]er[G”—C% —Dﬂ_l-

2
Now
Ar® =1 and Cn +Dr— Gn =1,
8 2 2
and so we have
(32) g=3y'—2y", Y —ey(1-),

3y

This is the stream funection for the flow in an infinite channel under a
uniform pressure gradient with

¢=0 when y=0,
¢=1 when y=1,

h s
and o9 vanishing when y=0, y=1.
We will now consider the motion near the sharpedge C. In this region

z is nearly 4 and w is nearly 1, so that if we put
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2=1+2, y=1+y, wit=1+¢,

then 2', ¥ and ¢ are small.

The stream function must be found to order ¢°. To this order the
transformation gives

(33) 2 +i)=(1+ ) —2 log (14+¢) +ir—1,
ﬂz/zzcz'— g C3 ’

and so ¥ is of the order &
Now

g=1A+yy+1+yNV-U)+U,
=1+y)y+y(V-U)+V,
so that we have to find V to order ¢* and V—U to order ¢.
We now use the expansions

log w=log (1+¢)*

_2<C_§i+§+ ....) s

2wl _ ¢
log |2 | =log (1+¢)~log(1+ :)

I

N,!,_‘ [\a — [\’>|‘f\e

iz 73+
8C+24C

1/2
log 2w

T+ w?

T

log 2—1
og iy

1—i
+log (1+¢)—log (14-_,277.5)
log 2— z—4_ < S i)t

To order ¢ on putting t=%1oge 2, we obtain

V.— U1=f{ —;[(t—i ’47)+2 (t—z‘—Z—)z(l“M)C]
—B[(t—z’ Z——>2+(t—7}%>(1+?3)C]

55+ So-9-3
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and to order &°

A ea(§- 3 -3 L)

Again we have
1 ,wllz :In ( C >n< C >—n
, 1+ ,
[ 14w 2 2
so that

V,— sz[l““’” ,
1+w'

=(}‘{ —b, (g- %EJF Q;>+bz (%— CZ)—-b3 S} , approximately.

Also we note that
[1+z‘w"2]“:[1+i+ic}"
1 —qw'? 1—2—1¢
=1+ ni¢ +O(&?)],

and so

4 1/27n
Za [1+zw ]

=1 1— 4w
=7 {a@(14+20) — (1 + 2:¢) — asi(1 + 34¢) + a(1 + 4¢¢)}, approximately.

Therefore to order &, we have

, P 8 T A .
G142y 4+ {/§—ﬂ3[<t—z4> + 2(t-2-4)(1+@){]

—B|(t-i e (t—@%)(lm)c]wa;(z AR RURE SRS
— (L i6) -+ a1+ 2i) + ayi(1 + 3iC) — a1 +4q;c)}

A (5 e

oh(-§5- (-0
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Now from equation (33),
3
J"C2=; ny’+J53 ,

so that subsituting for . ¢* in the last equation, we get

. 3 t* T 1 3 s
=1+ (— '6~+B_.(t > bt b—ata
¢ Y g -+ = 5 + 4 + 3 a 5)

16
(15 12/, .= s b :
+ ( - (t~+tw>—3<t+ )—4 _3 }/f
y 4z 2 4 2 o ¢
. 12< s T ) 1 ( T b,]
— (T )= L _B(t— —da,— " | e
+y [ s 5 i t A ) + 2a,— 4a, 9 2L
4-[1,)— 7,B+bz—,bz—?’i}fcs.
T 24 8 6 8

It is easily seen from equation (24) that the coefficient of y in the
above equation for ¢ is zero. A little calculation shows that the coef-
ficients of ¥y ¢, y._~ 1, _~#¢ respectively, are given by

,=0.68720, C,=—0.66384, C;=0.28182 .
So ¢ is now of the form
Pp=1+y' F(C,H+iC)+C;.7 L.
Now set
z=i+2=i+r(cos +isinfl’),

so that »’, 4 are then polar coordinates with C as pole, where we
assume 06 <2z. From equation (33) we have as a first approxi-

mation
’ 1/-_)' 0/ A . 0/
C=[Wv] <cos +1 sin ),
Lo g T
and so in lerms of these polar coordinates

1 (7Y e (20 DY s 4 Coain? o ” oon ]
¢—1+(2—> ) ré~Cs+E)sm”27+~zgsm2+201s1n 20052 .

This must be a biharmonic function which is equal to 1 on the bound-
aries #'=0, 27 and whose normal derivative vanishes on these bound-
aries. In order to satisfy these conditions, we must have

32’?cs+zaz=o .
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Subsituting the values previously obtained for C,, C;, we find that the
error is only 0.0003.

We also find that ¢=1 when 6'=144° 18 and this gives the angle
at which the stream line ¢=1 leaves the barrier.

The pressure p is given by the equations of motion

) 0 _,

e’ vy,

ox

op 0 .y
=g X7,

oy /axVS‘

where /+ is the coefficient of viscosity of the fluid. That is to say, » is
the function conjugate to pv:¢.
Remembering that U and V are harmonic, we have

o2V U
2+2
VY= (ay ay>
so that
D _y V-U
2 /ta ( )
and
op

A——z/l (V U)= 2# (V U).
ow

Therefore, apart from a constant,

p= 2/1 L VU

If V-U=_7f(w), then we have

9 w d
=27 w1 duw Sw) .

and using the expressions for V and U, we obtain

P _ 1 { [ 2t ] [ Qu: ] )
W ~ I34]10e 2" Ti2B]10 +G
our 7 2l+w)w—1) 1" 0% T € 1w JTYT
g ?: J 2w1/2 ] [ ]
-7 3A[lo +28| 1o
2(i + 1) (w—1) | & it g }

s D . nb,w'? [ 1—w' ]"'1
-7 - 7 nE =
w—1 nzl (1+w'PP(w—1) L 1+w

X na, [ 1+,W)m ]n—l.
=1 (1= (w—1) L 1—dw'*
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We will now calculate the pressure along the curve u=0, which inside
the channel approximates to the central line.
1/2
Now when w=re™* then w”2=1; 0 (1+4)=p(1+17) say, and w=2ip".

The expression for the pressure p can be simplified as follows.
Let

2uw'l* . .
log Lt =241y, say,
then
2+ir=log 2+log p+log (1+7)—log (1 + p+1ip)
so that
1 80* 1
I= " log . P - =tan~' . .
2 % Tioprzp’ 1+2p

Similarly we have

lo =A1—1
s i+w'? 7
Again we see that
b 1+p—ip
A+w'?)  1+20+20°
i l+p+ip
P+w 14204200 7
T ]"‘1=_p(1+@')(1%2’582)[1:21’?72’53 "
(1+w1/2)2 _1+w112 (1+4p1) 1+2pz+2p ’
=e,+10, say,

and

,I:w?/z 1-_{_3:@1;[? n—1—€ s
(1 =gy L1 —dw'? S

Therefore terms of the type

1 2w ) 2w
s (81 o | 8 g

are the difference of two conjugate quantities, and putting in the
values of 4, C, D, and G, the expression for p is
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24 2w\ 2B 2uw1?
34 i’,:{‘/[ ) (10 2w >+,, 2B pg 20"
GY 5 AA+w) VOF L)) T (1w O 1

b, ]} { PR ~ 1 [2 % :‘
+ x4 7" D R
14w w—17 + (w—=) Lz za@E+w)
-1

+{/f
w—1

| S, = a)+i S, buran |}
n=1

n=1

An arbitrary constant could be added to this expression, but as the
formula stands p is zero when |w| is large, and so it denotes the
excess of pressure at any point above that at a distant point outside
the channel.

It can now be verified that at a distance from 0 outside the barriers,
the pressure is approximately a linear function of .

We have the exact relation between z and p

mr=2ip"—log 2ip* +ix—1,
giving
re=—log 2—2log p—1.
When |w]| is small the pressure is given approximately by

D _—_24.7:

3 T
Y log 2+1 ]—B
ouz = 2 [2 0gETIBr =5,

and substituting for log p in terms of & we get

p=12px+ 12 1(1—2log 2)— Brp,

w
that is to say
p=12px+3.66/ .

It has been shown that in this region ¢=38y*—2y°, and it can be
seen that 12p is indeed the pressure gradient required to maintain the
motion given by this stream function in an infinite channel. This fact
provides a check on the calculated value for p for large .

Figure 3 shows the graph of p/z potted against x, as calculated
from formula (34), with n=4.

It has been assumed in our work that the distance between the
barriers is unity, and that ¢ is the stream function of the undisturbed
motion, giving 2 as the undisturbed velocity at a unit distance from
the infinite boundary. If the distance between the barriers is a, and ¢
is the undisturbed velocity at a distance a from the infinite boundary,
then we have to apply a factor ¢/2a to our results.
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P
=12r+ 3.66
”"

Fig. 3.

Since the equations of slow steady flow of a visecous incompressible
fluid are the same as those of an equilibrium state of an incompressible
elastic solid, the previous results can be immediately used for the solu-
tion to a certain two-dimensional elastic problem, if one simply replaces
velocity and coefficient of viscosity by displacement and shear modulus.
In the fluid problem there is ideally no velocity along the boundaries,
so that in the corresponding elastic problem the boundaries could be
free from tractions. A method of obtaining solutions to a large number
of two-dimensional viscous flow problems from known elastic fields has
been discussed by Goodier [2], who pointed out that an elastic stress-
function, being biharmonic, could be regarded as the stream-function of
a viscous flow, and that the boundary conditions on the elastic stresses
could be related to those on the fluid velocity.
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