
NOTE ON A THEOREM OF HADWIGER

R. STEINBERG

Throughout this paper, H denotes a Hubert space over the real or
complex numbers and (x, y) denotes the inner product of the vectors x,
y of H. The only projections we consider are orthogonal ones.

Our starting point is the basic fact that, if {ua} is an orthonormal
basis of H, then the Parseval relation

(1) (x, y)=Σ(x, uΛ)(um y)

is valid for each pair of vectors x, y of H. It is easy to see that (1) is
also valid if {uΛ} is the projection of an orthonormal basis {wΛ} and if
we restrict x and y to the range of the projection. Indeed, if E is the
projection, so that waE=ua for each a, then

(x, y)=Σ(x, wa)(wΛf y)=Σ(xE, wa)(wΛ, yE)=Σ(x9 wΛE)(wΛE, y)

=Σ(x, uΛ)(uΛ, y) .

The theorem referred to in the title deals with this result and also with
the converse question:

THEOREM 1. // the Parseval relation (1) is valid for each pair of
vectors x and y of H, then the set {ua} is the projection of an orthonor-
mal basis of a superspace K of H.

This result was first proved by Hadwiger [1], and, then, by Julia
[2]. We first give a simple proof of Theorem 1 that depends on a
simple imbedding procedure, and then consider some related questions
concerning projections of orthogonal sets of vectors.

Proof of Theorem 1. We choose as K coordinate Hubert space [4,
p. 120] of dimension equal to the cardinality of the set {ua}. We see
from (1), with x=uβ, y=uy, that the matrix U=((ua, uβ)) is idempotent.
Since U is also Hermitian, it may be interpreted as a projection acting
on K. We now imbed H in K by making correspond to x in H the
(row) coordinate vector x'={(x, U&)} in K. In particular, to the vector
uβ there corresponds the /5th row of U which is manifestly the image,
under the projection U, of the /5th coordinate basis vector. Finally, if
x'={(x, ua)} and y'={{y, uΛ)}, then (xf, yf)=Σ{xy ux)Jyi~ΰ^)==Σ(x9 uΛ)(uΛ, y)
=(Xf v); thus the imbedding is isometric and we are done.

We next prove a related result which is due to Julia [2, (c)].
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THEOREM 2. // the Parseval relation (1) is valid relative to the set
{u*} of H, and, if no ua is in the closed siώspace spanned by the others,
then {ua} is an orthonormal basis.

Proof. The second assumption implies the existence of a dual set
{vΛ} in H such that (ua, vβ)=δΛβ [see 3, p. 264]. Then, using (1), we

Λβ = (Ua, Vβ) = Σy(Ua, Uy)(Uy, Vβ)=Σy(Ua, Uy)dyβ = (Ua, Uβ).

We remark at this point that the methods of proof of Theorems 1
and 2 can be used to give proofs of the corresponding results about
projections of biorthonormal bases of vectors {uΛ va} for which (ua, vβ)
=δΛβ. These methods are also used in our next proof [see 2, (b)].

THEOREM 3. A necessary and sufficient condition that a set of vectors
{ua} of H be the projection of an orthonormal set (not necessarily a basis)
in some super space K is that, for each x in H,

( 2 ) Σ\(x,ua)\^(x,x).

Proof. By the remarks preceding Theorem 1, the necessity is clear.
In proving sufficiency, we may suppose {uΛ} is complete in H, since,
otherwise, by adding to {ua} an orthonormal basis of the orthogonal
complement of {ua} in H, we get a larger set which is complete, and
for which the condition (2) is still valid. Next we show that, if U is
the matrix ((uΛ, uβ))9 then 0<;Z7<^l, in the sense that both U and 1 — U
are nonnegative [4, p. 213]. Let ξΛ be any set of scalars of which all
but a finite number are zero. Then, using Schwarz' inequality and (2),
we get

<z(ΣΛξΛuΛ, Σβξβuβ)=ΣΛιβξΛJβ(uΛ9 uβ)

Thus 0<LΣΛίβξΛξ^(ua, ^ ) ^ ^ | ^ | 2 ; so that 0<LU<Ll, Uz exists and 0^Z7

-U2 [4, p. 217]. Consider now the matrix E=(U VΌ- ΌA\ % [-gee

4, pp. 215, 224]. This is Hermitian and idempotent and hence represents
a projection in coordinate Hubert space K of the appropriate dimension.
As in Theorem 1, the (row) vectors given by the upper half of E not
only are the images, under E, of "half" of the coordinate basis vectors
of K, but also constitute an isometric imbedding of the set {uΛ} in K.
Since {ua} is complete in H, the imbedding can be extended to all of
H; and the proof is complete.

At this stage, we introduce the following definition: A set of vectors
{ua} in H has the property P if each x in H is orthogonal to all but a
countable number of ua.
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LEMMA (1) Any orthogonal set has property P. (2) Property P is
invariant under projection: if {ua} has property P and E is a projection,
then so does {uaE}.

Proof. The statement (1) is a classical result [4, p. 114]. To prove
(2) we select any x in H. Then (x, uΛE)=(xE, ua) which is zero for all
but countably many u*.

This lemma leads us to the following conjecture: A necessary and
sufficient condition that {u^} be the projection of an orthogonal set (not
necessarily normal) is that {ua} has property P.

The lemma proves necessity. We have been unable to prove suffi-
ciency. However, we can prove the following special case:

THEOREM 4. A necessary and sufficient condition for the set of non-
zero vectors {ua} in a separable Hilbert space H to be the projection of
an orthogonal set is that the set be countable.

Proof. Suppose first that {uΛ} is the projection of an orthogonal
set. Then, by the lemma, it has property P. Let {a?J be a (countable)
basis for H. Then all but a countable number of uΛ are orthogonal to
each xt and hence to their union {α?J. That is, all but countably many
uΛ are 0. This proves the necessity. To prove sufficiency, we suppose
that {ua} is countable and indexed by the positive integers. We then
define voύ^=2-oίuji{uoί/y ua)

Λl2, for each a. Then, if x is any vector of H, it
follows, by Schwarz' inequality, that Σ\(x, va)\z<L(x, x)Σ(vΛ, va)=(x, x)Σ2~'2Λ

<L(x, x). Thus, by Theorem 3, {va} is the projection of an orthogonal
set and so is {ua}.

We close with an example of a set {ua} which is not the projection
of an orthogonal set. Let {xa} be an uncountable orthonormal set in
nonseparable Hilbert space and set uΛ=x1 + xΛ9 for each a. Then {ua}
does not have property P and hence, by the lemma, is not the projec-
tion of an orthogonal set. It is to be noted that Theorem 4 cannot be
used to prove this result since every uncountable subset of {ua} spans
a nonseparable subspace of H.
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