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The purpose of this paper is to prove the following independence
theorem:

If A is a square matrix of order n, the Jacohian of the n traces of
A, A2, , An with respect to each set of n distinct elements of A, at
least one of which is a diagonal element, is never identically zero in the
riz elements of A.

The problem arose originally in connection with a certain system
of differential equations of the second order [1]. This led to the in-
vestigation of the properties of a class of determinants which are general-
izations of the classical determinant of Vandermonde [2]. The latter
half of [2] includes a proof of the independence theorem as given by
Perron who used mathematical induction. We now give the proof first
devised by the authors in 1940. It is interesting for two reasons;
first, new results in the algebra of matrices are brought to light and
second, matrices are constructed for which the n traces are indepen-
dent.

1* Notations and terminology. Let A=(aίj) be a square matrix of
order n whose elements are independent indeterminates over an arbitrary
field. Let affi stand for the element in the ith row and ith column of
the mth power of A. The determinant

where rlf , rn and slf , sn are arbitrary integers in the range 1
to n, equal or unequal, and δ.u is the Kronecker delta, is called a
generalized determinant of Vandermonde. It reduces to the classical
determinant of Vandermonde if A is a diagonal matrix.

Consider any set S of n distinct elements αS i ? v αβ2?v •••, a8 Tn of
the matrix A. Also consider the set T of n traces tlf t2, , tn of A,
A\ , An. Let us represent by dT/ΘS the Jacobian of the set T with
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respect to the set S, so that equation (13) of [2] may be written dTjdS
=nlV'(A).

We have already introduced the two ordered sets of indices r=(ru

r2, , rn) and s=(slf s2, , sn), each on the range 1, 2, , n. When
r and s are considered together, we shall speak of the dual-set (r s)
and we write this as a 2 by n matrix:

The fact that S consists of n distinct elements may be stated by
saying that no two columns of (r s) are identical. We shall be in-
terested in sets S which, in addition to consisting of n distinct elements,
contain at least one diagonal element of A. Such sets will be called
nonsingular, while all others will be called singular. The dual-set (r s)
corresponding to S will be called nonsingular or singular according as s is
nonsingular or singular. Thus for a nonsingular (r s) no two columns may
be identical and in at least one column the indices in the first and second
rows must be equal. Such a column will be called a diagonal column.

In this connection it will be convenient to introduce notations for
two operators on sets of n indices. Let a and β be two distinct in-
tegers in the range 1, 2, , n, and let a--=(au α2, , an) be a set of n
(not necessarily distinct) integers in the same range. Then by

( a β ) a = ( a β ) ( a l 9 a i f ••-, a n )

we mean the set of integers (al9 a2, •••, a'n) obtained from a by inter-

changing a and β.

In analogous fashion, by the notation

[aβ]a==[aβ](aly a.z, •-, a n )

we mean the set (alf a2, ••-, an) obtained from a by changing a to β
wherever a occurs in α. If a' = {aβ)a, then a=(aβ)a' but, if a=[aβ]a,
it is not always true that a=[aβ]a\ In fact, having passed from any
set a to another set ar by this latter method, it may not be possible
to get back from a' to a by using any such operators.

For brevity we write (r;; s')=(aβ)(rm, s) to mean rf=(aβ)r, s' = (aβ)s.
However, it will be convenient to attach a slightly different meaning
to the operator [aβ] when applied to a dual-set. In fact, \rr sr] =
[aβ~](r;s) shall mean that r' = [aβ]r, s' = [βoc]s.

A nonsingular (r s) (and the corresponding S) will be called
unitary, if it contains exactly one diagonal column.

Finally, (r s) (and the corresponding S) will be called proper if,
when the diagonal columns are deleted from the set, the resulting two
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rowed matrix has no index common to both rows.

2. Outline of the proof. In the first step we prove the theorem
for the case in which S consists of the n diagonal elements of A. In
the remainder of the proof this case will then be excluded.

We next prove two lemmas:

LEMMA 1. // there exists a nonsingular set S for ivhich dT/dS = 0
then there exists a unitary set S' for which dTldS' = 0 .

LEMMA 2. // there exists a unitary set S for which ΘT/dS == 0, then
there exists a proper unitary set Sf for which OTjdS' ΞΞΞ 0 .

The above lemmas reduce the problem to that of proving the theorem
for all proper unitary sets. The method of proof of the lemmas enables
us to restrict further the class of proper unitary sets for which the
theorem need be proved. For each of the sets S" in the sub-class we
exhibit a matrix A for which dTjdS" Φ 0. This, then, will complete
the proof for all nonsingular S.

3. Reduction theorems. We now state five theorems called reduc-
tion theorems to be used in proving the two lemmas just stated. The
conclusions in all five theorems are almost identical, the only variation
being an implication in Theorem 4 while an equivalence is found in the
other theorems1.

THEOREM 1. // r'=s and s'=r then Fj(-4) = 0 is equivalent to

= o .

THEOREM 2. / / (rr s') can be obtained from (r s) by permuting

the columns of the latter, then Vr

s(A) ΞΞΞ 0 is equivalent to Vr

s',(A) Ξ= 0 .

THEOREM 3. / / (V ;s')=(aβ) (r s) then Vr

s(A) = 0 is equivalent to

T H E O R E M 4. / / (r'; s')==[aβ] (r s) then Vr

s(A) = 0 implies that

THEOREM 5. //, from a unitary (r s) we derive (rf s') by chang-
ing the diagonal column of (r s) to some new diagonal column, leaving

1 The reader will readily observe that, in some of these theorems, we have stated far
less than could be said, but we have given them in the form in which they are actually
used below.
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all other columns unaltered, then Vr

s(A) = 0 is equivalent to Vζr(A) ^Ξ 0.

All identities in these theorems are in the n2 variables atJ of A.
This will be understood to apply to all identities in which the variables
are not explicitly stated.

4* Proofs of the reduction theorems. In Theorem 1 the fact that
the equation Vr

8(A) = 0 is an identity, permits us to replace A by any
other matrix; in particular by A\ the transpose of A, and the equa-
tion is still true, so that Vr

8(A') ΪΞ= 0. Since by hypothesis r'=s and
s ' = r we have:

V*{A') ΞE V'r(A) EEΞ Vΐ(A) .

In Theorem 2 we have at once Vr

s(A) == ± Vr

s'\A), since, except for
order, the columns of the two determinants are the same.

For the proof of Theorem 3, let p denote the transposition (aβ)
and pj the image of j under p. Let B be the matrix defined by bij =
apipj. Then it follows by induction on k that b[f==aCpi>

pj. Thus if (r'; s')
= (aβ) (r s), we have Vr

s(B) = Vr

s'r(A) and the proof is complete.
For the proof of the Theorem 4, let the matrix B have elements

δjp defined by

with k=l and λ an arbitrary parameter. Then it may be verified that
(2) is correct for all k. Now if Vr

8(A) = 0 we see that Vr

8(B) = 0, the
last expression being an identity not only in the n2 elements au but
also in λ. We shall show that the coefficient of the highest power of
λ in Vs(B) is the desired Vr

8>{A) so that this determinant must vanish.
We note from the equation (2) that each element 6r.s-, 6??,., •••,

b$y? in the i th column of V8(B) is of degree /ίnj = darj + δβs. in λ. Hence,

every term of Vr

8(B) is of degree N=Σmi i n λ. Now the coefficient

of λmj in 6^7ί} is seen to be ±ac

r

ί~Ό where r]=\aβ']rj and 8j==[βά]sJf so

that (r';s')=[aβϊ] (r s). Hence ^the coefficient of λN in Vr

s{B) is
± Vr

8>{A). This completes the proof of Theorem 4.
Theorem 5 is obvious since we have Vj'(A) ^ Vr

8(A).

5 Use of the reduction theorems. It is easy to verify that, if
(r s) is nonsingular, the application of any one of the reduction
Theorems 1, 2, 3 or 5 always leads to a nonsingular (r' s') This is not
true for Theorem 4. In order to avoid reductions which lead to singu-
lar sets, we shall investigate the effect of Theorem 4 in detail.

By mates in s of an index a which appears in r, we mean all in-
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dices Si for which ri = a. Each such index s.i (and clearly, these will
all be distinct for a nonsingular dual-set) will be called a mate in s of
α. Similar definitions apply for mates in r.

We call two indices a and β associates in r if there is an index γ
in s such that both a and β are mates in r of γ. Each of the numbers
α, β will be called an associate in r of the other. Similar definitions
apply for associates in s.

We now consider (rr s') related to the nonsingular (r s) by (r' s')
= [ctβ] (r s). According to the definition given in § 1, (r' sr) will be
singular if the corresponding set of elements of A, viz., α ^ ^ , ctr^s./9

•••, αr ,β /, does not contain a diagonal element of A, or if it does not
n n

consist of n distinct elements of A. After some analysis we may show
that this set will be singular if and only if, the numbers a and β are
such that one or more of the following is true:

I. The set S corresponding to (r s) contains exactly one diagonal
element of A, and this one is either aΛΛ or aββ .

II. The numbers a, β are associates either in r or in s.
III. The set S corresponding to (r s) contains either the two

elements aacύ and aββ or the two elements aΛβ and aβcύ.
In applying Theorem 4 we avoid using numbers a, β satisfying any

one of these conditions. It should be noted, however, that condition
I constitutes no real restriction on the numbers α, β in case n > 2 for,
we may firstly apply Theorem 5 to carry the lone diagonal element
into some element other than aaoύ or aββ and then, after applying
Theorem 4, use Theorem 5 to restore the index of the diagonal element
to its former value.

If, for a given pair of distinct integers a, β the operation [aβ]
carries a nonsingular (r s) into a singular set, we shall call the pair
α , β a blocked pair f o r (r s).

6. The case of n diagonal elements in S. In order to prove the
Independence Theorem in the case S(an, a.Z2, , ann) we may take A to
be the general diagonal matrix. In this case ΘT/dS becomes the clas-
sical determinant of Vandermonde and is, of course, not identically
zero. In the future we exclude this case.

7. Proof of Lemma 1. We now consider a nonsingular (r s) con-
taining more than one but less than n diagonal columns and we prove
that, by the use of Theorem 4, such a set can be reduced to a non-
singular dual-set having exactly one diagonal column (that is, to a
unitary set).

Consider the nonsingular (r s) having exactly k diagonal columns
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with 1 <C k <C n. By Theorems 2 and 3 we are justified in supposing
that

n = s 4 = l ( i = l , 2, . . . , k),

Ttφs, (i^k + 1, k + 2, . . . , ?z).

We need only show that a nonsingular dual-set having one less diagonal
column can be obtained from this one.

Consider the following reductions:
I. If β is such that k<^β<Ln and β does not occur in (r s) let

(r' s ' H I M l (r s).
II. If α is such that 1 <I a <I & and α: does not occur in the last

n — k columns of (r s), let (r' s') = [cm] (r s ] .
If either of these reductions is possible (that is, if there exists

such an integer β or such an integer a), then the resulting (rf; sf) is
nonsingular and has k — 1 diagonal columns.

If neither applies, then each index 1, 2, 3, •••, n must occur at
least once in the last n — k columns of the set (r s). L e t us fix our at-
tention on dual-sets for which this is true. Now, considering for the
moment only the 2(n — k) indices which make up the last n — k columns
of (r; s), and bearing in mind that every integer 1, 2, •••, n occurs at
least once in these columns, let

λx d i s t i n c t i n t e g e r s 1, 2, •••, k o c c u r in r a l o n e ,

λ2 d i s t i n c t i n t e g e r s 1, 2, •••, k o c c u r in s a l o n e ,

k — λλ — λ.2 d i s t inct i n t e g e r s 1, 2, •••, k occur in b o t h r a n d s,

μι d i s t inct i n t e g e r s &4-1, •••, n occur in r a lone,

μ.z d i s t inct i n t e g e r s k + 1, •••, n occur in s a lone,

n — k — μ ι — μ.z distinct integers k +1, •••, n occur in both r and s.

These numbers λlf λ2, μL, μz are restricted by the following inequali-
ties :

The last of these is a consequence of the three which precede it. The
fifth is obtained by noting that the total number of distinct integers
which occur in the last n — k columns of r must be less than or equal
to n — k. The fourth is obtained in a similar fashion.

Consider now the reduction:
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III. If A, β2 are such that k<β1<β2<Ln and if βly β2 are both
in r alone or both in s alone, but are not associates, let
( r ' ; 8 ' H L 8 A | (r s).

If III is applicable, the resulting (rf sf) is nonsingular and we may
apply I to reduce the number of diagonal columns.

If III is not applicable, then each pair of the μλ numbers k-h1, •••,
n which occurs in r alone must be associates in r, and each pair of the
μ2 numbers k-hl, • ••, n which occurs is s alone must be associates in s.
These conditions require a minimum of μ2 — l repetitions2 in r and μ1 — 1
repetitions in s, of some of the distinct numbers which occur there.
Now, counting distinct integers and known repetitions in r and s, we
have

(n — k — μ1 —

from which we get

k-l<Lλi9 k-l<,λlf

respectively. Adding these two inequalities and using the fact that λx

+ λ2<ik, & > 1 , we readily find that fc=2, λ1=λ.z=l. Hence, for all
dual-sets except these, the reductions I, II, III suffice to reduce the
number of diagonal columns by one.

We must now deal with those sets for which reductions I, II, III
do not apply. As we have just seen, such a set must have exactly
two diagonal columns and it must have ^ = ^ = 1 . Thus, if the diagonal
columns are r1=s1=l, r 2 =s 2 =2, then we may suppose that in the last
n — 2 columns of (r s), 1 occurs in r alone and 2 occurs in s alone.

For this set consider the reduction:
IV. If, after deleting diagonal columns, a and β occur in r alone

(or in s alone) with l<lα:<12, 3 <Lβ <Ln and α, β are not
associates, then let (r' s') = [aβ] (r s)

If IV is applicable then the resulting set in nonsingular and has
one less diagonal element. We shall prove that IV is always applicable
to those sets for which I, II, III do not suffice. For the last n — 2
columns of these sets we have supposed a=l occurs in r alone and that
there are μλ numbers β (3<i/?<Lw) occurring in r alone. If IV is not
applicable there must be a minimum of μx repetitions in s in order that
1 may be an associate of each of the μ1 β' s occurring in r alone. Thus
in the last n — 2 columns of s there appear

2 If an integer occurs k times in a set, we shall say that there are /b-1 repetitions of
this integer. We shall have occasion to refer to the total number of repetitions in a set
without mentioning which integers are repeated. Thus if a set of n integers contains
exactly λ distinct integers, there are n-λ repetitions.
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( a ) the number 2,

( b ) n — 2 — μx of the numbers 3, 4, •••, n,

(c ) μλ repetitions of numbers in (a) or (b) .

This is a total of w - 1 numbers occurring in n — 2 columns, which is
impossible. Thus, by means of reductions I, II, III, IV it is always
possible to reduce (r s) to a unitary set.

8 Proof of Lemma 2 We consider now only unitary dual-sets.
Let us delete from (r s) the diagonal column and then denote by λ(r)
the number of distinct indices in r, by λ(s) the number of distinct
indices in s, and by λ(r, s) the number of distinct indices each of which
occurs in both rows. It is clear that the number of distinct integers
which occur among these 2(72 — 1) indices is λ{r) + λ(s) — λ(r, s).

It is seen that if we go from one unitary dual-set to another by
the use of the reduction Theorems 2, 3, or 5, then λ(r), λ(s)y λ(r, s)
remain unchanged. If reduction Theorem 1 is used, we have

However, if reduction Theorem 4 is used to go from (r s) to (rr s'),
we obtain the inequalities

We now show that we can always change a unitary set to a proper
unitary set (that is, one for which λ(r,s) = 0) by means of the reduc-
tion theorems. In this connection we should recall that, while applica-
tion of Theorem 4 for a pair of integers a, β would lead to a singular
set if the diagonal column of (r s) has index a or β, this is no real
restriction since, when n ^> 2 we can first apply Theorem 5 to change
the index of the diagonal column. Since, by Theorem 2, the diagonal
column may be made the first column so that rL=sly we now let r1=s1

=x where x is merely a symbol for the index of the diagonal column
whose value we shall not specify.

Let us now suppose that a unitary set (r s) is such that λ(r, s)
has been reduced as far as possible by means of Theorem 4. We wish
to show that in this case λ(r,s)=0. Suppose /(r, s) > 0. If there
were an index (in the range 1, 2, •••, n) which did not occur in (r s),
then Theorem 4 could be used to decrease λ(r, s), contrary to hypothesis.
Hence, every integer 1, 2, , n occurs in (r; s) so that ?,(?•) +λ(s) — λ(r, s)
= n. Let λ(r)=p so that l < l p < f t , and, by an application of Theorem
3, let us cause all the integers 1, 2, , p to be the ones occurring in
r. Then, since p + 1, p + 2, , n do not occur in r, these, as well as
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at least one of the numbers 1, 2, , p must occur in s, since (r s)
was assumed improper.

Denote by a one of the indices common to r and s. If, for some
index β in the range p + 1, p + 2, •••, n, the pair α, β were not block-
ed, then application of [βά] would reduce λ(r, s) by one, contrary to
hypothesis. Hence, every such pair a, β is blocked and, in particular,
must be an associate pair since β occurs in s alone and the diagonal
column is being disregarded. Consequently, since a must be an associa-
te in s of each of the indices p + 1, p + 2, •••, n, there must be at least
7z —p repetitions in r. This is impossible since p distinct integers plus
n — p repetitions cannot occur in n — 1 columns.

9 Normal sets* We now fix our attention on proper, unitary
dual-sets (r s). Let us consider all nonsingular sets of the form (r s')
= [<xβ] (r s); they are then necessarily proper and unitary. The proof
of the Independence Theorem for (r s) would, of course, follow from
the proof for any one of the sets (rf sf) (Theorem 4). We have seen
in § 8 that the number λ{r') -f λ(s') cannot exceed λ(r) \-λ(s). If, for
some pair of indices a, β we have λ{r') + λ(s') <Λ(r)4-Λ(s), let us then
exclude (r s) from further consideration and restrict our attention to
(rr s'). This process of reducing the number of dual-sets to be consider-
ed is brought to a halt by the requirement that all of the dual-sets be
nonsingular.

These considerations lead us to the following definition. A proper,
unitary set (r s) is said to be irreducible if each (rf s') obtained from
it by applications of the reduction Theorems, with the restriction λ(rf)
+ λ(sf) < λ(r)Jrλ{s)J is singular. All other proper, unitary sets are said
to be reducible.

It is clear that if a given pair of indices α, β, both occurring in
the same row of a dual-set, is not a blocked pair, then the dual-set is
reducible. Hence, every pair of indices occurring in the same row of
an irreducible dual-set must be a blocked pair, and, in view of our
usual agreement on the diagonal column, must be associates in that
row. Thus the application of the reduction Theorem 4 can no longer
aid us in restricting the class of dual-sets for which the Independence
Theorem need be proved3.

We still have available the reduction Theorems 1, 2, 3, and 5
which enable us to reorder columns, interchange rows, and rename
indices. By the use of these theorems we may restrict our attention,
finally, to the normal sets which we now describe.

(1) The diagonal column is the first column and rι==s1=l.
3 If a occurs in the first row of the proper set (r; s) and β in the second row, then

[βa] (r;s) = (r;s) while \aβ] (r;s)=-(aβ)(r;s) so that Theorem 3 may be used to obtain the
same result.
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(2) If λ(r)=p, λ(r) + λ(s) = σ<Ln, let the distinct indices which occur
in the first row be named 1, 2, •••, p and those in the second
row, exclusive of the diagonal column, be named ^4-1, ι°4-2,
••• , a (l<Lrt<Lp, p + l^Lst^σ except s ^ l ) .

(3) The columns are so ordered that for 2<Li<iσ one of rij9 st

occurs at least once in the preceding i — 1 columns and the
other does not, while for i^> a both r.u s h occur in the preced-
ing i—1 columns.

(4) The set (r s) is irreducible.
The restrictions in (1) and (2) may be deduced by the use of reduc-

tion Theorems 2 and 5 in the one case, and 3, in the other. The pos-
sibility of imposing the restriction (3) is not so obvious, although the
only reduction Theorem involved is that which reorders columns. One
way of doing this is as follows.

Immediately to the right of the diagonal column, place all of those
columns for which rί = l. Follow this by a column having 2 in the
first row and a mate of 1 in the second row; then, by a column hav-
ing 3 in the first row and a mate of 1 in the second row, etc., until
we have placed a column having p in the first row and a mate of 1
in the second row (all of these columns must necessarily appear in
(r s) since, by the property of irreducibility, 1 is associated with each
of the numbers 2, 3, , p). If every index p-hl, p + 2, , a is a mate
of 1, we have already put in place exactly a columns, and the remain-
ing n — σ columns may be made to follow these in any desired order.
If, however, some integer in the range /?4-l, j^ + 2, , a is not a mate
of 1, place in position, next, a single column chosen from the remain-
ing unplaced columns and involving this integer. Doing this for all
such integers, we find that we have now placed σ columns and the
remaining n — σ columns may again be placed as desired. It is easy to
verify that this set will satisfy the requirement (3),

10* Proof of the Independence Theorem for normal sets* We shall
show that, corresponding to every normal set (r s), we can exhibit a
matrix A for which Vr

s(A) φ 0.
Let

A Q = Σ )
ΐ = l j=2 J J

where the λt and μh are indeterminates and Eu is the nth order square
matrix having all elements equal to zero except the element in the ith
row and jth column, which is unity. Since the matrix AQ is a diagonal

n

matrix, we have A S = Σ ^ i ^
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( 3 ) AlEuυ=λuEUΌ, EUΌAl=λlEUΌ, ErjSjBύ=B0Er.s.=0 ,

where it, v=l, 2, •••, n and j=2, 3, •••, w. The equations (3) depend,
of course, on the hypothesis that (r s) is normal (and hence, proper)
so that no rt is equal to an s3 except possibly for j==l (which is not
involved in BQ).

With the help of (3) we may verify by induction that

( 4 ) ( Λ + β o ) * = i 4 ϊ + Σ μ&lKf λ*)E Sj,
j = 2 J J J J

where

holds for every integer & 2> 0 .
Now, if we choose μj = λr. — λs. we see that:

where we have exhibited the ith row of the determinant. Bearing in
mind the requirement (3) for a normal set, we see that by elementary
transformations of this determinant the first a columns can be made
equal to

while the last w — ̂  columns will be linear combinations of these. Thus
we see that in the case σ=n the determinant Vl(A0 + B0) is, except
possibly for sign, equal to the classical determinant of Vandermonde,
and therefore is not identically zero.

In order to complete the proof of the Independence Theorem for
those normal sets (r s) for which a < n, consider the matrix

We prove by induction that

(Λ + 5o+C0)*=(Λ + 5o)Λ+ Σ φ1kEr3±ψjkEjsA-χjkE

where

K
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Now, using (4) we may write

( 5 ) (

where

In this case (<? <C ̂ ) we choose

μ^λjλr.

and find that

Using these expressions in (5) we obtain:

(i = 2, 3 , •••, a)

The last reduction involves once again the use of the elementary
transformations on determinants and the normalization which we have
effected on (r; s), specifically the restriction (3) in §9.

This completes the proof of the Independence Theorem for all non-
singular dual-sets; for, as we have shown previously if Vr

s(A) vanishes
identically, then there would exist a normal set for which this generaliz-
ed determinant of Vandermonde would vanish identically.
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