DIFFERENTIABLE POINTS OF ARCS
IN CONFORMAL #-SPACE

N. D. LANE

Introduction. This paper is a generalization to » dimensions of the
classification of the differentiable points in the conformal plane [2], and
in conformal 3-space [3]. In the present paper, this classification de-
pends on the intersection and support properties of certain families of
tangent (n—1)-spheres, and on the nature of the osculating m-spheres
at such a point (m=1,2, -+, n—1).

The discussion is also related to the classification [4] of the dif-
ferentiable points of arcs in projective (n+ 1)-space, since conformal n-
space can be represented on the surface of an =-sphere in projective
(n+ 1)-space.

1. DPencils of m-spheres. p, ¢, P, P, ---, will denote points of con-
formal n-space and S™ will denote an m-sphere. When there is no
ambiguity, the superscript (n—1) will be omitted in the case of S®-V;
thus an (n—1)-sphere S™-" will usually be denoted by S alone. Such
an (n—1)-sphere S decomposes the mn-space into two open regions, its

interior S, and its exterior S. If P S, the interior of S may be de-
fined as the set of all points which do not lie on S and which are not
separated from P by S; the exterior of S is then defined as the set
of all points which are separated from P by S. An m-sphere through
an (m—1)-sphere S™-" and a point P ¢ S™-V will be denoted by S™[P;
Stm-v], The m-sphere through (m + 2)-points P,, P,, -+, P,.., not all
lying on the same (m —1)-sphere, will occasionally be denoted by S™(P,,
P, -+, P,.1). Such a set of points is said to be independent. Most of
the following discussion will involve the use of pencils 7™ of m-spheres
determined by certain incidence and tangency conditions. An (m—1)-
sphere which is common to all the m-spheres of a pencil 7™ is called
Sundamental (m—1)-sphere of ™. In the pencil =™ through a funda-
mental (m —1)-sphere S™~" there is one and only one m-sphere S™(P, =‘™)
of 7™ through each point P which does not lie on S™-V, Similarly,
in the pencil =™ of all the m-spheres which touch a given m-sphere at
a given point @, there is one and only one m-sphere S™(P, =™) through
each point P£ Q. The fundamental point @ is regarded as a point
m-sphere belonging to =™,
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2. Convergence. We call a sequence of points P, P,, ---, con-
vergent to P if to every (n—1)-sphere S with P S, there corresponds
a positive integer N=N(S) such that P, S if 2> N. We define the
convergence of m-spheres to a point in a similar fasion.

We call a sequence of (rn—1)-spheres S, S,, ---, convergent to S if
to every pair of points P S and Q< S there corresponds a positive
integer N=N(P, Q) such that P« S, and Q C S, for every 1> N.

Finally, a sequence of m-spheres S™, S{™, ... | will be called con-
vergent to an m-sphere S™ if to every S”-"» which links [5; §77]

with S™ there exists a positive integer N=N(S"-"-D) such that S{™
links with S®-"-" whenever 2 >N, (m=1, 2, ---, n—2).

3. Arcs. An arc A is the continuous image of a real interval.
The images of distinct points of this parameter interval are considered
to be different points of 4 even though they may coincide in space.
The notation ¢~ p will indicate that the points ¢ and p do not coincide.
If a sequence of points of the parameter interval converges to a point
p, we define the corresponding sequence of image points on the arc A
to be convergent to the image of p. We shall use the same small
italics p, ¢, -+, to denote both the points of the parameter interval
and their image points on A. The end- (interior) points of A are the
images of the end- (interior) points of the parameter interval. A
netghbourhood of p on A is the image of a neighbourhood of the para-
meter on the parameter interval. If p is an interior point of A, this
neighbourhood is decomposed by p into two (open) one-sided neighbour-
hoods.

4. Differentiability. Let p be a fixed point of an arc A4, and let
t be a variable point of A. Let 1<m <n. If p,P,, +---,P,., do not
lie on the same (m—1)-sphere, then there exists a unique m-sphere S™
(P, +++, Pns1, ) through these points. It is convenient to denote this
m-sphere by the symbol Si™=S"™(P,, +++, P,.,; 7,); here 7, indicates
that this m-sphere passes through p. In the following, the m-sphere
S™ (P, «++, Ppyi-r; 7,) is defined inductively by means of the conditions
I'm given below (the z, in the symbol S™(P,, ---, P,,,,-,; 7,) indicates
that this sphere is a tangent sphere of the are A at the point p meet-
ing A (r+1)-times at p). We call A (m+1)-times differentiable at p if
the following sequence of conditions is satisfied.

I'™[p=1,2, -+, m+1]: If the parameter ¢ is sufficiently close to,
but different from, the parameter p, then the m-sphere S™ (P, ---,
Poii-r, t; 7,1) is uniquely defined. It converges if ¢ tends to p. Thus
its limit sphere, which will be denoted by
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Sf‘m)zs(m)(Plv ctty Pm+1—r ; Tr)y

will be independent of the way ¢ converges to p [condition /'™, reads:
S™(t; r,,) exists and converges to ST% —S™(z,.1)]-

It is convenient to use the symbols S{” to denote pairs of points
P, p, and S® to denote the point pair p, p (or the point p).

We call A once differentiable at p if ['{" is satisfied. The point p
is called a differentiable point of A if A is n-times differentiable at p.

Let (™ denote the family of all the S{™’s. Thus ™, consists only
of S, the osculating m-sphere of A at p.

5. The structure of the families 7™ of m-spheres S{™ through p.

THEOREM 1. Suppose A satisfies condition '™ at p. Let S™V be
any (m—1)-sphere. Then there is a mneighbourhood N of p on A such
that if te N, t%p, then t & S™Y, (m=1, 2, -+, n—1).

Proof. The assertion is evidently true if p g S™ . Suppose
p < S™bY  Choose points Py, +++, P, on S guch that p, Py, --+, P,
are independent. If the parameter ¢ is sufficiently close to, but different
from, the parameter p, condition /™ implies that S™ (P, .-+, P,, t;
7,) is uniquely defined. Thus ¢ S™™V (Py, =+, P,; 7,)=S™"".

COROLLARY. If A satisfies condition '™ at p, and S® s any k-
sphere, then t - S® when the parameter t s sufficiently close to, but
different from, the parameter p (k=0,1,---, m—1).

In particular, this holds when m=n—1.

THEOREM 2. Let 1<m<n; 1<k<m. If A satisfies I'™,.--,
'™ at p, then '™V, oo TPV ywill hold there and
(1) S(m—l)(Pl’ ctcy Pm—r; Tr)=HS(m)(Plr cty, Pm—r’ P; Tr) .
P
Conversely, let A satisfy '™V, ..., '™ at p, and let S™V=£yp if

k=m. If Pp_,.; & S™ (P, +++, P,_,;7,), then I'™ will hold for the
points P,, -+-, P, _,.;. and

(2) S(M)(Pl’ ctty, Pm~7'+1; 77‘)=S(m)[Pm—r+1; S(m-—l)(P“ cecy, Pm-r; Tr)]
(r=1,---, k).

REMARK. In general, /'™, ... ["™-D do not imply [{™, «.., '™

(see [3], §87).

Proof. (by induction with respect to k): Suppose k=1; 1 <m < n.
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Let I'™ hold. If P, .--, P,,, P, p are independent points, S™(P,,---,
P,_., P, t; r,) exists when ¢ is sufficiently close to p,f % p, te A. Thus
pP,.--, P, P, t, p, are also independent, S (P, -+, P,,_, t; 7,) €ex-
ists, and

S(m—l)(Ply ctcy Pm—-ly t; T0)=H S(M)(Plv cty Pm—ly P7 t; TU)~
P

If ¢t »p, S™(Py, +++, Pn_1, P, t; ;) converges, and hence S™-D(P,, ---,
P, _., t; 7)) also converges, I'™~" is satisfied, and

S<m_l)(P1’ cee, Pooys TI)ZH S(M)(Plr <o, P, P; TI) .
P

Next, suppose that "™~V is satisfied, and P, & S™ (P, -+, P,_i;
;). Then P, S™ P, -, P,_., t; r,) when t is sufficiently close to
p, te A, t*p, and

SE(Py, e ooy Py, t; 7)) =S"[P,, S™ (P, «++, Py_1, t; )]

exists. Hence when ¢—p, S™(P,, ---, P,, t; z,) converges, [I'™ is
satisfied relative to the points P, ---, P,,, and

S(Py, =y P 1) =S8S"™[Py; S" (P, +++ ) Ppoy; )] .

Thus Theorem 2 is satisfled when k=1.

Assume that Theorem 2 holds when %k is replaced by 1,2,---, 2%
where 1 <A<k m.

Let '™, ««-, I'" hold. Then S™(P,, -+, P,_,_1, P, t; 7,) exists
when ¢ is sufficiently close to p, t£p, te A. Now /'™, ... ['™ imply
re=n oo rm-v If h=m—1, '™ V=717 implies that S"-V=
S™=Y(¢t; r,_,) exists, if tz£p. If A<m—1, '™V «.c.  ['™D imply
ree=» o0 [m=n Thus S™-(P,, «+-, P,_,_1; 7,) exists. Furthermore,
'™ and Theorem 1 imply that ¢t S™2@P,, ---, P,_,-1; 7,). But
then Theorem 2, equation (2), with k£ replaced by 7%, implies that

’

S(m-l)(P]’ ctty Pm—h-—h t; TIL)ZS(m—l)[t; S(mHZ)(PI’ ctcy Pm—h—l; le)]
exists. By Theorem 2, equation (1), with & replaced by %,

S(m—l)(Pl, cty Pm~n—1y t; T/L):-H S(M)(Ph ctty Pm—n—-lv Pr t’ Th)'
P

When t— p, S™(P,, ++<, Pp_,-1, P, t; 7,) converges, hence S™- (P, «--,
P, _,-1, t; 7,) also converges, I’V is satisfied, and

S(m_l)(PD ) Pm-h—l; Th+1)=1;[ S”’”(Pl, M) Pm—-h,—l, P; Z'h+1) .

Next, suppose '™V, .. '™V hold, and let P,,_, & S™(P,, +--,



DIFFERENTIABLE POINTS OF ARCS 305

Pt} Ths1). Then Py, & S™ PPy, <+« , Pyy-y, t;7,) if ¢ is sufficiently
close to p, te A, t%~p. But Theorem 2, with & replaced by 4, then
implies that

S(M)(Pl, ) Pm—h-—lv Pm—hy t; Th):S(M)[Pm—h; S(m_l)(Ply ctty Pm-—h—ly t; Th)]

exists. Hence when ¢—p, S™(P,, +++, Py, t; 7,) converges, 177 is
satisfied for Py, -+-, P,_,, and

S(m)(Ply M) Pm—-h; Tn+1):S(m)[Pm—n: S(m~l)(P1y ) Pm—n—l; Tn+1)] .

COROLLARY 1. Let 1<m<n. If A is (m+1)-times differentiable
at p then it s m-times differentiable there.

COROLLARY 2. If A satisfies '™, ... I'*7P at p, then it s
(m+1)-times differentiable there (0 < m <n).

COROLLARY 3.
S's:tn—l) C Sg)??l (m:17 2y M) n..._]_).
Proof. By (1),
S™(E; 7) D [LS™P; 7) =S,
-
Henece S&, > Sm-b,
The last remark implies the following.

COROLLARY 4. Let 1<m <n. If Si0=p, then S=p (r=0,1,

m+1"
-, m—1). Thus there is an index i, where 1 <1 <n such that S =p
Sfor r=0,1, -+, 4—1, but S\~ p, of r=>1.

COROLLARY 5. Let 1<m<n; 1<r<m. Then
S™(Py,y «+ ¢y Pryior; T) DS™ (P, oo+, Prvioy; Toe1) -
Proof.
S™(Py, «+, Ppii—y; T’)leif,} ST(Py, +vey Prsiopy t5 Tror)
D8™ Py vy Pogrer; 7o) -

From Corollary 5, we get the following.

COROLLARY 6. Let 1<m<n; 1< r<m. If Py, S™(P,, +--
Pm+1~r; Tr) and Pm+2-1‘ ¢S(m—l)(P1’ ctt . Pm+1—r; Tr-—l) then
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S(m)(Ply M) Pm+l—7'; Tv’)zs(m)(Ph ) Pm»l-z—r; Tr—l) .

THEOREM 3. Let 1<r<m<_n. Suppose [™, ... ["™ qre
satisfied at p.

(i) If SIr-Y=£p, £f™ consists of all the m-spheres through S&-.
(i) Let S"-P=p. Choose any S ez, Then ™ is the set of
all the m-spheres which touch S at p.
Proof of (i). By Theorem 2, equation (1),
S(m)(Plr ctty Pm+1—r; Tr)) S(m—l)(P“ M) Pm—r; Tr)) st D S(T)(Pl; TT)D S:{T—U'

Let S™ be any m-sphere through S-V. By Theorem 2, if P, S™,
P o S0,

S(T)(Pl; Sﬁ?‘-l))ZS(v')(Pl; T?') C’S(m).

Suppose SE(Py, ««+, Pyiy—p; 7,) CS™, (r <k <m). Choose Py, S™,
Pysey &SPy, oo+, Pyyi—y; 7). Then by Theorem 2,

S(k+1)(P1y ctt Pk+z—-r; TT)ZS(k+1)[Pk+2—r; S(k)(Ply ctcy Pk+1—r; TT)] CS(m)‘
For k=m—1, this yields S™P,, +++, Pni1-r; 7,)=8™. Thus S™ e ™,

Proof of (ii). Suppose SI"-V=p. As above, we have
S =8Py, «++ , Ppir—p; 7,) D =+ DSO(Py; 1)
Let S™(Q; z,) be any S e ™. By Theorem 2, equation (1),
SOP, t; v,-1) N\ ST(Q, t; 7,-1) D ST=V(E; 7,-1)-

Let P and @ be variable points and let S“-" be a variable (r—1)-
sphere converging to a fixed point. Suppose there is an (n—1)-sphere
which separates this point from P and . Then

lim < [S™(P; ST-Y), S™(Q; S"=)]=0

whether or not the spheres S™(P; S™-Y) and S™(Q; S“~V) themselves
converge. In particular,

(3) lim { [S(T)(P, t; Tr—l)y S(T)(Q’ t; Tr—l)]zo J

Thus S™(P; r,) touches S™(Q; r,) at p. Furthermore, if S“(P;z,)
and S™(Q; z,) have a point % p in common, they coincide. Thus "
consists of the family of #-spheres which touch S (Q; z,) at p.

Suppose * < m and an m-sphere S™=8™(P,, +++, P,,i-,; 7,) of z{™
has a point R#%p in common with S™(Q;z,). From the above,
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SM(R; 7,)=8"(Q; 7,). If R S™(P;;r,) we have
S > 8Py ©,) =S(R; ©,)=8"(Q; 7,)
while if R ¢ S™(P;; ), we have, by Theorem 2,

S D STHPLR; SO(Py; 7))
=SBy, R; 1) =S8 I[Py SV(R; 7,)] D STAR; 7,)=8"(Q; =) -

On the other hand, suppose an m-sphere S™ touches S¢’=S"(Q; ,)
at p. If S™ > 8™ it follows, as in the proof of part (i), that S™
er™, Suppose S™ N S»=p. Choose an S C S such that S
touches S(Q; z,) at p. Thus S C ™. 1t again follows that S

e 2_;m)

COROLLARY 1. Let IV, ««« , I’V hold and let SY=p. Suppose
lim S™(P, t; r,_,) exists for a single point P, P~ p. Then I'" holds at
t—p

p (1 <r <n).

Proof. This follows from equation (3).

COROLLARY 2. There is only one S™ of the pencil =™ which con-
tains (m+1—r) points which do not lie on the same SV,

Proof. Such an S™ can be uniquely constructed as in the proof of
(i), Theorem 3.

COROLLARY 3. If two S™’s intersect in an S™V then this S™V
€ r{m-b,

Proof. The S™’s and hence also S™-" contain S¢". In case
Sir-V=p, let RCS™ Y, R=%p. Then each of the S{™’s and hence also
S™-1 contains S™(R; 7,).

COROLLARY 4.
D™ D e DT

Proof. When k<m, or when k=m and S™V=£p, Theorem 3
implies that z{™ is the set of all the m-spheres through S{*-“. Hence
S, being the limit of a sequence of such m-spheres, must itself con-
tain S{*-Y, and by Theorem 3, S{"; e r{™. Suppose k=m and ST V=p.
By Theorem 3, (™ is the set of all the m-spheres which touch a given
m-sphere Si™ =£p of 7% at p. Hence S, being the limit of a se-
quence of such m-spheres, must itself touch S{™ at p, and, again by
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Theorem 3, S, e ™,

THEOREM 4. Let 1 <m<n; 1<k m, and suppose that SV

£p if k=m. If the conditions '™, «-- , '™ hold at p, then 'Y also
holds there.

Proof. By Theorem 2, IV, ... '™V hold at p. Hence if p,
p, ..., P,_, are independent points S™ V(P,, +++, P, _s; tx) is defined.
Furthermore, by Theorem 1, we can assume that ¢ S™ (P, «++ |, P,_.;
7,) and by Theorem 2 again,

S(m)(Pl, s, Pm—lm t; Tk)=S<m)[t; S(m—l)(Ply ttt Pm—]c; Tlc)]'

Thus S™(P,, +++, Pp_s, t; 7,) exists when ¢ is close to p, te 4, t%4p.
ChOOSG Pm+1—k; C S(m—l)(P“ ctty Pm—k; Tlc)y Pm+1—lc ¢ S(m_Z)(PIv crty, P/n—lc;
74-1). Then Theorem 2 implies that

S(m_l)(Ply ctty, P'm~lc; TIC)ZS(m—U(Ply ctty Pm+1—k:; Tk—l)
when & <m, or k=m and S{3* % p; if k=m and S™»=p, this equa-
tion follows from Theorem 3, Corollary 4. Hence

Hm SY(Py, <+, Py, &5 7)) =Hm SO[f, S"(Py, «++ , Pryiog; Tr-1)]

t—p t—p

=hm Sml)(Ply ctty Pm+!—lc’ t; Tlc—l)zs(m)(Ply ctty Pm+1—}c; Tlc) .

t—p

Thus 7', holds at p and
S(m)(Pu oo, Py Tlc+1)=S(m)(P1y ey, Pm+1—k; T)c) .

COROLLARY 1. If I'™ holds at p, then I'™ holds there, r=1, 2,
-, m. Furthermore, if ST V=£p, A is m+1 times differentiable
at p.

COROLLARY 2. If 'Y holds at p, then p is a differentiable point
of A if and only if im S™-V(¢; r,-,) ewists and converges if t tends to p.
t

—>p

COROLLARY 3. If I'"V holds at p, and S{3% = p, then pis a dif-
ferentiable point of A.

COROLLARY 4. If I'™ holds at p, all the conditions I'Y’, except
possibly ', automatically hold at p Ak r+1<m+1).

Let p be a differentiable point of A. We define the index 7 of p
as in Theorem 2, Corollary 4. Let P S{9,, P7%p. Let S/W=8S"™(P;
), m=0, 1, -++, 4. Then the set of /™’s is completely determined by
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the sequence
S TSP C eee CSO=S CSEC e CSPY

Its structure is determined by the single index 4.

6. Support and intersection. Let p be an interior point of A.
Then we call p a point of support (intersection) with respect to an
(n—1)-sphere S if a sufficiently small neighbourhood of p is decomposed
by p into two one-sided neighbourboods which lie in the same region (in
different regions) bounded by S. S is then called a supporting (inter-
secting) (n—1)-sphere of A4 at p. Thus S supports 4 at p if p&S.
By definition, the point (r—1)-sphere p always supports A at p.

It is possible for an (n—1)-sphere to have points % p in common
with every neighbourhood of » on 4. In this case, S neither supports
nor intersects A4 at p.

7. Support and intersection properties of zi"V—7z"V. Let p be a
differentiable interior point of A. In the following,

(n-1) (n—1
Ty —Tr+1 )

will denote the family of those (n—1)-spheres of - which do not
belong to 27" (cf. Theorem 3, Corollary 4). Our classification of the
differentiable points » of A4 will be based on the index ¢+ of p, and on
the support and intersection properties of S¢"-" and the families z{*~%
-0, r=0,1, .-+, n—1. We shall omit the superscript (n—1) of
7"~V when there is no ambiguity; thus z,=<"".

THEOREM 5. Ewvery (n—1)-sphere == ST~V either supports or inter-
sects A at p.

Proof. If an (n—1)-sphere S neither supports nor intersects A at
p, then p C S and there exists a sequence of points ¢ ->p, t CANS,
t %~ p. Suppose p,P, ---,P, are independent points on S. Suppose
that for some », 0 <r<n-1, S=S*->P, --+,P,_,;7,). By Theorem
2, equation (1),

S®V(Py, vee, Pyp;7,) DS Py, oo, Py 7,)

By Theorem 1, ¢t & S*(P, +++, P,_,_.; z,) and again by Theorem 2,
equation (2),

S“_—‘S(n_])[t; S(n—ﬁ)(PD ttty Pn—r—-l; Tr)]':‘sm_])(Plr ) Pn-r—]; t; Tr)

for each ¢. Condition /'%;" now implies that
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S=__S(n—1)(P1, ) Pn—r—l; Tr+1) .
Thus we get, in this way,
S=8"-(P;; t,-1) .

By Theorem 2, S S5, and by Theorem 1, ¢ ¢ S{7” when the para-
meter ¢ is close to, but different from, the parameter p. If S7% %,
Theorem 2, equation 2, implies that S=S"-V[¢; S¢3]=S""V(¢t; 7,-1),
while if S{¥=p, Theorem 3 implies that S=S"-"({; r,_,). Applying
condition """V, we are led to the conclusion S=S8y".

THEOREM 6. If SP-VY=p, then the (n—1)-spheres of t,-,—t, all
wntersect A at p, or they all support.

Proof. Let S and S” be two distinet (n—1)-spheres of z,-,—r7,.
Since S;-V=p, Theorem 2, Corollary 4 implies that S77*=p, and
Theorem 3 implies that S and S’ touch at p. Thus we may assume
that S"CT(p\US) and SC(p\US). Suppose now, for example, that
S supports A at p while S’ intersects. Then A4 NS’ is not void and
AC(P\JS). Let t—p in ANS’. Hence S™V(t; r,-,) C(S" N SHUp.
Consequently, S(¢; z,-,) can not converge to S V=p, as ¢ tends to .
Thus S and S” must both support, or both intersect A at p.

THEOREM 7. If SC.=£p while Si~'=p, then every (n—1)-sphere of
T, —Tp1 SUpports A at p 1 <r<n-—1).

Proof. Suppose S"-Y=p, so that by Theorem 3, the r-spheres of
" all touch any (n—1)-sphere of r,. Let Ser,—r,., S#p. If a

sequence of points ¢ exists such that ¢t CANS, t—p, then each

S™(¢t; r,) lies in the closure of S. Hence S%, will also lie in the same
closed domain. Since S0, e ", either S&,=p, or it touches S at p.
Since S¢€r,,, S, must lie in »\/S. Similarly, the existence of a
sequence t' S N\ 4, t' —p, implies that S, Cp\US. Thus if S inter-

seets A at p, S, C(@\US)N (p\U S)=p; that is, S,=p.

THEOREM 8. All the (n—1)-spheres of t,—rt,,; Support A at p, or
they all intersect; r=0,1,---,n—1.

Proof. Let S and S” be two distinet (n—1)-spheres of z,. Sup-
pose, for the moment, that the intersection S" "\ S” is a proper (n—2)-
sphere S“ (P, +«+, P,_,-1; 7,). Suppose, for example, that S inter-

sects, while S” supports 4 at p.. Thus A\ S and A NS are not void.
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With no loss in generality, we may assume that ACS”\Jp. If tis
close to p, t % p, Theorem 1 implies that ¢ & S®-*(Py, -+, Pporo1s 7,)
and Theorem 2, equation 2, implies that

S(n—l)[t; S(n-z)(Pl, et Pn—r—l; Tr)]zs(n_l)(Ply Tty Pn—r—h t; T-r) .
If¢tcANS, then S* P, -+, P,_,_1, t; 7,) lies in the closure of
S"NSHYUE NS).

Letting ¢ tend to p, we conclude that S"-9(P,, +-+, P,_,_; 7,4,) lies in

the same closed domain. By letting ¢ converge to p through S' N 4, we
obtain symmetrically that S®-“(P,, --., P,_,_.; 7,.;) also lies in the
closure of

(S"NSHUE NS

Hence S (P, +++, P,_,_1; 7,,,) lies in the intersection S \J S of these
two domains, that is, S®2(P,, ---, P,_,_;; 7,,,) is either S" or S”, in other
words, one of the (n—1)-spheres S’ and S” belongs to z,,,. Thus if S’
and S” belong to z,—z,,, and have a proper S®» in common, they both
support or both of them intersect.

Suppose now that S” N\ S”=p. Theorem 3 implies that S¢-V=p.
In view of Theorems 6 and 7, there remain to be considered only the
cases where r <_n—1, and, indeed, when » <<n—2, we have only to
consider those cases for which S, =p.

By Theorem 3, any S™-» which touches an S, but which does not
touch an S{i" belongs to r,—rz,,;. Hence there exists an (n—1)-sphere
S of r,—1z,,; which intersects S” and S” respectively in a proper (n—2)-
sphere. From the above, S and S’, and also S and S” both support or
both intersect 4 at p. Thus S and S” both support or both intersect
A at p in this case also.

8. Characteristic and classification of the differentiable points. The
characteristic (a,, a;, *++, a,; ) of a differentiable point » of an arc A4 is
defined as follows:

a,—=1 or 2 when » <n; a,=1, 2, or . The index ¢=1,2, -+, n.

a,+++++a, is even or odd according as every SV of r,—r,,, sup-
ports or intersects A at p; r=0,1, ---, n—1.

@, + -+ +a, is even if SV supports, odd if Sy~ intersects, while
a,=co if S& " neither supports nor intersects A at p.

Finally the characteristic of p has index ¢ if and only if S{~V=p,
while S{2, = p.

Theorem 7, and the convention that S~ supports A at p when
Se-=p, lead to the following restriction on the characteristic (a,, a;,
oo, Uy O):



312

Me‘

k

i

0

N.D. LANE

a,=0 (mod 2).

As a result of this restriction, the number of types of differentia-
ble points corresponding to each value of ¢ <% is 3(2)""!, and there are

2" types when i=mn.

Thus there are (3n—1)2""! types altogether.

If we introduce a rectangular Cartesian coordinate system into the
conformal n-space, examples of each of the (83n—1)2"! types are given

by the curves

(D)

in the cases a,=1 or 2, and

x,=t",

(1)

xlztml, xZ:-t"nz’ coe

2, =t",

!

for the cases in which a,= o, all relative to the point #=0.
are positive integers and m, <m,<--- <m,.

—_m
see, q;n__t n

trmgintt, if 0 <[t]<L1
, if t=0

The m,
The different types are

determined by the parities of the m, and by the relative magnitudes of

the m, and 2m,.

at the origin; m=1,2, ---, n—1.

In each of these examples, the S™ touch the z,-axis

When m, <" 2m, < m,.,, the point ¢—=0 has a characteristic of the

form (a,, ay, - --

, ;1) Where @, can be 1, 2, or o, and i< n.

When m, < 2m,, the point ¢=0 has a characteristic of the form

(@, ay, -

«, &,; n) where a, is either 1 or 2.

The following table lists

some of the properties of a differentiable point p having the characteris-

tic (ag, ayy ++ ¢, Q3 9):
(a/O’ alr ’ a’n; ?:)
; Osculating | . |
Index a, e T ] Sufp al:;g;lt 1ng Restriction Example
| (i—1)-sphere ] ¢-sphere { y
! i T o
ap=1 or 2! s !‘ I
. | | .
i<l SREp mmm | Lo || me<em <
A= 00 | SGED=p | ‘ =0 I
S L (mod 2) . R
| | |
t=n | an=1 or 2| l 1 Ty I | m<2m,
| !
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