DIFFERENTIABLE POINTS OF ARCS IN CONFORMAL n-SPACE

N. D. Lane

Introduction. This paper is a generalization to n dimensions of the classification of the differentiable points in the conformal plane [2], and in conformal 3 -space [3]. In the present paper, this classification depends on the intersection and support properties of certain families of tangent ($n-1$)-spheres, and on the nature of the osculating m-spheres at such a point $(m=1,2, \cdots, n-1)$.

The discussion is also related to the classification [4] of the differentiable points of arcs in projective ($n+1$)-space, since conformal n space can be represented on the surface of an n-sphere in projective ($n+1$)-space.

1. Pencils of m-spheres. p, t, P, P_{1}, \cdots, will denote points of conformal n-space and $S^{(m)}$ will denote an m-sphere. When there is no ambiguity, the superscript $(n-1)$ will be omitted in the case of $S^{(n-1)}$; thus an ($n-1$)-sphere $S^{(n-1)}$ will usually be denoted by S alone. Such an ($n-1$)-sphere S decomposes the n-space into two open regions, its interior \underline{S}, and its exterior \bar{S}. If $P \not \subset S$, the interior of S may be defined as the set of all points which do not lie on S and which are not separated from P by S; the exterior of S is then defined as the set of all points which are separated from P by S. An m-sphere through an ($m-1$)-sphere $S^{(m-1)}$ and a point $P \not \subset S^{(m-1)}$ will be denoted by $S^{(m)}[P$; $\left.S^{(m-1)}\right]$. The m-sphere through $(m+2)$-points $P_{0}, P_{1}, \cdots, P_{m+1}$, not all lying on the same ($m-1$)-sphere, will occasionally be denoted by $S^{(m)}\left(P_{0}\right.$, $\left.P_{1}, \cdots, P_{m+1}\right)$. Such a set of points is said to be independent. Most of the following discussion will involve the use of pencils $\pi^{(m)}$ of m-spheres determined by certain incidence and tangency conditions. An ($m-1$)sphere which is common to all the m-spheres of a pencil $\pi^{(m)}$ is called fundamental $(m-1)$-sphere of $\pi^{(m)}$. In the pencil $\pi^{(m)}$ through a fundamental ($m-1$)-sphere $S^{(m-1)}$ there is one and only one m-sphere $S^{(m)}\left(P, \pi^{(m)}\right)$ of $\pi^{(m)}$ through each point P which does not lie on $S^{(m-1)}$. Similarly, in the pencil $\pi^{(m)}$ of all the m-spheres which touch a given m-sphere at a given point Q, there is one and only one m-sphere $S^{(m)}\left(P, \pi^{(m)}\right)$ through each point $P \neq Q$. The fundamental point Q is regarded as a point m-sphere belonging to $\pi^{(m)}$.

Received May 18, 1955. This paper was prepared while the author held a fellowship at the Summer Research Institute of the Canadian Mathematical Congress.
2. Convergence. We call a sequence of points P_{1}, P_{2}, \cdots, convergent to P if to every ($n-1$)-sphere S with $P \subset \underline{S}$, there corresponds a positive integer $N=N(S)$ such that $P_{\lambda} \leq \underline{S}$ if $\lambda>N$. We define the convergence of m-spheres to a point in a similar fasion.

We call a sequence of ($n-1$)-spheres S_{1}, S_{2}, \cdots, convergent to S if to every pair of points $P \subset \underline{S}$ and $Q \subset \bar{S}$ there corresponds a positive integer $N=N(P, Q)$ such that $P<\underline{S}_{\lambda}$ and $Q \subset \bar{S}_{\lambda}$ for every $\lambda>N$.

Finally, a sequence of m-spheres $S_{1}^{(m)}, S_{2}^{(m)}, \cdots$, will be called convergent to an m-sphere $S^{(m)}$ if to every $S^{(n-m-1)}$ which links [5; §77] with $S^{(m)}$ there exists a positive integer $N=N\left(S^{(n-m-1)}\right)$ such that $S_{\lambda}^{(m)}$ links with $S^{(n-m-1)}$ whenever $\lambda>N,(m=1,2, \cdots, n-2)$.
3. Arcs. An arc A is the continuous image of a real interval. The images of distinct points of this parameter interval are considered to be different points of A even though they may coincide in space. The notation $t \neq p$ will indicate that the points t and p do not coincide. If a sequence of points of the parameter interval converges to a point p, we define the corresponding sequence of image points on the arc A to be convergent to the image of p. We shall use the same small italics p, t, \cdots, to denote both the points of the parameter interval and their image points on A. The end- (interior) points of A are the images of the end- (interior) points of the parameter interval. A neighbourhood of p on A is the image of a neighbourhood of the parameter on the parameter interval. If p is an interior point of A, this neighbourhood is decomposed by p into two (open) one-sided neighbourhoods.
4. Differentiability. Let p be a fixed point of an arc A, and let t be a variable point of A. Let $1 \leqq m<n$. If $p, P_{1}, \cdots, P_{m+1}$ do not lie on the same $(m-1)$-sphere, then there exists a unique m-sphere $S^{(m)}$ $\left(P_{1}, \cdots, P_{m+1}, p\right)$ through these points. It is convenient to denote this m-sphere by the symbol $S_{0}^{(m)}=S^{(m)}\left(P_{1}, \cdots, P_{m+1} ; \tau_{0}\right)$; here τ_{0} indicates that this m-sphere passes through p. In the following, the m-sphere $S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right)$ is defined inductively by means of the conditions $\Gamma_{r}^{(m)}$ given below (the τ_{r} in the symbol $S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right)$ indicates that this sphere is a tangent sphere of the arc A at the point p meeting $A(r+1)$-times at p). We call $A(m+1)$-times differentiable at p if the following sequence of conditions is satisfied.
$\Gamma_{r}^{(m)}[r=1,2, \cdots, m+1]:$ If the parameter t is sufficiently close to, but different from, the parameter p, then the m-sphere $S^{(m)}\left(P_{1}, \cdots\right.$, $\left.P_{m+1-r}, t ; \tau_{r-1}\right)$ is uniquely defined. It converges if t tends to p. Thus its limit sphere, which will be denoted by

$$
S_{r}^{(m)}=S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right),
$$

will be independent of the way t converges to p [condition $\Gamma_{m+1}^{(m)}$ reads: $S^{(m)}\left(t ; \tau_{m}\right)$ exists and converges to $\left.S_{m+1}^{(m)}-S^{(m)}\left(\tau_{m+1}\right)\right]$.

It is convenient to use the symbols $S_{0}^{(0)}$ to denote pairs of points P, p, and $S_{1}^{(0)}$ to denote the point pair p, p (or the point p).

We call A once differentiable at p if $\Gamma_{1}^{(1)}$ is satisfied. The point p is called a differentiable point of A if A is n-times differentiable at p.

Let $\tau_{r}^{(m)}$ denote the family of all the $S_{r}^{(m)}$'s. Thus $\tau_{m+1}^{(m)}$ consists only of $S_{m+1}^{(m)}$, the osculating m-sphere of A at p.
5. The structure of the families $\tau_{r}^{(m)}$ of m-spheres $\mathbf{S}_{r}^{(m)}$ through \boldsymbol{p}.

Theorem 1. Suppose A satisfies condition $\Gamma_{1}^{(m)}$ at p. Let $S^{(m-1)}$ be any ($m-1$)-sphere. Then there is a neighbourhood N of p on A such that if $t \in N, t \neq p$, then $t \not \subset S^{(m-1)},(m=1,2, \cdots, n-1)$.

Proof. The assertion is evidently true if $p \not \subset S^{(m-1)}$. Suppose $p \subset S^{(m-1)}$. Choose points P_{1}, \cdots, P_{m} on $S^{(m-1)}$ such that p, P_{1}, \cdots, P_{m} are independent. If the parameter t is sufficiently close to, but different from, the parameter p, condition $\Gamma_{1}^{(m)}$ implies that $S^{(m)}\left(P_{1}, \cdots, P_{m}, t\right.$; $\left.\tau_{0}\right)$ is uniquely defined. Thus $t \not \subset S^{(m-1)}\left(P_{1}, \cdots, P_{m} ; \tau_{0}\right)=S^{(m-1)}$.

Corollary. If A satisfies condition $\Gamma_{1}^{(m)}$ at p, and $S^{(k)}$ is any k sphere, then $t \not \subset S^{(k)}$ when the parameter t is sufficiently close to, but different from, the parameter $p(k=0,1, \cdots, m-1)$.

In particular, this holds when $m=n-1$.
Theorem 2. Let $1<m<n ; 1 \leqq k \leqq m$. If A satisfies $\Gamma_{1}^{(m)}, \cdots$, $\Gamma_{k}^{(m)}$ at p, then $\Gamma_{1}^{(m-1)}, \cdots, \Gamma_{k}^{(m-1)}$ will hold there and

$$
\begin{equation*}
S^{(m-1)}\left(P_{1}, \cdots, P_{m-r} ; \tau_{r}\right)=\prod_{P} S^{(m)}\left(P_{1}, \cdots, P_{m-r}, P ; \tau_{r}\right) \tag{1}
\end{equation*}
$$

Conversely, let A satisfy $\Gamma_{1}^{(m-1)}, \cdots, \Gamma_{k}^{(m-1)}$ at p, and let $S_{m}^{(m-1)} \neq p$ if $k=m$. If $P_{m-r+1} \not \subset S^{(m-1)}\left(P_{1}, \cdots, P_{m-r} ; \tau_{r}\right)$, then $\Gamma_{r}^{(m)}$ will hold for the points P_{1}, \cdots, P_{m-r+1} and

$$
\begin{align*}
& S^{(m)}\left(P_{1}, \cdots, P_{m-r+1} ; \tau_{r}\right)=S^{(m)}\left[P_{m-r+1} ; S^{(m-1)}\left(P_{1}, \cdots, P_{m-r} ; \tau_{r}\right)\right] \tag{2}\\
&(r=1, \cdots, k) .
\end{align*}
$$

Remark. In general, $\Gamma_{1}^{(m-1)}, \cdots, \Gamma_{k}^{(m-1)}$ do not imply $\Gamma_{1}^{(m)}, \cdots, \Gamma_{k}^{(m)}$ (see [3], §7).

Proof. (by induction with respect to k): Suppose $k=1 ; 1<m<n$.

Let $\Gamma_{1}^{(m)}$ hold. If $P_{1}, \cdots, P_{m-1}, P, p$ are independent points, $S^{(m)}\left(P_{1}, \cdots\right.$, $P_{m-1}, P, t ; \tau_{0}$) exists when t is sufficiently close to $p, t \neq p, t \in A$. Thus $P_{1}, \cdots, P_{m-1}, P, t, p$, are also independent, $S^{(m-1)}\left(P_{1}, \cdots, P_{m-1}, t ; \tau_{0}\right)$ exists, and

$$
S^{(m-1)}\left(P_{1}, \cdots, P_{m-1}, t ; \tau_{0}\right)=\prod_{P} S^{(m)}\left(P_{1}, \cdots, P_{m-1}, P, t ; \tau_{0}\right)
$$

If $t \rightarrow p, S^{(m)}\left(P_{1}, \cdots, P_{m-1}, P, t ; \tau_{0}\right)$ converges, and hence $S^{(m-1)}\left(P_{1}, \cdots\right.$, $P_{m-1}, t ; \tau_{0}$) also converges, $\Gamma_{1}^{(m-1)}$ is satisfied, and

$$
S^{(m-1)}\left(P_{1}, \cdots, P_{m-1} ; \tau_{1}\right)=\prod_{P} S^{(m)}\left(P_{1}, \cdots, P_{m-1}, P ; \tau_{1}\right)
$$

Next, suppose that $\Gamma_{1}^{(m-1)}$ is satisfied, and $P_{m} \not \subset S^{(m-1)}\left(P_{1}, \cdots, P_{m-1}\right.$; $\left.\tau_{1}\right)$. Then $P_{m} \not \subset S^{(m-1)}\left(P_{1}, \cdots, P_{m-1}, t ; \tau_{0}\right)$ when t is sufficiently close to $p, t \in A, t \neq p$, and

$$
S^{(m)}\left(P_{1}, \cdots, P_{m}, t ; \tau_{0}\right)=S^{(m)}\left[P_{m}, S^{(m-1)}\left(P_{1}, \cdots, P_{m-1}, t ; \tau_{0}\right)\right]
$$

exists. Hence when $t \rightarrow p, S^{(m)}\left(P_{1}, \cdots, P_{m}, t ; \tau_{0}\right)$ converges, $\Gamma_{1}^{(m)}$ is satisfied relative to the points P_{1}, \cdots, P_{m}, and

$$
S^{(m)}\left(P_{1}, \cdots, P_{m} ; \tau_{1}\right)=S^{(m)}\left[P_{m} ; S^{(m-1)}\left(P_{1}, \cdots, P_{m-1} ; \tau_{1}\right)\right]
$$

Thus Theorem 2 is satisfied when $k=1$.
Assume that Theorem 2 holds when k is replaced by $1,2, \cdots, h$, where $1 \leqq h<k \leqq m$.

Let $\Gamma_{1}^{(m)}, \cdots, \Gamma_{h+1}^{(m)}$ hold. Then $S^{(m)}\left(P_{1}, \cdots, P_{m-h-1}, P, t ; \tau_{h}\right)$ exists when t is sufficiently close to $p, t \neq p, t \in A$. Now $\Gamma_{1}^{(m)}, \cdots, \Gamma_{h}^{(m)}$ imply $\Gamma_{1}^{(m-1)}, \cdots, \Gamma_{h}^{(m-1)}$. If $h=m-1, \quad \Gamma_{h}^{(m-1)}=\Gamma_{m-1}^{(m-1)} \quad$ implies that $S_{h}^{(m-1)}=$ $S^{(m-1)}\left(t ; \tau_{m-1}\right)$ exists, if $t \neq p$. If $h<m-1, \quad \Gamma_{1}^{(m-1)}, \cdots, \Gamma_{h}^{(m-1)}$ imply $\Gamma_{1}^{(m-2)}, \cdots, \Gamma_{h}^{(m-2)}$. Thus $S^{(m-2)}\left(P_{1}, \cdots, P_{m-h-1} ; \tau_{h}\right)$ exists. Furthermore, $I_{1}^{(m-1)}$ and Theorem 1 imply that $t \not \subset S^{(m-2)}\left(P_{1}, \cdots, P_{m-h-1} ; \tau_{h}\right)$. But then Theorem 2, equation (2), with k replaced by h, implies that

$$
S^{(m-1)}\left(P_{1}, \cdots, P_{m-n-1}, t ; \tau_{h}\right)=S^{(m-1)}\left[t ; S^{(m-2)}\left(P_{1}, \cdots, P_{m-n-1} ; \tau_{h}\right)\right]
$$

exists. By Theorem 2, equation (1), with k replaced by h,

$$
S^{(m-1)}\left(P_{1}, \cdots, P_{m-h-1}, t ; \tau_{h}\right)=\prod_{P} S^{(m)}\left(P_{1}, \cdots, P_{m-h-1}, P, t ; \tau_{h}\right)
$$

When $t \rightarrow p, S^{(m)}\left(P_{1}, \cdots, P_{m-h-1}, P, t ; \tau_{n}\right)$ converges, hence $S^{(m-1)}\left(P_{1}, \cdots\right.$, $P_{m-n-1}, t ; \tau_{h}$) also converges, $\Gamma_{n+1}^{(m-1)}$ is satisfied, and

$$
S^{(m-1)}\left(P_{1}, \cdots, P_{m-h-1} ; \tau_{h+1}\right)=\prod_{P} S^{(m)}\left(P_{1}, \cdots, P_{m-h-1}, P ; \tau_{h+1}\right)
$$

Next, suppose $\Gamma_{1}^{(m-1)}, \cdots, \Gamma_{h+1}^{(m-1)}$ hold, and let $P_{m-h} \not \subset S^{(m-1)}\left(P_{1}, \cdots\right.$,
$\left.P_{m-h-1} ; \tau_{h+1}\right)$. Then $P_{m-h} \not \subset S^{(m-1)}\left(P_{1}, \cdots, P_{m-h-1}, t ; \tau_{h}\right)$ if t is sufficiently close to $p, t \in A, t \neq p$. But Theorem 2, with k replaced by h, then implies that

$$
S^{(m)}\left(P_{1}, \cdots, P_{m-h-1}, P_{m-h}, t ; \tau_{h}\right)=S^{(m)}\left[P_{m-h} ; S^{(m-1)}\left(P_{1}, \cdots, P_{m-h-1}, t ; \tau_{h}\right)\right]
$$

exists. Hence when $t \rightarrow p, S^{(m)}\left(P_{1}, \cdots, P_{m-n}, t ; \tau_{n}\right)$ converges, $\Gamma_{n+1}^{(m)}$ is satisfied for P_{1}, \cdots, P_{m-n}, and

$$
S^{(m)}\left(P_{1}, \cdots, P_{m-h} ; \tau_{h+1}\right)=S^{(m)}\left[P_{m-h} ; S^{(m-1)}\left(P_{1}, \cdots, P_{m-h-1} ; \tau_{h+1}\right)\right]
$$

Corollary 1. Let $1 \leqq m<n$. If A is ($m+1$)-times differentiable at p then it is m-times differentiable there.

Corollary 2. If A satisfies $\Gamma_{1}^{(n-1)}, \cdots, \Gamma_{m+1}^{(n-1)}$ at p, then it is $(m+1)$-times differentiable there $(0 \leqq m<n)$.

Corollary 3.

$$
S_{m}^{(m-1)} \subset S_{m+1}^{(m)} \quad(m=1,2, \cdots, n-1)
$$

Proof. By (1),

$$
S^{(m)}\left(t ; \tau_{m}\right) \supset \prod_{P} S^{(m)}\left(P ; \tau_{m}\right)=S_{m}^{(m-1)} .
$$

Hence $S_{m+1}^{(m)} \supset S_{m}^{(m-1)}$.
The last remark implies the following.
Corollary 4. Let $1 \leqq m<n$. If $S_{m+1}^{(m)}=p$, then $S_{r+1}^{(r)}=p(r=0,1$, $\cdots, m-1)$. Thus there is an index i, where $1 \leq i \leq n$ such that $S_{r+1}^{(r)}=p$ for $r=0,1, \cdots, i-1$, but $S_{r+1}^{(r)} \neq p$, if $r \geqq i$.

Corollary 5. Let $1 \leqq m<n ; 1 \leqq r \leqq m$. Then

$$
S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right) \supset S^{(m-1)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r-1}\right) .
$$

Proof.

$$
\begin{aligned}
S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right) & =\lim _{t \rightarrow p} S^{(m)}\left(P_{1}, \cdots, P_{m+1-r}, t ; \tau_{r-1}\right) \\
& >S^{(m-1)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r-1}\right)
\end{aligned}
$$

From Corollary 5, we get the following.
Corollary 6. Let $1 \leqq m<n ; 1 \leqq r \leqq m$. If $P_{m+2-r} \subset S^{(m)}\left(P_{1}, \cdots\right.$, $\left.P_{m+1-r} ; \tau_{r}\right)$ and $P_{m+2-r} \not \subset S^{(m-1)}\left(P_{1}, \cdots . P_{m+1-r} ; \tau_{r-1}\right)$ then

$$
S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right)=S^{(m)}\left(P_{1}, \cdots, P_{m+2-r} ; \tau_{r-1}\right) .
$$

Theorem 3. Let $1 \leqq r \leqq m<n$. Suppose $\Gamma_{1}^{(m)}, \cdots, \Gamma_{r}^{(m)}$ are satisfied at p.
(i) If $S_{r}^{(r-1)} \neq p, \tau_{r}^{(m)}$ consists of all the m-spheres through $S_{r}^{(r-1)}$.
(ii) Let $S_{r}^{(r-1)}=p$. Choose any $S_{r}^{(r)} \in \tau_{r}^{(r)}$. Then $\tau_{r}^{(m)}$ is the set of all the m-spheres which touch $S_{r}^{(r)}$ at p.

Proof of (i). By Theorem 2, equation (1),
$S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right) \supset S^{(m-1)}\left(P_{1}, \cdots, P_{m-r} ; \tau_{r}\right) \supset \cdots \supset S^{(r)}\left(P_{1} ; \tau_{r}\right) \supset S_{r}^{(r-1)}$.
Let $S^{(m)}$ be any m-sphere through $S_{r}^{(r-1)}$. By Theorem 2, if $P_{1} \subset S^{(m)}$, $P_{1} \not \subset S_{r}^{(r-1)}$,

$$
S^{(r)}\left(P_{1} ; S_{r}^{(r-1)}\right)=S^{(r)}\left(P_{1} ; \tau_{r}\right) \subset S^{(m)}
$$

Suppose $S^{(k)}\left(P_{1}, \cdots, P_{k+1-r} ; \tau_{r}\right) \subset S^{(m)},(r \leq k<m)$. Choose $P_{k+2-r} \subset S^{(m)}$, $P_{k+2-r} \not \subset S^{(k)}\left(P_{1}, \cdots, P_{k+1-r} ; \tau_{r}\right)$. Then by Theorem 2,

$$
S^{(k+1)}\left(P_{1}, \cdots, P_{k+2-r} ; \tau_{r}\right)=S^{(k+1)}\left[P_{k+2-r} ; S^{(k)}\left(P_{1}, \cdots, P_{k+1-r} ; \tau_{r}\right)\right] \subset S^{(m)} .
$$

For $k=m-1$, this yields $S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right)=S^{(m)}$. Thus $S^{(m)} \in \tau_{r}^{(m)}$.
Proof of (ii). Suppose $S_{r}^{(r-1)}=p$. As above, we have

$$
S_{r}^{(m)}=S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right) \supset \cdots \supset S^{(r)}\left(P_{1} ; \tau_{r}\right) .
$$

Let $S^{(r)}\left(Q ; \tau_{r}\right)$ be any $S_{r}^{(r)} \in \tau_{r}^{(r)}$. By Theorem 2, equation (1),

$$
S^{(r)}\left(P, t ; \tau_{r-1}\right) \cap S^{(r)}\left(Q, t ; \tau_{r-1}\right) \supset S^{(r-1)}\left(t ; \tau_{r-1}\right)
$$

Let P and Q be variable points and let $S^{(r-1)}$ be a variable ($r-1$)sphere converging to a fixed point. Suppose there is an ($n-1$)-sphere which separates this point from P and Q. Then

$$
\lim \Varangle\left[S^{(r)}\left(P ; S^{(r-1)}\right), S^{(r)}\left(Q ; S^{(r-1)}\right)\right]=0
$$

whether or not the spheres $S^{(r)}\left(P ; S^{(r-1)}\right)$ and $S^{(r)}\left(Q ; S^{(r-1)}\right)$ themselves converge. In particular,

$$
\begin{equation*}
\lim _{t \rightarrow p} \Varangle\left[S^{(r)}\left(P, t ; \tau_{r-1}\right), S^{(r)}\left(Q, t ; \tau_{r-1}\right)\right]=0 . \tag{3}
\end{equation*}
$$

Thus $S^{(r)}\left(P ; \tau_{r}\right)$ touches $S^{(r)}\left(Q ; \tau_{r}\right)$ at p. Furthermore, if $S^{(r)}\left(P ; \tau_{r}\right)$ and $S^{(r)}\left(Q ; \tau_{r}\right)$ have a point $\neq p$ in common, they coincide. Thus $\tau_{r}^{(r)}$ consists of the family of r-spheres which touch $S^{(r)}\left(Q ; \tau_{r}\right)$ at p.

Suppose $r<m$ and an m-sphere $S_{r}^{(m)}=S^{(m)}\left(P_{1}, \cdots, P_{m+1-r} ; \tau_{r}\right)$ of $\tau_{r}^{(m)}$ has a point $R \neq p$ in common with $S_{r}^{(m)}\left(Q ; \tau_{r}\right)$. From the above,
$S^{(r)}\left(R ; \tau_{r}\right)=S^{(r)}\left(Q ; \tau_{r}\right)$. If $R \subset S^{(r)}\left(P_{1} ; \tau_{r}\right)$ we have

$$
S_{r}^{(m)} \supset S^{(r)}\left(P_{1} ; \tau_{r}\right)=S^{(r)}\left(R ; \tau_{r}\right)=S^{(r)}\left(Q ; \tau_{r}\right)
$$

while if $R \not \subset S^{(r)}\left(P_{1} ; \tau_{r}\right)$, we have, by Theorem 2 ,

$$
\begin{aligned}
S_{r}^{(m)} & \supset S^{(r+1)}\left[R ; S^{(r)}\left(P_{1} ; \tau_{r}\right)\right] \\
& =S^{(r+1)}\left(P_{1}, R ; \tau_{r}\right)=S^{(r+1)}\left[P_{1} ; S^{(r)}\left(R ; \tau_{r}\right)\right] \supset S^{(r)}\left(R ; \tau_{r}\right)=S^{(r)}\left(Q ; \tau_{r}\right) .
\end{aligned}
$$

On the other hand, suppose an m-sphere $S^{(m)}$ touches $S_{r}^{(r)}=S^{(r)}\left(Q ; \tau_{r}\right)$ at p. If $S^{(m)} \supset S_{r}^{(r)}$ it follows, as in the proof of part (i), that $S^{(m)}$ $\in \tau_{r}^{(m)}$. Suppose $S^{(m)} \cap S_{r}^{(r)}=p$. Choose an $S^{(r)} \subset S^{(m)}$ such that $S^{(r)}$ touches $S^{(r)}\left(Q ; \tau_{r}\right)$ at p. Thus $S^{(r)} \subset \tau_{r}^{(r)}$. It again follows that $S^{(m)}$ $\in \tau_{r}^{(m)}$

Corollary 1. Let $\Gamma_{1}^{(r-1)}, \cdots, \Gamma_{r}^{(r-1)}$ hold and let $S_{r}^{(r-1)}=p$. Suppose $\lim _{t \rightarrow p} S^{(r)}\left(P, t ; \tau_{r-1}\right)$ exists for a single point $P, P \neq p$. Then $\Gamma_{r}^{(r)}$ holds at $p(1<r<n)$.

Proof. This follows from equation (3).
Corollary 2. There is only one $S_{r}^{(m)}$ of the pencil $\tau_{r}^{(m)}$ which contains $(m+1-r)$ points which do not lie on the same $S_{r}^{(m-1)}$.

Proof. Such an $S_{r}^{(m)}$ can be uniquely constructed as in the proof of (i), Theorem 3.

Corollary 3. If two $S_{r}^{(m)}$'s intersect in an $S^{(m-1)}$ then this $S^{(m-1)}$ $\in \tau_{r}^{(m-1)}$.

Proof. The $S_{r}^{(m)}$'s and hence also $S^{(m-1)}$ contain $S_{r}^{(r-1)}$. In case $S_{r}^{(r-1)}=p$, let $R \subset S^{(m-1)}, R \neq p$. Then each of the $S_{r}^{(m)}$'s and hence also $S^{(m-1)}$ contains $S^{(r)}\left(R ; \tau_{r}\right)$.

Corollary 4.

$$
\tau_{v}^{(m)} \supset \tau_{1}^{(m)} \supset \cdots \supset \tau_{m+1}^{(m)}
$$

Proof. When $k<m$, or when $k=m$ and $S_{m}^{(m-1)} \neq p$, Theorem 3 implies that $\tau_{k}^{(m)}$ is the set of all the m-spheres through $S_{k}^{(k-1)}$. Hence $S_{k+1}^{(m)}$, being the limit of a sequence of such m-spheres, must itself contain $S_{k}^{(k-1)}$, and by Theorem $3, S_{k+1}^{(m)} \in \tau_{k}^{(m)}$. Suppose $k=m$ and $S_{m}^{(m-1)}=p$. By Theorem 3, $\tau_{m}^{(m)}$ is the set of all the m-spheres which touch a given m-sphere $S_{m}^{(m)} \neq p$ of $\tau_{m}^{(m)}$ at p. Hence $S_{m+1}^{(m)}$, being the limit of a sequence of such m-spheres, must itself touch $S_{m}^{(m)}$ at p, and, again by

Theorem 3, $S_{m+1}^{(m)} \in \tau_{m}^{(m)}$.
THEOREM 4. Let $1<m<n ; 1 \leqq k \leqq m$, and suppose that $S_{m}^{(m-1)}$ $\neq p$ if $k=m$. If the conditions $\Gamma_{1}^{(m)}, \cdots, \Gamma_{k}^{(m)}$ hold at p, then $\Gamma_{k+1}^{(m)}$ also holds there.

Proof. By Theorem 2, $\Gamma_{1}^{(m-1)}, \cdots, \Gamma_{k}^{(m-1)}$ hold at p. Hence if p, P_{1}, \cdots, P_{m-k} are independent points $S^{(m-1)}\left(P_{1}, \cdots, P_{m-k} ; \tau_{k}\right)$ is defined. Furthermore, by Theorem 1, we can assume that $t \not \subset S^{(m-1)}\left(P_{1}, \cdots, P_{m-k}\right.$; τ_{k}) and by Theorem 2 again,

$$
S^{(m)}\left(P_{1}, \cdots, P_{m-k}, t ; \tau_{k}\right)=S^{(m)}\left[t ; S^{(m-1)}\left(P_{1}, \cdots, P_{m-k} ; \tau_{k}\right)\right] .
$$

Thus $S^{(m)}\left(P_{1}, \cdots, P_{m-k}, t ; \tau_{k}\right)$ exists when t is close to $p, t \in A, t \neq p$. Choose $P_{m+1-k} \subset S^{(m-1)}\left(P_{1}, \cdots, P_{m-k} ; \tau_{k}\right), P_{m+1-k} \not \subset S^{(m-2)}\left(P_{1}, \cdots, P_{m-k}\right.$; $\left.\tau_{k-1}\right)$. Then Theorem 2 implies that

$$
S^{(m-1)}\left(P_{1}, \cdots, P_{m-k} ; \tau_{k}\right)=S^{(m-1)}\left(P_{1}, \cdots, P_{m+1-k} ; \tau_{k-1}\right)
$$

when $k<m$, or $k=m$ and $S_{m-1}^{(m-2)} \neq p$; if $k=m$ and $S_{m-1}^{(m-2)}=p$, this equation follows from Theorem 3, Corollary 4. Hence

$$
\begin{aligned}
& \lim _{t \rightarrow p} S^{(m)}\left(P_{1}, \cdots, P_{m-k}, t ; \tau_{k}\right)=\lim _{t \rightarrow p} S^{(m)}\left[t, S^{(m-1)}\left(P_{1}, \cdots, P_{m+1-k} ; \tau_{k-1}\right)\right] \\
&=\lim _{t \rightarrow p} S^{(m)}\left(P_{1}, \cdots, P_{m+1-k}, t ; \tau_{k-1}\right)=S^{(m)}\left(P_{1}, \cdots, P_{m+1-k} ; \tau_{k}\right) .
\end{aligned}
$$

Thus $\Gamma_{k+1}^{(m)}$ holds at p and

$$
S^{(m)}\left(P_{1}, \cdots, P_{m-k} ; \tau_{k+1}\right)=S^{(m)}\left(P_{1}, \cdots, P_{m+1-k} ; \tau_{k}\right) .
$$

Corollary 1. If $\Gamma_{1}^{(m)}$ holds at p, then $\Gamma_{r}^{(m)}$ holds there, $r=1,2$, \cdots, m. Furthermore, if $S_{m}^{(m-1)} \neq p, A$ is $m+1$ times differentiable at p.

Corollary 2. If $\Gamma_{1}^{(n-1)}$ holds at p, then p is a differentiable point of A if and only if $\lim _{t \rightarrow p} S^{(n-1)}\left(t ; \tau_{n-1}\right)$ exists and converges if t tends to p.

Corollary 3. If $\Gamma_{1}^{(n-1)}$ holds at p, and $S_{n-1}^{(n-2)} \neq p$, then p is a differentiable point of A.

Corollary 4. If $\Gamma_{1}^{(m)}$ holds at p, all the conditions $\Gamma_{k}^{(r)}$, except possibly $\Gamma_{m+1}^{(m)}$, automatically hold at $p(1 \leqq k \leqq r+1 \leqq m+1)$.

Let p be a differentiable point of A. We define the index i of p as in Theorem 2, Corollary 4. Let $P \subset S_{i+1}^{(i)}, P \neq p$. Let $S_{m}^{(m)}=S^{(m)}(P$; $\left.\tau_{m}\right), m=0,1, \cdots, i$. Then the set of $\tau_{r}^{(m)}$'s is completely determined by
the sequence

$$
S_{0}^{(0)} \subset S_{1}^{(1)} \subset \cdots \subset S_{i}^{(i)}=S_{i+1}^{(i)} \subset S_{i+2}^{(i+1)} \subset \cdots \subset S_{n}^{(n-1)} .
$$

Its structure is determined by the single index i.
6. Support and intersection. Let p be an interior point of A. Then we call p a point of support (intersection) with respect to an ($n-1$)-sphere S if a sufficiently small neighbourhood of p is decomposed by p into two one-sided neighbourboods which lie in the same region (in different regions) bounded by $S . S$ is then called a supporting (intersecting) ($n-1$)-sphere of A at p. Thus S supports A at p if $p \not \subset S$. By definition, the point $(n-1)$-sphere p always supports A at p.

It is possible for an ($n-1$)-sphere to have points $\neq p$ in common with every neighbourhood of p on A. In this case, S neither supports nor intersects A at p.
7. Support and intersection properties of $\tau_{r}^{(n-1)}-\tau_{r+1}^{(n-1)}$. Let p be a differentiable interior point of A. In the following,

$$
\tau_{r}^{(n-1)}-\tau_{r+1}^{(n-1)}
$$

will denote the family of those $(n-1)$-spheres of $\tau_{r}^{(n-1)}$ which do not belong to $\tau_{r+1}^{(n-1)}$ (cf. Theorem 3, Corollary 4). Our classification of the differentiable points p of A will be based on the index i of p, and on the support and intersection properties of $S_{n}^{(n-1)}$ and the families $\tau_{r}^{(n-1)}$ $-\tau_{r+1}^{(n-1)}, r=0,1, \cdots, n-1$. We shall omit the superscript $(n-1)$ of $\tau_{r}^{(n-1)}$ when there is no ambiguity; thus $\tau_{r}=\tau_{r}^{(n-1)}$.

Theorem 5. Every ($n-1$)-sphere $\neq S_{n}^{(n-1)}$ either supports or intersects A at p.

Proof. If an ($n-1$)-sphere S neither supports nor intersects A at p, then $p \subset S$ and there exists a sequence of points $t \rightarrow p, t \subset A \cap S$, $t \neq p$. Suppose p, P_{1}, \cdots, P_{n} are independent points on S. Suppose that for some $r, 0 \leqq r<n-1, S=S^{(n-1)}\left(P_{1}, \cdots, P_{n-r} ; \tau_{r}\right)$. By Theorem 2 , equation (1),

$$
S^{(n-1)}\left(P_{1}, \cdots, P_{n-r} ; \tau_{r}\right) \supset S^{(n-2)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r}\right) .
$$

By Theorem 1, $t \not \subset S^{(n-2)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r}\right)$ and again by Theorem 2, equation (2),

$$
S=S^{(n-1)}\left[t ; S^{(n-2)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r}\right)\right]=S^{(n-1)}\left(P_{1}, \cdots, P_{n-r-1}, t ; \tau_{r}\right)
$$

for each t. Condition $\Gamma_{r+1}^{(n-1)}$ now implies that

$$
S=S^{(n-1)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r+1}\right)
$$

Thus we get, in this way,

$$
S=S^{(n-1)}\left(P_{1} ; \tau_{n-1}\right)
$$

By Theorem 2, $S \supset S_{n-1}^{(n-2)}$, and by Theorem 1, $t \not \subset S_{n-1}^{(n-2)}$ when the parameter t is close to, but different from, the parameter p. If $S_{n-1}^{(n-2)} \neq p$, Theorem 2, equation 2, implies that $S=S^{(n-1)}\left[t ; S_{n-1}^{(n-2)}\right]=S^{(n-1)}\left(t ; \tau_{n-1}\right)$, while if $S_{n-1}^{(n-2)}=p$, Theorem 3 implies that $S=S^{(n-1)}\left(t ; \tau_{n-1}\right)$. Applying condition $\Gamma_{n}^{(n-1)}$, we are led to the conclusion $S=S_{n}^{(n-1)}$.

THEOREM 6. If $S_{n}^{(n-1)}=p$, then the $(n-1)$-spheres of $\tau_{n-1}-\tau_{n}$ all intersect A at p, or they all support.

Proof. Let S and S^{\prime} be two distinct $(n-1)$-spheres of $\tau_{n-1}-\tau_{n}$. Since $S_{n}^{(n-1)}=p$, Theorem 2, Corollary 4 implies that $S_{n-1}^{(n-2)}=p$, and Theorem 3 implies that S and S^{\prime} touch at p. Thus we may assume that $S^{\prime} \subset(p \cup S)$ and $S \subset\left(p \cup S^{\prime}\right)$. Suppose now, for example, that S supports A at p while S^{\prime} intersects. Then $A \cap \bar{S}^{\prime}$ is not void and $A \subset(p \cup \bar{S})$. Let $t \rightarrow p$ in $A \cap \underline{S}^{\prime}$. Hence $S^{(n-1)}\left(t ; \tau_{n-1}\right) \subset\left(\underline{S}^{\prime} \cap \overline{S^{\prime}}\right) \cup p$. Consequently, $S\left(t ; \tau_{n-1}\right)$ can not converge to $S_{n}^{(n-1)}=p$, as t tends to p. Thus S and S^{\prime} must both support, or both intersect A at p.

THEOREM 7. If $S_{r+1}^{(r)} \neq p$ while $S_{r}^{r-1}=p$, then every $(n-1)$-sphere of $\tau_{r}-\tau_{r+1}$ supports A at $p(1 \leqq r \leqq n-1)$.

Proof. Suppose $S_{r}^{(r-1)}=p$, so that by Theorem 3 , the r-spheres of $\tau_{r}^{(r)}$ all touch any $(n-1)$-sphere of τ_{r}. Let $S \in \tau_{r}-\tau_{r+1}, S \neq p$. If a sequence of points t exists such that $t \subset A \cap \overline{S,} t \rightarrow p$, then each $S^{(r)}\left(t ; \tau_{r}\right)$ lies in the closure of \bar{S}. Hence $S_{r+1}^{(r)}$ will also lie in the same closed domain. Since $S_{r+1}^{(r)} \in \tau_{r}^{(r)}$, either $S_{r+1}^{(r)}=p$, or it touches S at p. Since $S \notin \tau_{r+1}, S_{r+1}^{(r)}$ must lie in $p \cup \bar{S}$. Similarly, the existence of a sequence $t^{\prime} \subset S \cap A, t^{\prime} \rightarrow p$, implies that $S_{r+1}^{(r)} \subset p \bigcup S$. Thus if S inter$\operatorname{sects} A$ at $p, S_{r+1}^{(r)} \subset(p \bigcup \bar{S}) \cap(p \cup \underline{S})=p$; that is, $S_{r+1}^{(r)}=p$.

ThEOREM 8. All the $(n-1)$-spheres of $\tau_{r}-\tau_{r+1}$ support A at p, or they all intersect; $r=0,1, \cdots, n-1$.

Proof. Let S^{\prime} and $S^{\prime \prime}$ be two distinct $(n-1)$-spheres of τ_{r}. Suppose, for the moment, that the intersection $S^{\prime} \cap S^{\prime \prime}$ is a proper ($n-2$)sphere $S^{(n-2)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r}\right)$. Suppose, for example, that S^{\prime} intersects, while $S^{\prime \prime}$ supports A at p. Thus $A \cap \underline{S}^{\prime}$ and $A \cap \overline{S^{\prime}}$ are not void.

With no loss in generality, we may assume that $A \subset \overline{S^{\prime \prime}} \cup p$. If t is close to $p, t \neq p$, Theorem 1 implies that $t \not \subset S^{(n-2)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r}\right)$ and Theorem 2, equation 2, implies that

$$
S^{(n-1)}\left[t ; S^{(n-2)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r}\right)\right]=S^{(n-1)}\left(P_{1}, \cdots, P_{n-r-1}, t ; \tau_{r}\right)
$$

If $t \subset A \cap \underline{S}^{\prime}$, then $S^{(n-1)}\left(P_{1}, \cdots, P_{n-r-1}, t ; \tau_{r}\right)$ lies in the closure of

$$
\left(\underline{S}^{\prime} \cap \overline{S^{\prime \prime}}\right) \cup\left(\bar{S}^{\prime} \cap \underline{S}^{\prime \prime}\right)
$$

Letting t tend to p, we conclude that $S^{(n-1)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r+1}\right)$ lies in the same closed domain. By letting t converge to p through $\bar{S}^{\prime} \cap A$, we obtain symmetrically that $S^{(n-1)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r+1}\right)$ also lies in the closure of

$$
\left(\overline{S^{\prime}} \cap \overline{S^{\prime \prime}}\right) \cup\left(\underline{S}^{\prime} \cap \underline{S}^{\prime \prime}\right)
$$

Hence $S^{(n-1)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r+1}\right)$ lies in the intersection $S^{\prime} \cup S^{\prime \prime}$ of these two domains, that is, $S^{(n-1)}\left(P_{1}, \cdots, P_{n-r-1} ; \tau_{r+1}\right)$ is either S^{\prime} or $S^{\prime \prime}$, in other words, one of the $(n-1)$-spheres S^{\prime} and $S^{\prime \prime}$ belongs to τ_{r+1}. Thus if S^{\prime} and $S^{\prime \prime}$ belong to $\tau_{r}-\tau_{r+1}$ and have a proper $S^{(n-2)}$ in common, they both support or both of them intersect.

Suppose now that $S^{\prime} \cap S^{\prime \prime}=p$. Theorem 3 implies that $S_{r}^{(r-1)}=p$. In view of Theorems 6 and 7 , there remain to be considered only the cases where $r<n-1$, and, indeed, when $r \leqq n-2$, we have only to consider those cases for which $S_{r+1}^{(r)}=p$.

By Theorem 3, any $S^{(n-1)}$ which touches an $S_{r}^{(r)}$, but which does not touch an $S_{r+1}^{(r+1)}$ belongs to $\tau_{r}-\tau_{r+1}$. Hence there exists an $(n-1)$-sphere S of $\tau_{r}-\tau_{r+1}$ which intersects S^{\prime} and $S^{\prime \prime}$ respectively in a proper ($n-2$)sphere. From the above, S and S^{\prime}, and also S and $S^{\prime \prime}$ both support or both intersect A at p. Thus S^{\prime} and $S^{\prime \prime}$ both support or both intersect A at p in this case also.
8. Characteristic and classification of the differentiable points. The characteristic ($a_{0}, a_{1}, \cdots, a_{n} ; i$) of a differentiable point p of an $\operatorname{arc} A$ is defined as follows:
$a_{r}=1$ or 2 when $r<n ; a_{n}=1,2$, or ∞. The index $i=1,2, \cdots, n$.
$a_{0}+\cdots+a_{r}$ is even or odd according as every $S_{r}^{(n-1)}$ of $\tau_{r}-\tau_{r+1}$ supports or intersects A at $p ; r=0,1, \cdots, n-1$.
$a_{0}+\cdots+a_{n}$ is even if $S_{n}^{(n-1)}$ supports, odd if $S_{n}^{(n-1)}$ intersects, while $\alpha_{n}=\infty$ if $S_{n}^{(n-1)}$ neither supports nor intersects A at p.

Finally the characteristic of p has index i if and only if $S_{i}^{(i-1)}=p$, while $S_{i+1}^{(i)} \neq p$.

Theorem 7, and the convention that $S_{n}^{(n-1)}$ supports A at p when $S_{n}^{(n-1)}=p$, lead to the following restriction on the characteristic $\left(a_{0}, a_{1}\right.$, $\left.\cdots, a_{n} ; i\right)$:

$$
\sum_{k=0}^{i} a_{k} \equiv 0(\bmod 2)
$$

As a result of this restriction, the number of types of differentiable points corresponding to each value of $i<n$ is $3(2)^{n-1}$, and there are 2^{n} types when $i=n$. Thus there are $(3 n-1) 2^{n-1}$ types altogether.

If we introduce a rectangular Cartesian coordinate system into the conformal n-space, examples of each of the $(3 n-1) 2^{n-1}$ types are given by the curves

$$
\begin{equation*}
x_{1}=t^{m_{1}}, x_{2}=t^{m_{2}}, \cdots, x_{n}=t^{m_{n}} \tag{I}
\end{equation*}
$$

in the cases $a_{n}=1$ or 2 , and

$$
x_{1}=t^{m_{1}}, x_{2}=t^{m_{2}}, \cdots, x_{n}= \begin{cases}t^{m_{n}} \sin t^{-1}, & \text { if } 0<|t| \leqq 1 \tag{II}\\ 0 & \text { if } t=0\end{cases}
$$

for the cases in which $a_{n}=\infty$, all relative to the point $t=0$. The m_{r} are positive integers and $m_{1}<m_{2}<\cdots<m_{n}$. The different types are determined by the parities of the m_{i} and by the relative magnitudes of the m_{r} and $2 m_{1}$. In each of these examples, the $S_{1}^{(m)}$ touch the x_{1}-axis at the origin; $m=1,2, \cdots, n-1$.

When $m_{i}<2 m_{1}<m_{i+1}$, the point $t=0$ has a characteristic of the form $\left(a_{0}, a_{1}, \cdots, a_{n} ; i\right)$ where a_{n} can be 1,2 , or ∞, and $i<n$.

When $m_{n}<2 m_{1}$, the point $t=0$ has a characteristic of the form $\left(a_{0}, a_{1}, \cdots, a_{n} ; n\right)$ where a_{n} is either 1 or 2 . The following table lists some of the properties of a differentiable point p having the characteristic $\left(a_{0}, a_{1}, \cdots, a_{n} ; i\right)$:

$$
\left(a_{0}, a_{1}, \cdots, a_{n} ; i\right)
$$

References

1. J. Hjelmslev, Introduction à la théorie des suites monotones, Oversigt Kgl. Danske Vidensk. Selsk. Forh., No. 1 (1914).
2. N. D. Lane and P. Scherk, Differentiable points in the conformal plane, Canad. J.

Math., 5 (1953), 512-518.
3. N. D. Lane and F. A. Sherk, Differentiable points of arcs in conformal 3-space, Canad.
J. Math., 8 (1956), 105-118.
4. P. Scherk, Über differenzierbare Kurven und Bögen I. Zum Begriff der Characteris$t i k$, Časopis Pěst. Mat., 66 (1937), 165-171.
5. H. Seifert and W. Threlfall, Lehrbuch der Topologie, Chelsea, 1947.

Hamilton College,
McMaster University.

