DIFFERENTIABLE POINTS OF ARCS IN CONFORMAL *n*-SPACE

N.D. LANE

Introduction. This paper is a generalization to n dimensions of the classification of the differentiable points in the conformal plane [2], and in conformal 3-space [3]. In the present paper, this classification depends on the intersection and support properties of certain families of tangent (n-1)-spheres, and on the nature of the osculating m-spheres at such a point $(m=1, 2, \dots, n-1)$.

The discussion is also related to the classification [4] of the differentiable points of arcs in projective (n+1)-space, since conformal *n*space can be represented on the surface of an *n*-sphere in projective (n+1)-space.

1. Pencils of *m*-spheres. p, t, P, P_1, \dots , will denote points of conformal *n*-space and $S^{(m)}$ will denote an *m*-sphere. When there is no ambiguity, the superscript (n-1) will be omitted in the case of $S^{(n-1)}$; thus an (n-1)-sphere $S^{(n-1)}$ will usually be denoted by S alone. Such an (n-1)-sphere S decomposes the n-space into two open regions, its interior S, and its exterior \overline{S} . If $P \not\subset S$, the interior of S may be defined as the set of all points which do not lie on S and which are not separated from P by S; the exterior of S is then defined as the set of all points which are separated from P by S. An *m*-sphere through an (m-1)-sphere $S^{(m-1)}$ and a point $P \not\subset S^{(m-1)}$ will be denoted by $S^{(m)}[P]$; $S^{(m-1)}$]. The *m*-sphere through (m+2)-points P_0, P_1, \dots, P_{m+1} , not all lying on the same (m-1)-sphere, will occasionally be denoted by $S^{(m)}(P_0,$ P_1, \dots, P_{m+1}). Such a set of points is said to be *independent*. Most of the following discussion will involve the use of pencils $\pi^{(m)}$ of *m*-spheres determined by certain incidence and tangency conditions. An (m-1)sphere which is common to all the *m*-spheres of a pencil $\pi^{(m)}$ is called fundamental (m-1)-sphere of $\pi^{(m)}$. In the pencil $\pi^{(m)}$ through a fundamental (m-1)-sphere $S^{(m-1)}$ there is one and only one *m*-sphere $S^{(m)}(P, \pi^{(m)})$ of $\pi^{(m)}$ through each point P which does not lie on $S^{(m-1)}$. Similarly, in the pencil $\pi^{(m)}$ of all the *m*-spheres which touch a given *m*-sphere at a given point Q, there is one and only one m-sphere $S^{(m)}(P, \pi^{(m)})$ through each point $P \neq Q$. The fundamental point Q is regarded as a point *m*-sphere belonging to $\pi^{(m)}$.

Received May 18, 1955. This paper was prepared while the author held a fellowship at the Summer Research Institute of the Canadian Mathematical Congress.

N.D. LANE

2. Convergence. We call a sequence of points P_1, P_2, \dots , convergent to P if to every (n-1)-sphere S with $P \subset \underline{S}$, there corresponds a positive integer N=N(S) such that $P_{\lambda} \subset \underline{S}$ if $\lambda > N$. We define the convergence of m-spheres to a point in a similar fasion.

We call a sequence of (n-1)-spheres S_1, S_2, \cdots , convergent to S if to every pair of points $P \subset \underline{S}$ and $Q \subset \overline{S}$ there corresponds a positive integer N=N(P, Q) such that $P \subset \underline{S}_{\lambda}$ and $Q \subset \overline{S}_{\lambda}$ for every $\lambda > N$.

Finally, a sequence of *m*-spheres $S_1^{(m)}, S_2^{(m)}, \cdots$, will be called *convergent* to an *m*-sphere $S^{(m)}$ if to every $S^{(n-m-1)}$ which links [5; §77] with $S^{(m)}$ there exists a positive integer $N=N(S^{(n-m-1)})$ such that $S_{\lambda}^{(m)}$ links with $S^{(n-m-1)}$ whenever $\lambda > N$, $(m=1, 2, \cdots, n-2)$.

3. Arcs. An arc A is the continuous image of a real interval. The images of distinct points of this parameter interval are considered to be different points of A even though they may coincide in space. The notation $t \neq p$ will indicate that the points t and p do not coincide. If a sequence of points of the parameter interval converges to a point p, we define the corresponding sequence of image points on the arc A to be convergent to the image of p. We shall use the same small italics p, t, \dots , to denote both the points of the parameter interval and their image points on A. The end- (interior) points of A are the images of the end- (interior) points of the parameter interval. A neighbourhood of p on A is the image of a neighbourhood of the parameter on the parameter interval. If p is an interior point of A, this neighbourhood is decomposed by p into two (open) one-sided neighbourhoods.

4. Differentiability. Let p be a fixed point of an arc A, and let t be a variable point of A. Let $1 \leq m < n$. If p, P_1, \dots, P_{m+1} do not lie on the same (m-1)-sphere, then there exists a unique m-sphere $S^{(m)}(P_1, \dots, P_{m+1}, p)$ through these points. It is convenient to denote this m-sphere by the symbol $S_0^{(m)} = S^{(m)}(P_1, \dots, P_{m+1}; \tau_0)$; here τ_0 indicates that this m-sphere passes through p. In the following, the m-sphere $S^{(m)}(P_1, \dots, P_{m+1-r}; \tau_r)$ is defined inductively by means of the conditions $\Gamma_r^{(m)}$ given below (the τ_r in the symbol $S^{(m)}(P_1, \dots, P_{m+1-r}; \tau_r)$ indicates that this sphere is a tangent sphere of the arc A at the point p meeting A(r+1)-times at p). We call A(m+1)-times differentiable at p if the following sequence of conditions is satisfied.

 $\Gamma_r^{(m)}[r=1, 2, \dots, m+1]$: If the parameter t is sufficiently close to, but different from, the parameter p, then the m-sphere $S^{(m)}(P_1, \dots, P_{m+1-r}, t; \tau_{r-1})$ is uniquely defined. It converges if t tends to p. Thus its limit sphere, which will be denoted by

$$S_r^{(m)} = S^{(m)}(P_1, \cdots, P_{m+1-r}; \tau_r),$$

will be independent of the way t converges to p [condition $\Gamma_{m+1}^{(m)}$ reads: $S^{(m)}(t; \tau_m)$ exists and converges to $S_{m+1}^{(m)} - S^{(m)}(\tau_{m+1})$].

It is convenient to use the symbols $S_0^{(0)}$ to denote pairs of points P, p, and $S_1^{(0)}$ to denote the point pair p, p (or the point p).

We call A once differentiable at p if $\Gamma_1^{(1)}$ is satisfied. The point p is called a differentiable point of A if A is n-times differentiable at p.

Let $\tau_r^{(m)}$ denote the family of all the $S_r^{(m)}$'s. Thus $\tau_{m+1}^{(m)}$ consists only of $S_{m+1}^{(m)}$, the osculating *m*-sphere of A at p.

5. The structure of the families $\tau_r^{(m)}$ of *m*-spheres $S_r^{(m)}$ through *p*.

THEOREM 1. Suppose A satisfies condition $\Gamma_1^{(m)}$ at p. Let $S^{(m-1)}$ be any (m-1)-sphere. Then there is a neighbourhood N of p on A such that if $t \in N$, $t \neq p$, then $t \not\subset S^{(m-1)}$, $(m=1, 2, \dots, n-1)$.

Proof. The assertion is evidently true if $p \not\subset S^{(m-1)}$. Suppose $p \subset S^{(m-1)}$. Choose points P_1, \dots, P_m on $S^{(m-1)}$ such that p, P_1, \dots, P_m are independent. If the parameter t is sufficiently close to, but different from, the parameter p, condition $\Gamma_1^{(m)}$ implies that $S^{(m)}(P_1, \dots, P_m, t; \tau_0)$ is uniquely defined. Thus $t \not\subset S^{(m-1)}(P_1, \dots, P_m; \tau_0) = S^{(m-1)}$.

COROLLARY. If A satisfies condition $\Gamma_1^{(m)}$ at p, and $S^{(k)}$ is any k-sphere, then $t \not\subset S^{(k)}$ when the parameter t is sufficiently close to, but different from, the parameter p ($k=0, 1, \cdots, m-1$).

In particular, this holds when m=n-1.

THEOREM 2. Let 1 < m < n; $1 \leq k \leq m$. If A satisfies $\Gamma_1^{(m)}, \dots, \Gamma_k^{(m)}$ at p, then $\Gamma_1^{(m-1)}, \dots, \Gamma_k^{(m-1)}$ will hold there and

(1)
$$S^{(m-1)}(P_1, \cdots, P_{m-r}; \tau_r) = \prod_P S^{(m)}(P_1, \cdots, P_{m-r}, P; \tau_r).$$

Conversely, let A satisfy $\Gamma_1^{(m-1)}, \dots, \Gamma_k^{(m-1)}$ at p, and let $S_m^{(m-1)} \neq p$ if k=m. If $P_{m-r+1} \not\subset S^{(m-1)}(P_1, \dots, P_{m-r}; \tau_r)$, then $\Gamma_r^{(m)}$ will hold for the points P_1, \dots, P_{m-r+1} and

(2)
$$S^{(m)}(P_1, \cdots, P_{m-r+1}; \tau_r) = S^{(m)}[P_{m-r+1}; S^{(m-1)}(P_1, \cdots, P_{m-r}; \tau_r)]$$

(r=1, ..., k).

REMARK. In general, $\Gamma_1^{(m-1)}$, \cdots , $\Gamma_k^{(m-1)}$ do not imply $\Gamma_1^{(m)}$, \cdots , $\Gamma_k^{(m)}$ (see [3], §7).

Proof. (by induction with respect to k): Suppose k=1; 1 < m < n.

Let $\Gamma_1^{(m)}$ hold. If $P_1, \dots, P_{m-1}, P, p$ are independent points, $S^{(m)}(P_1, \dots, P_{m-1}, P, t; \tau_0)$ exists when t is sufficiently close to $p, t \neq p, t \in A$. Thus $P_1, \dots, P_{m-1}, P, t, p$, are also independent, $S^{(m-1)}(P_1, \dots, P_{m-1}, t; \tau_0)$ exists, and

$$S^{(m-1)}(P_1, \cdots, P_{m-1}, t; \tau_0) = \prod_n S^{(m)}(P_1, \cdots, P_{m-1}, P, t; \tau_0).$$

If $t \to p$, $S^{(m)}(P_1, \dots, P_{m-1}, P, t; \tau_0)$ converges, and hence $S^{(m-1)}(P_1, \dots, P_{m-1}, t; \tau_0)$ also converges, $\Gamma_1^{(m-1)}$ is satisfied, and

$$S^{(m-1)}(P_1, \cdots, P_{m-1}; \tau_1) = \prod_P S^{(m)}(P_1, \cdots, P_{m-1}, P; \tau_1).$$

Next, suppose that $\Gamma_1^{(m-1)}$ is satisfied, and $P_m \not\subset S^{(m-1)}(P_1, \dots, P_{m-1}; \tau_1)$. Then $P_m \not\subset S^{(m-1)}(P_1, \dots, P_{m-1}, t; \tau_0)$ when t is sufficiently close to $p, t \in A, t \neq p$, and

$$S^{(m)}(P_1, \cdots, P_m, t; \tau_0) = S^{(m)}[P_m, S^{(m-1)}(P_1, \cdots, P_{m-1}, t; \tau_0)]$$

exists. Hence when $t \to p$, $S^{(m)}(P_1, \dots, P_m, t; \tau_0)$ converges, $\Gamma_1^{(m)}$ is satisfied relative to the points P_1, \dots, P_m , and

$$S^{(m)}(P_1, \cdots, P_m; \tau_1) = S^{(m)}[P_m; S^{(m-1)}(P_1, \cdots, P_{m-1}; \tau_1)].$$

Thus Theorem 2 is satisfied when k=1.

Assume that Theorem 2 holds when k is replaced by $1, 2, \dots, h$, where $1 \leq k \leq m$.

Let $\Gamma_1^{(m)}, \dots, \Gamma_{h+1}^{(m)}$ hold. Then $S^{(m)}(P_1, \dots, P_{m-h-1}, P, t; \tau_h)$ exists when t is sufficiently close to $p, t \neq p, t \in A$. Now $\Gamma_1^{(m)}, \dots, \Gamma_h^{(m)}$ imply $\Gamma_1^{(m-1)}, \dots, \Gamma_h^{(m-1)}$. If $h=m-1, \Gamma_h^{(m-1)}=\Gamma_{m-1}^{(m-1)}$ implies that $S_h^{(m-1)}=S^{(m-1)}(t; \tau_{m-1})$ exists, if $t\neq p$. If $h < m-1, \Gamma_1^{(m-1)}, \dots, \Gamma_h^{(m-1)}$ imply $\Gamma_1^{(m-2)}, \dots, \Gamma_h^{(m-2)}$. Thus $S^{(m-2)}(P_1, \dots, P_{m-h-1}; \tau_h)$ exists. Furthermore, $\Gamma_1^{(m-1)}$ and Theorem 1 imply that $t \not\subset S^{(m-2)}(P_1, \dots, P_{m-h-1}; \tau_h)$. But then Theorem 2, equation (2), with k replaced by h, implies that

$$S^{(m-1)}(P_1, \cdots, P_{m-h-1}, t; \tau_h) = S^{(m-1)}[t; S^{(m-2)}(P_1, \cdots, P_{m-h-1}; \tau_h)]$$

exists. By Theorem 2, equation (1), with k replaced by h,

$$S^{(m-1)}(P_1, \cdots, P_{m-h-1}, t; \tau_h) = \prod_P S^{(m)}(P_1, \cdots, P_{m-h-1}, P, t; \tau_h).$$

When $t \to p$, $S^{(m)}(P_1, \dots, P_{m-h-1}, P, t; \tau_h)$ converges, hence $S^{(m-1)}(P_1, \dots, P_{m-h-1}, t; \tau_h)$ also converges, $\Gamma_{h+1}^{(m-1)}$ is satisfied, and

$$S^{(m-1)}(P_1, \cdots, P_{m-h-1}; \tau_{h+1}) = \prod_P S^{(m)}(P_1, \cdots, P_{m-h-1}, P; \tau_{h+1}).$$

Next, suppose $\Gamma_1^{(m-1)}, \cdots, \Gamma_{n+1}^{(m-1)}$ hold, and let $P_{m-n} \not\subset S^{(m-1)}(P_1, \cdots, P_{n+1})$

 P_{m-h-1} ; τ_{h+1}). Then $P_{m-h} \not\subset S^{(m-1)}(P_1, \cdots, P_{m-h-1}, t; \tau_h)$ if t is sufficiently close to $p, t \in A, t \neq p$. But Theorem 2, with k replaced by h, then implies that

$$S^{(m)}(P_1, \cdots, P_{m-h-1}, P_{m-h}, t; \tau_h) = S^{(m)}[P_{m-h}; S^{(m-1)}(P_1, \cdots, P_{m-h-1}, t; \tau_h)]$$

exists. Hence when $t \to p$, $S^{(m)}(P_1, \dots, P_{m-h}, t; \tau_h)$ converges, $\Gamma_{h+1}^{(m)}$ is satisfied for P_1, \dots, P_{m-h} , and

$$S^{(m)}(P_1, \cdots, P_{m-h}; \tau_{h+1}) = S^{(m)}[P_{m-h}; S^{(m-1)}(P_1, \cdots, P_{m-h-1}; \tau_{h+1})].$$

COROLLARY 1. Let $1 \leq m < n$. If A is (m+1)-times differentiable at p then it is m-times differentiable there.

COROLLARY 2. If A satisfies $\Gamma_1^{(n-1)}, \dots, \Gamma_{m+1}^{(n-1)}$ at p, then it is (m+1)-times differentiable there $(0 \leq m < n)$.

COROLLARY 3.

$$S_m^{(m-1)} \subset S_{m+1}^{(m)}$$
 (m=1, 2, ..., n-1).

Proof. By (1),

$$S^{(m)}(t; \ au_m) \supset \prod_P S^{(m)}(P; \ au_m) \!=\! S^{(m-1)}_m$$

Hence $S_{m+1}^{(m)} \supset S_m^{(m-1)}$.

The last remark implies the following.

COROLLARY 4. Let $1 \leq m < n$. If $S_{m+1}^{(m)} = p$, then $S_{r+1}^{(r)} = p$ $(r=0, 1, \dots, m-1)$. Thus there is an index i, where $1 \leq i \leq n$ such that $S_{r+1}^{(r)} = p$ for $r=0, 1, \dots, i-1$, but $S_{r+1}^{(r)} \neq p$, if $r \geq i$.

COROLLARY 5. Let
$$1 \leq m < n$$
; $1 \leq r \leq m$. Then

$$S^{(m)}(P_1, \cdots, P_{m+1-r}; \tau_r) \supset S^{(m-1)}(P_1, \cdots, P_{m+1-r}; \tau_{r-1})$$
.

Proof.

$$S^{(m)}(P_1, \cdots, P_{m+1-r}; \tau_r) = \lim_{t \to p} S^{(m)}(P_1, \cdots, P_{m+1-r}, t; \tau_{r-1})$$

$$\supset S^{(m-1)}(P_1, \cdots, P_{m+1-r}; \tau_{r-1}).$$

From Corollary 5, we get the following.

COROLLARY 6. Let $1 \leq m < n$; $1 \leq r \leq m$. If $P_{m+2-r} \subset S^{(m)}(P_1, \dots, P_{m+1-r}; \tau_r)$ and $P_{m+2-r} \subset S^{(m-1)}(P_1, \dots, P_{m+1-r}; \tau_{r-1})$ then

$$S^{(m)}(P_1, \cdots, P_{m+1-r}; \tau_r) = S^{(m)}(P_1, \cdots, P_{m+2-r}; \tau_{r-1}).$$

THEOREM 3. Let $1 \leq r \leq m < n$. Suppose $\Gamma_1^{(m)}, \dots, \Gamma_r^{(m)}$ are satisfied at p.

(i) If $S_r^{(r-1)} \neq p$, $\tau_r^{(m)}$ consists of all the *m*-spheres through $S_r^{(r-1)}$.

(ii) Let $S_r^{(r-1)} = p$. Choose any $S_r^{(r)} \in \tau_r^{(r)}$. Then $\tau_r^{(m)}$ is the set of all the *m*-spheres which touch $S_r^{(r)}$ at *p*.

Proof of (i). By Theorem 2, equation (1),

$$S^{(m)}(P_1, \cdots, P_{m+1-r}; \tau_r) \supset S^{(m-1)}(P_1, \cdots, P_{m-r}; \tau_r) \supset \cdots \supset S^{(r)}(P_1; \tau_r) \supset S^{(r-1)}_r.$$

Let $S^{(m)}$ be any *m*-sphere through $S^{(r-1)}_r$. By Theorem 2, if $P_1 \subset S^{(m)}$, $P_1 \not\subset S^{(r-1)}_r$,

$$S^{(r)}(P_1; S^{(r-1)}_r) = S^{(r)}(P_1; \tau_r) \subset S^{(m)}$$

Suppose $S^{(k)}(P_1, \dots, P_{k+1-r}; \tau_r) \subset S^{(m)}$, $(r \leq k < m)$. Choose $P_{k+2-r} \subset S^{(m)}$, $P_{k+2-r} \not \subset S^{(k)}(P_1, \dots, P_{k+1-r}; \tau_r)$. Then by Theorem 2,

$$S^{(k+1)}(P_1, \cdots, P_{k+2-r}; \tau_r) = S^{(k+1)}[P_{k+2-r}; S^{(k)}(P_1, \cdots, P_{k+1-r}; \tau_r)] \subset S^{(m)}.$$

For k=m-1, this yields $S^{(m)}(P_1, \cdots, P_{m+1-r}; \tau_r) = S^{(m)}$. Thus $S^{(m)} \in \tau_r^{(m)}$.

Proof of (ii). Suppose $S_r^{(r-1)} = p$. As above, we have

$$S_r^{(m)} = S^{(m)}(P_1, \cdots, P_{m+1-r}; \tau_r) \supset \cdots \supset S^{(r)}(P_1; \tau_r).$$

Let $S^{(r)}(Q; \tau_r)$ be any $S_r^{(r)} \in \tau_r^{(r)}$. By Theorem 2, equation (1),

$$S^{(r)}(P, t; au_{r-1}) \cap S^{(r)}(Q, t; au_{r-1}) \supset S^{(r-1)}(t; au_{r-1}).$$

Let P and Q be variable points and let $S^{(r-1)}$ be a variable (r-1)-sphere converging to a fixed point. Suppose there is an (n-1)-sphere which separates this point from P and Q. Then

$$\lim \ll [S^{(r)}(P; S^{(r-1)}), S^{(r)}(Q; S^{(r-1)})] = 0$$

whether or not the spheres $S^{(r)}(P; S^{(r-1)})$ and $S^{(r)}(Q; S^{(r-1)})$ themselves converge. In particular,

(3)
$$\lim_{t \to p} \not\leqslant [S^{(r)}(P, t; \tau_{r-1}), S^{(r)}(Q, t; \tau_{r-1})] = 0.$$

Thus $S^{(r)}(P; \tau_r)$ touches $S^{(r)}(Q; \tau_r)$ at p. Furthermore, if $S^{(r)}(P; \tau_r)$ and $S^{(r)}(Q; \tau_r)$ have a point $\neq p$ in common, they coincide. Thus $\tau_r^{(r)}$ consists of the family of r-spheres which touch $S^{(r)}(Q; \tau_r)$ at p.

Suppose r < m and an *m*-sphere $S_r^{(m)} = S^{(m)}(P_1, \cdots, P_{m+1-r}; \tau_r)$ of $\tau_r^{(m)}$ has a point $R \neq p$ in common with $S_r^{(m)}(Q; \tau_r)$. From the above,

 $S^{(r)}(R; \tau_r) = S^{(r)}(Q; \tau_r)$. If $R \subset S^{(r)}(P_1; \tau_r)$ we have

$$S_r^{(m)} \supset S^{(r)}(P_1; \tau_r) = S^{(r)}(R; \tau_r) = S^{(r)}(Q; \tau_r)$$

while if $R \not\subset S^{(r)}(P_1; \tau_r)$, we have, by Theorem 2,

$$S_r^{(m)} \supset S^{(r+1)}[R; S^{(r)}(P_1; \tau_r)] = S^{(r+1)}(P_1, R; \tau_r) = S^{(r+1)}[P_1; S^{(r)}(R; \tau_r)] \supset S^{(r)}(R; \tau_r) = S^{(r)}(Q; \tau_r) .$$

On the other hand, suppose an *m*-sphere $S^{(m)}$ touches $S_r^{(r)} = S^{(r)}(Q; \tau_r)$ at *p*. If $S^{(m)} \supset S_r^{(r)}$ it follows, as in the proof of part (i), that $S^{(m)} \in \tau_r^{(m)}$. Suppose $S^{(m)} \cap S_r^{(r)} = p$. Choose an $S^{(r)} \subset S^{(m)}$ such that $S^{(r)}$ touches $S^{(r)}(Q; \tau_r)$ at *p*. Thus $S^{(r)} \subset \tau_r^{(r)}$. It again follows that $S^{(m)} \in \tau_r^{(m)}$

COROLLARY 1. Let $\Gamma_1^{(r-1)}, \dots, \Gamma_r^{(r-1)}$ hold and let $S_r^{(r-1)} = p$. Suppose $\lim_{t \to p} S^{(r)}(P, t; \tau_{r-1})$ exists for a single point $P, P \neq p$. Then $\Gamma_r^{(r)}$ holds at p (1 < r < n).

Proof. This follows from equation (3).

COROLLARY 2. There is only one $S_r^{(m)}$ of the pencil $\tau_r^{(m)}$ which contains (m+1-r) points which do not lie on the same $S_r^{(m-1)}$.

Proof. Such an $S_r^{(m)}$ can be uniquely constructed as in the proof of (i), Theorem 3.

COROLLARY 3. If two $S_r^{(m)}$'s intersect in an $S^{(m-1)}$ then this $S^{(m-1)} \in \tau_r^{(m-1)}$.

Proof. The $S_r^{(m)}$'s and hence also $S^{(m-1)}$ contain $S_r^{(r-1)}$. In case $S_r^{(r-1)} = p$, let $R \subset S^{(m-1)}$, $R \neq p$. Then each of the $S_r^{(m)}$'s and hence also $S^{(m-1)}$ contains $S^{(r)}(R; \tau_r)$.

COROLLARY 4.

$$\tau_{\upsilon}^{(m)} \supset \tau_1^{(m)} \supset \cdots \supset \tau_{m+1}^{(m)}$$

Proof. When k < m, or when k = m and $S_m^{(m-1)} \neq p$, Theorem 3 implies that $\tau_k^{(m)}$ is the set of all the *m*-spheres through $S_k^{(k-1)}$. Hence $S_{k+1}^{(m)}$, being the limit of a sequence of such *m*-spheres, must itself contain $S_k^{(k-1)}$, and by Theorem 3, $S_{k+1}^{(m)} \in \tau_k^{(m)}$. Suppose k = m and $S_m^{(m-1)} = p$. By Theorem 3, $\tau_m^{(m)}$ is the set of all the *m*-spheres which touch a given *m*-sphere $S_m^{(m)} \neq p$ of $\tau_m^{(m)}$ at *p*. Hence $S_{m+1}^{(m)}$, being the limit of a sequence of such *m*-spheres, must itself touch $S_m^{(m)}$ at *p*, and, again by

Theorem 3, $S_{m+1}^{(m)} \in \tau_m^{(m)}$.

THEOREM 4. Let 1 < m < n; $1 \leq k \leq m$, and suppose that $S_m^{(m-1)} \neq p$ if k=m. If the conditions $\Gamma_1^{(m)}, \dots, \Gamma_k^{(m)}$ hold at p, then $\Gamma_{k+1}^{(m)}$ also holds there.

Proof. By Theorem 2, $\Gamma_1^{(m-1)}, \dots, \Gamma_k^{(m-1)}$ hold at p. Hence if p, P_1, \dots, P_{m-k} are independent points $S^{(m-1)}(P_1, \dots, P_{m-k}; \tau_k)$ is defined. Furthermore, by Theorem 1, we can assume that $t \not\subset S^{(m-1)}(P_1, \dots, P_{m-k}; \tau_k)$ and by Theorem 2 again,

$$S^{(m)}(P_1, \cdots, P_{m-k}, t; \tau_k) = S^{(m)}[t; S^{(m-1)}(P_1, \cdots, P_{m-k}; \tau_k)].$$

Thus $S^{(m)}(P_1, \dots, P_{m-k}, t; \tau_k)$ exists when t is close to p, $t \in A$, $t \neq p$. Choose $P_{m+1-k} \subset S^{(m-1)}(P_1, \dots, P_{m-k}; \tau_k)$, $P_{m+1-k} \not\subset S^{(m-2)}(P_1, \dots, P_{m-k}; \tau_{k-1})$. Then Theorem 2 implies that

$$S^{(m-1)}(P_1, \cdots, P_{m-k}; \tau_k) = S^{(m-1)}(P_1, \cdots, P_{m+1-k}; \tau_{k-1})$$

when k < m, or k=m and $S_{m-1}^{(m-2)} \neq p$; if k=m and $S_{m-1}^{(m-2)}=p$, this equation follows from Theorem 3, Corollary 4. Hence

$$\lim_{t \to p} S^{(m)}(P_1, \cdots, P_{m-k}, t; \tau_k) = \lim_{t \to p} S^{(m)}[t, S^{(m-1)}(P_1, \cdots, P_{m+1-k}; \tau_{k-1})]$$
$$= \lim_{t \to p} S^{(m)}(P_1, \cdots, P_{m+1-k}, t; \tau_{k-1}) = S^{(m)}(P_1, \cdots, P_{m+1-k}; \tau_k).$$

Thus $\Gamma_{k+1}^{(m)}$ holds at p and

$$S^{(m)}(P_1, \cdots, P_{m-k}; \tau_{k+1}) = S^{(m)}(P_1, \cdots, P_{m+1-k}; \tau_k)$$

COROLLARY 1. If $\Gamma_1^{(m)}$ holds at p, then $\Gamma_r^{(m)}$ holds there, $r=1, 2, \cdots$, m. Furthermore, if $S_m^{(m-1)} \neq p$, A is m+1 times differentiable at p.

COROLLARY 2. If $\Gamma_1^{(n-1)}$ holds at p, then p is a differentiable point of A if and only if $\lim_{t \to p} S^{(n-1)}(t; \tau_{n-1})$ exists and converges if t tends to p.

COROLLARY 3. If $\Gamma_1^{(n-1)}$ holds at p, and $S_{n-1}^{(n-2)} \neq p$, then p is a differentiable point of A.

COROLLARY 4. If $\Gamma_1^{(m)}$ holds at p, all the conditions $\Gamma_k^{(r)}$, except possibly $\Gamma_{m+1}^{(m)}$, automatically hold at p $(1 \leq k \leq r+1 \leq m+1)$.

Let p be a differentiable point of A. We define the index i of p as in Theorem 2, Corollary 4. Let $P \subset S_{i+1}^{(i)}$, $P \neq p$. Let $S_m^{(m)} = S^{(m)}(P;$ $\tau_m)$, $m=0, 1, \dots, i$. Then the set of $\tau_r^{(m)}$'s is completely determined by

the sequence

 $S_0^{\scriptscriptstyle (0)} \subset S_1^{\scriptscriptstyle (1)} \subset \cdots \subset S_i^{\scriptscriptstyle (i)} = S_{i+1}^{\scriptscriptstyle (i)} \subset S_{i+2}^{\scriptscriptstyle (i+1)} \subset \cdots \subset S_n^{\scriptscriptstyle (n-1)}$.

Its structure is determined by the single index i.

6. Support and intersection. Let p be an interior point of A. Then we call p a point of support (intersection) with respect to an (n-1)-sphere S if a sufficiently small neighbourhood of p is decomposed by p into two one-sided neighbourboods which lie in the same region (in different regions) bounded by S. S is then called a supporting (intersecting) (n-1)-sphere of A at p. Thus S supports A at p if $p \not\subset S$. By definition, the point (n-1)-sphere p always supports A at p.

It is possible for an (n-1)-sphere to have points $\neq p$ in common with every neighbourhood of p on A. In this case, S neither supports nor intersects A at p.

7. Support and intersection properties of $\tau_r^{(n-1)} - \tau_{r+1}^{(n-1)}$. Let p be a differentiable interior point of A. In the following,

$$\tau_r^{(n-1)} - \tau_{r+1}^{(n-1)}$$

will denote the family of those (n-1)-spheres of $\tau_r^{(n-1)}$ which do not belong to $\tau_{r+1}^{(n-1)}$ (cf. Theorem 3, Corollary 4). Our classification of the differentiable points p of A will be based on the index i of p, and on the support and intersection properties of $S_n^{(n-1)}$ and the families $\tau_r^{(n-1)}$ $-\tau_{r+1}^{(n-1)}$, $r=0, 1, \dots, n-1$. We shall omit the superscript (n-1) of $\tau_r^{(n-1)}$ when there is no ambiguity; thus $\tau_r = \tau_r^{(n-1)}$.

THEOREM 5. Every (n-1)-sphere $\neq S_n^{(n-1)}$ either supports or intersects A at p.

Proof. If an (n-1)-sphere S neither supports nor intersects A at p, then $p \subset S$ and there exists a sequence of points $t \to p$, $t \subset A \cap S$, $t \neq p$. Suppose p, P_1, \dots, P_n are independent points on S. Suppose that for some r, $0 \leq r < n-1$, $S = S^{(n-1)}(P_1, \dots, P_{n-r}; \tau_r)$. By Theorem 2, equation (1),

$$S^{(n-1)}(P_1, \cdots, P_{n-r}; \tau_r) \supset S^{(n-2)}(P_1, \cdots, P_{n-r-1}; \tau_r)$$
.

By Theorem 1, $t \not\subset S^{(n-2)}(P_1, \cdots, P_{n-r-1}; \tau_r)$ and again by Theorem 2, equation (2),

 $S = S^{(n-1)}[t; S^{(n-2)}(P_1, \cdots, P_{n-r-1}; \tau_r)] = S^{(n-1)}(P_1, \cdots, P_{n-r-1}, t; \tau_r)$

for each t. Condition $\Gamma_{r+1}^{(n-1)}$ now implies that

$$S = S^{(n-1)}(P_1, \cdots, P_{n-r-1}; \tau_{r+1}).$$

Thus we get, in this way,

$$S = S^{(n-1)}(P_1; \tau_{n-1})$$
.

By Theorem 2, $S \supset S_{n-1}^{(n-2)}$, and by Theorem 1, $t \not\subset S_{n-1}^{(n-2)}$ when the parameter t is close to, but different from, the parameter p. If $S_{n-1}^{(n-2)} \neq p$, Theorem 2, equation 2, implies that $S = S^{(n-1)}[t; S_{n-1}^{(n-2)}] = S^{(n-1)}(t; \tau_{n-1})$, while if $S_{n-1}^{(n-2)} = p$, Theorem 3 implies that $S = S^{(n-1)}(t; \tau_{n-1})$. Applying condition $\Gamma_n^{(n-1)}$, we are led to the conclusion $S = S_n^{(n-1)}$.

THEOREM 6. If $S_n^{(n-1)} = p$, then the (n-1)-spheres of $\tau_{n-1} - \tau_n$ all intersect A at p, or they all support.

Proof. Let S and S' be two distinct (n-1)-spheres of $\tau_{n-1}-\tau_n$. Since $S_n^{(n-1)}=p$, Theorem 2, Corollary 4 implies that $S_{n-1}^{(n-2)}=p$, and Theorem 3 implies that S and S' touch at p. Thus we may assume that $S' \subset (p \cup S)$ and $S \subset (p \cup S')$. Suppose now, for example, that S supports A at p while S' intersects. Then $A \cap \overline{S}'$ is not void and $A \subset (p \cup \overline{S})$. Let $t \to p$ in $A \cap \underline{S}'$. Hence $S^{(n-1)}(t; \tau_{n-1}) \subset (\underline{S}' \cap \overline{S}) \cup p$. Consequently, $S(t; \tau_{n-1})$ can not converge to $S_n^{(n-1)}=p$, as t tends to p. Thus S and S' must both support, or both intersect A at p.

THEOREM 7. If $S_{r+1}^{(r)} \neq p$ while $S_r^{r-1} = p$, then every (n-1)-sphere of $\tau_r - \tau_{r+1}$ supports A at p $(1 \leq r \leq n-1)$.

Proof. Suppose $S_r^{(r-1)} = p$, so that by Theorem 3, the *r*-spheres of $\tau_r^{(r)}$ all touch any (n-1)-sphere of τ_r . Let $S \in \tau_r - \tau_{r+1}$, $S \neq p$. If a sequence of points *t* exists such that $t \subset A \cap \overline{S}, t \to p$, then each $S^{(r)}(t; \tau_r)$ lies in the closure of \overline{S} . Hence $S_{r+1}^{(r)}$ will also lie in the same closed domain. Since $S_{r+1}^{(r)} \in \tau_r^{(r)}$, either $S_{r+1}^{(r)} = p$, or it touches S at p. Since $S \notin \tau_{r+1}, S_{r+1}^{(r)}$ must lie in $p \cup \overline{S}$. Similarly, the existence of a sequence $t' \subset S \cap A, t' \to p$, implies that $S_{r+1}^{(r)} \subset p \cup S$. Thus if S intersects A at $p, S_{r+1}^{(r)} \subset (p \cup \overline{S}) \cap (p \cup S) = p$; that is, $S_{r+1}^{(r)} = p$.

THEOREM 8. All the (n-1)-spheres of $\tau_r - \tau_{r+1}$ support A at p, or they all intersect; $r=0, 1, \dots, n-1$.

Proof. Let S' and S'' be two distinct (n-1)-spheres of τ_r . Suppose, for the moment, that the intersection $S' \cap S''$ is a proper (n-2)-sphere $S^{(n-2)}(P_1, \dots, P_{n-r-1}; \tau_r)$. Suppose, for example, that S' intersects, while S'' supports A at p. Thus $A \cap \underline{S}'$ and $A \cap \overline{S}'$ are not void.

With no loss in generality, we may assume that $A \subset \overline{S}'' \cup p$. If t is close to $p, t \neq p$, Theorem 1 implies that $t \not\subset S^{(n-2)}(P_1, \cdots, P_{n-r-1}; \tau_r)$ and Theorem 2, equation 2, implies that

$$S^{(n-1)}[t; S^{(n-2)}(P_1, \cdots, P_{n-r-1}; \tau_r)] = S^{(n-1)}(P_1, \cdots, P_{n-r-1}, t; \tau_r)$$

If $t \subset A \cap \underline{S}'$, then $S^{(n-1)}(P_1, \cdots, P_{n-r-1}, t; \tau_r)$ lies in the closure of

$$(\underline{S}' \cap \overline{S}'') \cup (\overline{S}' \cap \underline{S}'')$$
 .

Letting t tend to p, we conclude that $S^{(n-1)}(P_1, \dots, P_{n-r-1}; \tau_{r+1})$ lies in the same closed domain. By letting t converge to p through $\overline{S} \cap A$, we obtain symmetrically that $S^{(n-1)}(P_1, \dots, P_{n-r-1}; \tau_{r+1})$ also lies in the closure of

$$(\overline{S'} \cap \overline{S''}) \cup (\underline{S'} \cap \underline{S''})$$

Hence $S^{(n-1)}(P_1, \cdots, P_{n-r-1}; \tau_{r+1})$ lies in the intersection $S' \cup S''$ of these two domains, that is, $S^{(n-1)}(P_1, \cdots, P_{n-r-1}; \tau_{r+1})$ is either S' or S'', in other words, one of the (n-1)-spheres S' and S'' belongs to τ_{r+1} . Thus if S' and S'' belong to $\tau_r - \tau_{r+1}$ and have a proper $S^{(n-2)}$ in common, they both support or both of them intersect.

Suppose now that $S' \cap S''=p$. Theorem 3 implies that $S_r^{(r-1)}=p$. In view of Theorems 6 and 7, there remain to be considered only the cases where r < n-1, and, indeed, when $r \leq n-2$, we have only to consider those cases for which $S_{r+1}^{(r)}=p$.

By Theorem 3, any $S^{(n-1)}$ which touches an $S_r^{(r)}$, but which does not touch an $S_{r+1}^{(r+1)}$ belongs to $\tau_r - \tau_{r+1}$. Hence there exists an (n-1)-sphere S of $\tau_r - \tau_{r+1}$ which intersects S' and S'' respectively in a proper (n-2)sphere. From the above, S and S', and also S and S'' both support or both intersect A at p. Thus S' and S'' both support or both intersect A at p in this case also.

8. Characteristic and classification of the differentiable points. The characteristic $(a_0, a_1, \dots, a_n; i)$ of a differentiable point p of an arc A is defined as follows:

 $a_r=1 \text{ or } 2 \text{ when } r < n; a_n=1, 2, \text{ or } \infty.$ The index $i=1, 2, \cdots, n$. $a_0 + \cdots + a_r$ is even or odd according as every $S_r^{(n-1)}$ of $\tau_r - \tau_{r+1}$ supports or intersects A at $p; r=0, 1, \cdots, n-1$.

 $a_0 + \cdots + a_n$ is even if $S_n^{(n-1)}$ supports, odd if $S_n^{(n-1)}$ intersects, while $a_n = \infty$ if $S_n^{(n-1)}$ neither supports nor intersects A at p.

Finally the characteristic of p has index i if and only if $S_i^{(i-1)} = p$, while $S_{i+1}^{(i)} \neq p$.

Theorem 7, and the convention that $S_n^{(n-1)}$ supports A at p when $S_n^{(n-1)} = p$, lead to the following restriction on the characteristic $(a_0, a_1, \dots, a_n; i)$:

N.D. LANE

$$\sum_{k=0}^{i} a_k \equiv 0 \pmod{2}$$
 .

As a result of this restriction, the number of types of differentiable points corresponding to each value of i < n is $3(2)^{n-1}$, and there are 2^n types when i=n. Thus there are $(3n-1)2^{n-1}$ types altogether.

If we introduce a rectangular Cartesian coordinate system into the conformal *n*-space, examples of each of the $(3n-1)2^{n-1}$ types are given by the curves

(I)
$$x_1 = t^{m_1}, x_2 = t^{m_2}, \cdots, x_n = t^{m_n}$$

in the cases $a_n=1$ or 2, and

(II)
$$x_1 = t^{m_1}, x_2 = t^{m_2}, \cdots, x_n = \begin{cases} t^{m_n} \sin t^{-1}, & \text{if } 0 < |t| \le 1 \\ 0, & \text{, if } t = 0 \end{cases}$$

for the cases in which $a_n = \infty$, all relative to the point t=0. The m_r are positive integers and $m_1 < m_2 < \cdots < m_n$. The different types are determined by the parities of the m_i and by the relative magnitudes of the m_r and $2m_1$. In each of these examples, the $S_1^{(m)}$ touch the x_1 -axis at the origin; $m=1, 2, \cdots, n-1$.

When $m_i < 2m_1 < m_{i+1}$, the point t=0 has a characteristic of the form $(a_0, a_1, \dots, a_n; i)$ where a_n can be 1, 2, or ∞ , and i < n.

When $m_n < 2m_1$, the point t=0 has a characteristic of the form $(a_0, a_1, \dots, a_n; n)$ where a_n is either 1 or 2. The following table lists some of the properties of a differentiable point p having the characteristic $(a_0, a_1, \dots, a_n; i)$:

$$(a_0, a_1, \cdots, a_n; i)$$

Index	a_n	Osculating		Supporting	Restriction	Ecomolo	
		(i-1)-sphere	<i>i</i> -sphere	family	Restriction	Example	
i < n	$a_n = 1$ or 2 $a_n = \infty$	$S_i^{(i-1)} = p$	$S_{i+1}^{(i)} \neq p$	$\tau_i - \tau_{i+1}$	$\sum_{r=0}^{i} a_r \equiv 0 \pmod{2}$	I II	$m_i < 2m_1 < m_{i+1}$
i=n	$a_n = 1$ or 2			$ au_n$		I	$m < 2m_1$

References

1. J. Hjelmslev, Introduction à la théorie des suites monotones, Oversigt Kgl. Danske Vidensk. Selsk. Forh., No. 1 (1914).

2. N.D. Lane and P. Scherk, Differentiable points in the conformal plane, Canad. J.

Math., 5 (1953), 512–518.

N. D. Lane and F. A. Sherk, Differentiable points of arcs in conformal 3-space, Canad.
J. Math., 8 (1956), 105-118.

4. P. Scherk, Über differenzierbare Kurven und Bögen I. Zum Begriff der Characteristik, Časopis Pěst. Mat., **66** (1937), 165–171.

5. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Chelsea, 1947.

HAMILTON COLLEGE, MCMASTER UNIVERSITY.