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Introduction* Let Vn be a hypersurface twice differentiably im-
bedded in a Riemannian space Rn+1 of n + 1 (%I>2) dimensions, and
κu -"yKn the n principal curvatures at a point P of the hypersurface
Vn. It is known that the ith mean curvature M% of the hypersurface
Vn at the point P is defined by

(0.1) C ^ M ^ Σ M ^ Λ* (i = l, •• ,w),

where the expression on the right side is the ith elementary symmetric
function of κu •••,«„, and CnΛ denotes the number of combinations of
n different things taken i at a time. Let dA be the area element of
the hypersurface Vn at the point P, and p the scalar product of the
unit normal vector of the hypersurface Vn at the point P and the position
vector of the point P with respect to any orthogonal frame in the space
Rn+1.

The purpose of this paper is to prove the following four theorems
concerning closed hypersurfaces by first showing that:

a) If Vn is an orientable hypersurface, with a closed boundary Vn~ι

of dimension % — 1 (wl>2), which is twice differentiably imbedded in an

c
(w-f l)-dimensional Riemannian space Rn+ι, then the integral I (l + M^dA
can be expressed as an integral over the boundary V71'1.

b) If in addition Vn is of class C3 and the space En+1 is of constant
Riemannian curvature, then the integral \ (Mn^Λ-Mnp)dA can also be

expressed as an integral over Vn~ι.
These results have been obtained in a previous paper [2] by the

author for an orientable hypersurface Vn twice differentiably imbedded
in a Euclidean space En+1 of n-\-l (n^>2) dimensions.

THEOREM 1. Let Vn be a closed orientable hypersurface twice dif-
ferentiably imbedded in a Riemannian space Rn+ι of n-hl (wl>2) dimen-
sions , then

(I) A+[ MlPdA=0 .
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THEOREM 2. Let Vn be a closed orientaUe hypersurface of class C3

imbedded in an (n-hΐ)-dimensional (n^>2) Riemannian space Rn+ι of
constant Riemannian curvature K, then

(II) [ Mn-t dA 4- [ MnpdA=0 ,
J vn J vn

THEOREM 3. Let Vn be a hypersurface satisfying the conditions of
Theorem 2. Suppose that the principal curvatures κ19 •••,«„ at each point
of the hypersurface Vn are positive and that in the space Rn+1 there exists
a point O for which either p ^ — 1/Afi or pl>—l/il^ at all points of
the hypersurface Vn. Then every point of the hypersurface Vn is umbilic.

THEOREM 4. Let Vn be a hypersurface satisfying the conditions of
Theorem 2. Suppose that the principal curvatures κ19 , κn at each point
of the hypersurface Vn are positive and Mn-τ is constant, and that in
the space Rn+1 there exists a point O for which the function p is of the same
sign at all points of the hypersurface Vn. Then every point of the
hypersurface Vn is umbilic.

l Preliminaries• In a Riemannian space Rn+1 of dimension n + 1
(^^2) with a positive definite fundamental form we consider a fixed
orthogonal frame Oe^--en + 1, where e19 - — ,en+1 form an ordered set of
n~{-l mutually orthogonal contravariant unit vectors at a point 0 in
Rn+\ With respect to this orthogonal frame let y* (a=l, « , n + l) be1

the coordinates of a point in Rn+1 and aaβdy«dyβ the fundamental form
for Rn+\ where αΛ β=αβ f l ί and the matrix | |a^| | is positive definite so that
the determinant a=\a^\y>0.

Let Ai{ (i=l, - , n) be n vectors at a point in the space Rn+1 whose
contravariant components with respect to the frame Oe1---en+1 are A%
(<x=l, •••,^4-1). First we define the vector product of the n vectors
Au ( i = l , , n) to be a vector in Rn+ι, denoted by AM x x An[, whose
contravariant components are given by

it αΛ3Aίf ••• αΛ>w+1Aί

a AΛ a A** * * * A A

From the definition of the scalar product of any two vectors Ai{ and Aju

1 Throughout this paper Greek indices take the values 1 to τz+1, and Latin indices the
values 1 to n unless stated otherwise. We use the convention that repeated indices imply
summation.
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namely, AiιΆJl=aoiβAί(Aβιf it follows immediately that AΆ x xAn] is
orthogonal to Au ( ΐ = l , •• ,ri).

Now we consider a hypersurface Vn twice differentiably imbedded
in the space Rn+1. With respect to the orthogonal frame Oe1 --en+ι the
hypersurface Vn can be given by the parametric equations

(1.2) y«=Γ(x\ « , O (α = l, . . . , % + l ) ,

or the vector equation

(1.3) Y=F(x\ •••,<),

where yΛ and / " are respectively the contravariant components of the
two vectors Y and F, the parameters x1, , xn take values in a simply
connected domain D of the ^-dimensional real number space, and
f^ix1, , xn) is of rank τι at all points of D. Let the first fundamental
form of the hypersurface Vn at a point P be

(1.4) dsi==gijdxidxJ ,

where the matrix fl^J is positive definite so that the determinant

9=\9v\>0, a n d

(1.5) 9ij

(1.6) y

Let Aβΐ be a mixed tensor of the second order in the y's, and a
covariant vector in the x's, as indicated by the Greek and Latin indices.
Then following Tucker [3], the generalized covariant derivative of A%
with respect to the #'s is defined as

where the Christoffel symbols j ? I with Greek indices are formed with

respect to the aaβ and the y's, and those ] ..i with Latin indices with

respect to the giό and the α's. It should be noted that the definition of
generalized covariant differentiation can be applied to any tensor in the
x's and y's and that the generalized covariant differentiation of sums
and products obeys the ordinary rules. If a tensor is one with respect
to the x's only, so that only Latin indices appear, its generalized covari-
ant derivative is the same as its covariant derivative with respect to
the x's. Moreover, in generalized covariant differentiation the funda-
mental tensors aaβ and gi3 can be treated as constants. Since ya is an
invariant for transformation of the x's, its generalized covariant derivative
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is the same as its covariant derivative with respect to the x's; so that

(1.8) tii

By (1.7) the generalized covariant derivative of yfo is

(1 9) * = a S £
which is symmetric in the indices i and j.

Let N be the unit normal vector at a point P of the hypersurface
F w , then

(1.10) α . β Λ W = l ,

(1.11) α<Λ/?*=0 ( i = l , ...,w).

We can easily obtain (see, for instance, [4, Chap. VIII]):

(1.12) 2&

(1.13) Ω

(1.14) J V ! H - Ω * Λ J .

where O ί j =ί2 J ί are the coefficients of the second fundamental form of
the hypersurface Vn at the point P, and gij denotes the cofactor of gtJ

in g divided by g so that

(1.15) gijgJk-si,

δl being the Kronecker delta. Moreover, we have

(1.16) Riij^i^iΆjc

(1.17) nίjjk-nίk)

where RHjk and i2βYδε are Riemann symbols formed with the tensors gi3

and aaβ respectively. In particular, if the space Rn+1 is of constant
Riemannian curvature K, it follows from the definition of Riemannian
curvatures of the space Rn+1 that

(1.18) Rβyδ2

and therefore (1.16), (1.17) reduce to

(1.19) injt=W

(1.20) nijίk-ΩίkJ=0 .

Taking the generalized covariant derivative of each side of (1.14) and
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making use of (1.12), (1.19), (1.20) we thus obtain

(1.21) m - N$j=N*gιk(RJikl-R

The n principal curvatures κx, •••,«» of the hypersurface Vn at the
point P are the roots of the determinant equation

(1.22) 1^.-/^1 = 0 .

From (0.1) and (1.22) it follows immediately that

(1.23) Mn

where Ω = | Ω υ | and Ωίj is the cofactor of Ωυ in Ω.
Consider the two matrices

(1.24) Φ H I Φ Y I I > Ψ^WΨU >

where

the superscript of the element φΊ or ψΊ indicating the row to which the
element belongs and the subscript indicating the column. Solving (1.11)
for N*j we obtain

(1.26) N*=( — \)n-a+ιcAΛ (oc=l, •••,^-fl),

where c is a constant and A* the determinant of nth order obtained by
deleting the αth column from the matrix φ. Substitution of (1.26) in
(1.10) gives

(1.27)

where

(1.28)

1
aA

A1 -A2

which is equal to the sum of the products of the corresponding deter-

minants of nth order of the two matrices (1.24). By an elementary

theorem on determinants (see, for instance, [1, p. 102]), from (1.5) it

follows immediately that

(1.29) A=\φW\=g .

Now we choose the direction of the unit normal vector N in such
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a way that the two frames P F ^ - FwiV and Oe1 en+1 have the same
orientation. Then from (1.10), (1.26)] (1.27), (1.29) we obtain

(1.30) VgaN=Ytlx-- xY,n,

(1.31) \Ytl, ~ ,Y,n,N\=Vgϊd.

The area element of the hypersurface Vn at the point P is given by

(1.32) dA^Vgdx1- -dxn .

Let At{ ( i=l> •••>*&) be w vectors a t a point in the space Rn+ι, whose
contra variant components with respect to the frame Oe1-- en+1 are dif-
ferentiable functions of xι, •• 9x

n, then by (1.1) and the differentiation
of determinants

(1.33) (AnX xAn,);*= Σ ( Λ | X ••• X A J - H X A J ^ X A ^ X ---xAn]) .

2. Proof of the formula (I). First we observe that the vector
Y9l x x Yyi-i x Nx Y9i+1 x x Y,n is orthogonal to the normal vector
Λτ and can therefore be written in the form

(2.1) Ynx - xY^x NxY,ί+1x - - xY^&Ύ^ (i=l, ...,w).

Taking the scalar products of both sides of (2.1) with the vector Y,k

and making use of (1.2), (1.5), (1.31), we obtain

(2.2) ctJgJk= -Vgaδi (i, fc=l, , n).

Solving (2.2) for ciJ for each fixed i and substituting the results in (2.1),
we are led to

(2.3) Y91x x Y^xNx Y9i+ιx . . x Y,n=-\/gagi3Yfj ( i = l , ••-,%).

Making use of the relation Y,υ = Y.n and (1.14), (1.23), (1.30), (1.33), it
is easily seen that

(2.4) Σ (^,1 x x YH-I x iVx Γ,<+1 x x Γ,n)ί4

= Σ ^,1 x x Yft-i x N;i x Y9i+1 x x Y9n
ί

= -ny/

gaM1N.

Thus, from (2.3) and (2.4),

(2.5) nV gM1N=(V"g9iJYHh

Taking the scalar products of both sides of (2.5) with the vector Y9 we
obtain in consequence of (1.5) and (1.15)
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(2.6) nMφV g

where we have put

W g ,

(2.7) p=Y-N,

Now let us consider a hypersurface Vn, with a closed boundary Vn~]

of dimension n — 1 (^I>2), twice differentiably imbedded in a Riemannian
space Rn+1 of dimension ^ + 1 . Integrating (2.6) with respect to x\ , #n

over this hypersurface Vn and applying the general theorem of Stokes
to the first term on the right side of (2.6), we obtain

(2.8) M1pdA=

In particular, when the hypersurface Vn is closed and orientable, the
integral on the right side of (2.8) vanishes and hence we obtain the
formula (I).

3 Proof of the formula (II). For the same reason as in the pre-
ceding section, the vector N.tl x x JV;i-i x Nx N.Mΐ x x N n is orthogonal
to the normal vector N and can therefore be written in the form

(3.1) N;1x i^xNxN;i+iX xNfn==ct3Y9j ( i = l , , n).

Taking the scalar products of both sides of (3.1) with the vector Y,k

and making use of (1.1), (1.14), (1.31), we obtain

cVg^i-lY+'aWYn,

1 0

0

ry21 /~i f A/— 1 /"y-o ft "f" 1 m # /Ύ Π
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and therefore

(3.2)
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(i, k=l, •-, n).

Solving (3.2) for cίj for each fixed i and substituting the results in (3.1),
we find

(3.3) Λ ^ x . . x J V ^

Making use of (1.1), (1.14), (1.21), (1.23), (1.30), (1.33), it is easily seen
that

r

;1 x x N;i-! x iVx N.ί+1 x x Nin);i

= Σ Wix x -W i-i x N.Λx JV;i+1 x iV;w)

i

1 0 0

0 ί2 G ̂ 1 Γ2 r
0 ΩHGT^ Ω.,0

0

Thus, from the above equation and (3.3),

(3.4) ^ g MnN=(n^YfJ!Vg h :

Taking the scalar products of both sides of (3.4) with the vector Y, we
obtain in consequence of (1.23) and (2.7)

(3.5) g

As in the preceding section, let us consider a hypersurf ace Vn, with
a closed boundary F w - 1 of dimension n — 1 (wl>2), differentiably of class
C3 imbedded in an (n + l)-dimensional Riemannian space Rn+1 of constant
Riemannian curvature K. Integrating (3.5) with respect to a?1, -« , xn

over this hypersurface Vn and applying Stokes' theorem to the first
term on the right side of (3.5), we then obtain

(3.6) ( M^dA + i MnpdA
J vn J vn

n

1 . >dxn .

In particular, when the hypersurface Vn is closed and orientable, the
integral on the right side of (3.6) vanishes and hence the formula (II).
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4. Proofs of Theorems 3 and 4. For Af^O, the assumptions
P^ — 1/ML and p^>— ljMι are respectively equivalent to 1-f A/Ίp^O and
1-i-Λfjp^O. From formula (I) it follows that each of the above two
assumptions implies that p=—1/Λfχ. Substituting this in (II) we obtain

(4.1) \ ^-(M&^-MJdA-O ,

which holds when and only when MιMn-ι — Mn=0, since

(4.2)
n

where iu i2, ---,in are distinct and run from 1 to n. From (4.1), (4.2)
it follows that Λ1=Λ2== -=ιcn at each point of the hypersurface Vn and
therefore that the quantity defined by

at each point of the hypersurface Vn for an arbitrary direction q in the
hypersurface Vn with contravariant components qι is independent of the
direction q. Hence Ω,iJ=cgi1 for all i and j at each point of the hyper-
surface Vn, where c is a scalar invariant, so that every point of the
hypersurface Vn is umbilic.

If Mn-ι is constant, multiplying the formula (I) by Mn^ and sub-
tracting the formula (II) by the resulting equation we obtain

(4.3)

From this and the assumption that p is of the same sign at all points
of the hypersurface Vn, Theorem 4 follows by exactly the same argu-
ment as above.
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