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l Introduction* We shall study in this paper steady, axially sym-
metric, irrotational flows of an incompressible liquid. We shall be inter-
ested in motions that exhibit a free surface along which the liquid is
bounded by a gas whose inertia is negligible relative to that of the
liquid, so that the gas can be assumed to be at rest and to have con-
stant pressure. The determination of flows of this type is a mathematical
problem of exceptional difficulty because the shape of the free surface
is not known and must be calculated as part of the solution. In the
case of axial symmetry, no systematic method has as yet been developed
for finding free surface flows past prescribed obstacles, although a few
calculations, notably those by Trefftz [17] and by Southwell and Vaisey
[16], have been executed on a basis of inspired guesswork. The chief
drawback of the work done by these investigators is that their succes-
sive approximations to the shape of the free surface are obtained by
trial and error and are slow to converge.

Our hope in the present article is to present techniques for the
systematic calculation of free surface flows, with emphasis on the axially
symmetric case. Recent advances [3, 4, 5, 6, Ί, 18] in the mathematical
theory of cavitational flow form the basis for our method. Although
rigorous proof of the convergence of the series expansion and of the
iterative scheme which we shall use appears to be too difficult to under-
take at this time, nevertheless sound theoretical reasons are given for
expecting the procedures to converge. This is in contrast with other
schemes that the author has seen suggested, such as the interation pro-
cess for the Trefftz integral equation, which theory would predict to
diverge for more or less the same reason that the classical Neumann
series for solution of the Dirichlet problem diverges, namely, because
the lowest relevant eigenvalue does not exceed 1. The difference here
between our approach and the earlier ones is analogous to the difference
between solving an equation x=f(x) by Newton's method, for which
we expect rapid convergence, and solving the same equation by succes-
sive approximations of the type Xn+i=f(%n), which will diverge if the
derivative of the function f(x) exceeds 1. The significant disagreement
that will be found between our numerical results and the earlier work
in the field can be attributed partly to this failure of convergence and
partly to the insensitive nature of the guesswork involved in the other
methods.
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We shall confine ourselves in this paper to only the simplest models
of axially symmetric free surface flow, since treatment of more general
problems does not add difficulties in principle, but does lead to tedious
and inscrutable calculations. Our first study will be concerned with the
vena contracta; we calculate the contraction coefficient of a jet issuing
from a circular orifice in a plane wall. Our next model will be the in-
finite cavity behind a circular disk, for which we compute the drag co-
efficient. Our final and most difficult model will be the finite Riabou-
chinsky cavity between two circular disks. In this case we prescribe
the cavity length and must calculate not only the drag coefficient, but
also the cavitation parameter and the cavity width. By carrying through
the computations both for a finite and for an infinite cavity, we are
able to present a theoretical plot of the drag coefficient as a function
of the cavitation parameter.

In order to derive the numerical results, it is necessary for us to
extend considerably the mathematical theory of cavities and jets. This
material is quite possibly as interesting and informative as the numeri-
cal work itself. The plan of the paper will be to discuss theory and
qualitative analysis in the early sections and to proceed to numerical
examples in the later sections.

At this point we summarize our theoretical contributions and out-
line our method of attack. The Stokes stream function ψ of an axially
symmetric flow satisfies in the meridian plane the partial differential
equation

(1.1) A ψ - λ ψ y = ψ χ ψ y y ψ χ

y v

where x is the coordinate measured along the axis of symmetry and y
represents the distance from this axis. We consider the free boundary
problem for the more general equation

(1.2) jψ-±ψ=o
y

and study the dependence of the solution on the parameter ε. For ε=
0, equation (1.2) governs the stream function of a plane flow. Since a
variety of plane flows with free boundaries are known explicitly, we
are able to develop the stream function ψ of the corresponding free
boundary problems for (1.2) in perturbation series in powers of ε. We
interpolate to estimate quite accurately the desired solution of the three-
dimensional problem (1.1) corresponding to ε = l by combining the infor-
mation obtained from the series development with an analysis of the
degenerate cases ε= — 1 and ε=-fco.
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In applying the perturbation method to the free boundary condi-
tions we are led to a linear mixed boundary value problem for the
first order term. A generalization of this mixed problem yields a systema-
tic determination of the corrections required for a scheme of successive
approximations to the free boundary. The difference between the
stream functions of two consecutive approximations satisfies here the
linear mixed boundary value problem in question. When the initial
terms of the perturbation series do not provide sufficiently accurate re-
sults, we resort to successive applications of the mixed problem to im-
prove our approximations at an exponential rate of convergence com-
parable to that obtained in Newton's method.

The actual execution of the perturbation method is significantly eased
by a reformulation of the free boundary problem for (1.2) in terms of
an analytic function g(z) of the complex variable z=x + iy. This refor-
mulation is based on an earlier treatment of axially symmetric free
surface flows [4], and it leads to interesting qualitative results. In par-
ticular, we establish in this way that, for all our models, the free bound-
ary depends monotonically on the parameter ε.

Various other auxiliary theorems are derived in the paper which
are useful in the numerical calculation of cavities and jets. For small
values of the cavitation parameter we establish asymptotic formulas for
the drag and cavity dimensions in the case of the Riabouchinsky model.
Some of these formulas confirm theoretically information which has
heretofore been deduced on an empirical basis for axially symmetric
flows [14]. Among the relationships which we derive for the gross
physical quantities describing cavity flow is the formula

(1.3) 4hD=S(σV-M)

expressing the drag D in terms of the cavity length 2h, the cavitation
parameter σ, the cavity volume V and the virtual mass M. The com-
bination of σ, V and M appearing on the right in (1.3) has been shown
[5, 6] to be a maximum for free surface flows. Thus, although this
formula is valid only for conical nose shapes, it is nevertheless signifi-
cant, because the stationary character of the quantities involved permits
us to estimate the drag with an accuracy proportional to the square of
the error in our approximation to the cavity shape.

The arguments and proofs presented in this paper will in some cases
meet the standards of full mathematical rigor and in others will depend
more on heuristic reasoning. No further comments will be made in this
connection, since the mathematicians interested in more precise formu-
lation will easily discern where there are problems still calling for study,
while the readers whose main interest is in the physical implications of
the investigation should find all the material on a sound theoretical basis
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and the arguments thoroughly convincing and substantial.

2. Variational expression for the drag* In this section we discuss
three-dimensional free surface flows which do not necessarily possess
axial symmetry. We shall consider flows that are uniform at infinity
with speed 1, and we shall divide the boundary Γ of the fluid into two
parts, the fixed boundary Γλ and the free boundary Γ2. The flow is
governed by a velocity potential φ which is harmonic in the region Ω
exterior to the surface Γ and which has an expansion of the form

(2.1) φ χ+
r3

in the neighborhood of infinity, where x is the rectangular coordinate
measured in the direction of the motion at infinity, where r is the
distance from the origin, and where α is a constant whose physical
significance will be discussed presently. We assume that the density of
the fluid is 1, and thus Bernoulli's law gives for the pressure p the
equation

(2.2) -ί(Γ^)2 + p=const.
Z

The velocity potential φ has a vanishing normal derivative

(2.3) - 3 ^ = 0
dn

along the complete boundary Γ, and in addition the pressure p is con-
stant along the free surface A, so that by (2.2) we have there a second
boundary condition of the form

(2.4) (Fφγ=l + σ,

where σ is the cavitation parameter of the flow.
We interpret the fixed boundary Γλ as a system of rigid shells,

whereas the remainder of the region inside the boundary surface Γ will
be considered to contain vapor, or gas, whose total volume we denote
by V. The virtual mass M of our fluid motion is simply the energy
integral

(2.5) M=\\[(Fφ-FxYdxdydz
Ω

extended over the entire flow region Ω. The volume V and the virtual
mass M are related to the coefficient a occurring in the expansion (2.1)
by the familiar formula [6]
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(2.6)

For the physical problems arising in the study of cavitation, the rigid
walls Γτ are known, but the free surface Γ2 must be determined, pre-
sumably from the extra boundary condition (2.4). However, it has been
shown [5, 6] that if we drop the auxiliary condition (2.4) and allow the
free surface Γ2 to vary while Γ1 is held fixed, the choice of Γ2 which
solves the extremal problem

(2.7) M-σV=Aπa-(l 4- σ)V= minimum

selects Γ2 as the free surface satisfying the constant pressure condition
(2.4). This result follows from the fact that if we subject the variable
surface Γ2 to an infinitesimal normal displacement of magnitude δn, the
consequent first order perturbations δV, da and SM in the physical
quantities V, a and M are given by the Hadamard formulas [6]

A,

(2.8)

(2.9) Sa=

(2.10) dM=[[[(Fφ)2-l]dndA, '

where dA is the area element along the surface Γ2. From these formulas
we verify, indeed, that (2.4) is equivalent to the variational statement
that

(2.11) δM-σδV=0

for every possible choice of the displacement δn.

The variational principle (2.7) would obviously be suitable for estimat-
ing the energy of cavitating flows. We shall establish that for special
shapes of the fixed boundary Γλ the variational principle can also be
used to calculate the drag. We suppose henceforth that Γλ consists of
two portions, each situated opposite to the other on a facing pair of
symmetrically placed circular cones whose axes coincide with the #-axis
and whose vertices lie h units from the origin. A case of particular
interest occurs when the two portions of I\ consist of symmetric sections
of planes perpendicular to the #-axis. The free surface Γ2 is a sheath
connecting the two parts of the rigid boundary Γlf and the flow is
merely a generalization of the finite cavity model due to Riabouchinsky.

Let us now magnify the whole configuration Γ by a factor 1 + y,
where η is a small positive number. There will result from this infini-



616 P. R. GARABEDIAN

tesimal magnification an infinitesimal normal displacement δn of the
surface Γ, and thus formulas (2.8) and (2.10) yield the relation

(2.12) <lM-tf<5F=f( [(Fφγ-l-σ]dndA

r

for the corresponding increments in M and V. Along the free surface
Γ2 the integrand in (2.12) vanishes, according to (2.4), while on Γλ we
find easily that

(2.13) dn=ηh sin θ,

where θ is the half-angle of the cones forming Γlu Therefore, by (2.12),

(2.14) dM-σδV=[[ [(Fφ)2-1-σ]yh sin θdA

r

The integral on the right consists of two parts evaluated over the two
opposite portions of Γτ. One of these two portions of Γτ is considered
to be the actual obstacle in the flow, and the drag D due to fluid pres-
sure on this obstacle is given according to Bernoulli's law (2.2) by the
integral

(2.15) D==j\\

extended over this portion of Γl9 By d'Alembert's paradox, the force
exerted on the remaining portion of Γ1 must be equal and opposite to
the drag Ό, and thus the two parts of the integral (2.14) over Γx are
equal and each has the value — 2Zλ Hence (2.14) states that

(2.16) δM-σδV= -4ηhD

On the other hand, V and M have the dimension of length cubed, so
that they actually increase by the factor (1 + ̂ )3. Since a is dimension-
less, this yields directly the relation

(2.17) δM-σδV=3τj(M-σV) .

Comparing equations (2.16) and (2.17) and dividing out the infinitesimal
factor 7], we obtain the fundamental expression

(2.18) AhD=S(aV-M)

for the drag D in terms of the virtual mass M.
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The significance of formula (2.18) for the calculation of the drag D
lies in the stationary character of the terms on the right under small
shifts of the free surface Γ2. If we have made quite accurate estimates
of the cavitation parameter σ and the cavity length 2h, while our error
in determining Γ2 is of the order δn, then we can calculate D with an
error of the order of magnitude (δnf by substituting into (2.18) values
of V and M computed accurately for the flow past our approximation
to Γ. Because of the minimum principle (2.7) we can even state that
the error occurring in this calculation of D is negative. In other words,
our variational principle gives an exceptionally sharp lower bound for
the drag Zλ

An interesting qualitative analysis of three-dimensional cavitational
flows without axial symmetry can be based on formula (2.18) and the
variational identity (2.11). For the sake of simplicity, let us assume
that the two portions of the fixed boundary Γ1 lie in parallel planes and
are symmetric with respect to the y-axis and z-axis. In particular, they
might be elliptical plates. We hold a fixed and continuously alter the
shape of the plates Γx in such a manner that h remains invariant. For
the case of elliptical plates, this implies that for each choice of the
eccentricity the size of the plates is uniquely determined. The infini-
tesimal normal displacement δn of the liquid surface Γ generated by
this continuous process must vanish on the rigid boundary Γx because
of the invariance of h. Hence the relation (2.11) is valid, and it follows
from (2.18) that the drag D remains unchanged. Thus for a flat plates
of variable shape the drag D depends only on the cavitation parameter
σ and the cavity length 2k. Therefore it suffices to calculate D for the
axially symmetric case of a circular disk alone in order to obtain D
directly for such plate shapes as the ellipse or the rectangle. It would
be interesting to have experimental confirmation of this invariance phe-
nomenon.

The invariance of D casts some doubt on the existence of three-
dimensional cavity flows for the Riabouchinsky model with a flat nose
which is quite long and narrow. Indeed, with D invariant the limit of
the three-dimensional cavity flow past an elliptical plate whose eccentri-
city approaches 1 cannot be the plane flow past a vertical segment, since
if the limit process could be performed smoothly, it would be the drag
coefficient, and not the drag itself, that would remain finite. One is
left to deduce that the flow degenerates in some unknown manner.
Another limiting case to substantiate this deduction occurs when the
plane nose consists of two fixed circular disks joined by an ever-narrow-
ing strut. If the cavity behind such a nose were to remain well-defined,
it is difficult to imagine what the limiting flow could be when the strut
degenerates completely. The nature of the curve of separation may be
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at the root of this anomaly.

3 Dependence on the dimension parameter. We turn our attention
to generalized axially symmetric free surface flows in space of ε-f-2
dimensions. The velocity potential φ and the stream function ψ for
such flows obey the elliptic system of partial differential equations

(3.1) Ψx= \ty, Ψy=-\ΦX

y- y2

in the meridian plane of the coordinates x and y, where x measures
distance along the axis of symmetry and y measures the perpendicular
distance from this axis. We shall denote the meridian cross section of
the flow region by Ω and we shall denote its boundary by Γ. Since Γ
is a streamline, we always require ψ=0 there. We divide Γ again into
fixed boundary arcs Γλ and a free boundary Γ2. Along Γ2 the general-
ized constant pressure condition

(3.2) X dφ-=l
y2 dn

is imposed. We can eliminate ψ from (3.1) to obtain for ψ the single
second order equation

(3.3) Φ** + ΨW~ΦV=O,

and we shall be interested in using the dependence of the solution ψ on
the parameter e as a tool for investigating the physically significant
case e = l of genuine axially symmetric flow in three-dimensional space.

We start by convincing ourselves that for a properly set free boundary
problem ψ should be a regular analytic function of ε for all complex
values of ε lying in the half-plane

(3.4)

This conclusion is based on a consideration of the Dirichlet integral

(3.5)

whose Euler equation is (3.3). The established theorem on the existence
of axially symmetric free surface flows [5] is based on the minimum
problem (2.7) for the virtual mass M and thus involves a Dirichlet in-
tegral of the type (3.5). Since the Dirichlet integral (3.5) makes sense
for a flow region including the axis of symmetry only under the restric-
tion (3.4), we are able to formulate the existence proof only for such
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values of ε, and even for these values the problem poses numerous
difficulties. Nevertheless, we expect a unique solution ψ to exist for
each ε in the half-plane (3.4) and hence we expect ψ to be regular there
in its dependence on ε.

Our convictions in this respect are substantiated by knowledge of
the explicit formula

1 -+-P UP

(3.6) φ-

for the flow past the unit sphere r = l , which exhibits a singularity only
when e= — 1 . While for every ε>> —1 the stream function ψ defined by
(3.6) describes uniform flow at infinity, the limit of (1-f ε)ψ as ε—> —1
has spherical level surfaces and is best interpreted physically as the
Green's function of a three-dimensional sphere.

Although the existence proof used above to establish regularity of
Φ in the half-plane (3.4) has been worked out in detail only for cavities
[5], it can be carried through equally well for jets, and hence the re-
gularity should be as described for all the models we shall have occasion
to treat. The significance of the region of regularity in the ε-plane is
that it indicates the radius of convergence of the series expansion

(3.7) ψ(x, y; ε) = φo(x, y) + εψ1(x, y)Jrε2ψ,(x, y)Λ

of ψ in powers of e, which will be the principal item under discussion
in this section. Since (3.4) is equivalent to the inequality

(3.8)

we can produce convergence in the entire region of established regularity
by introducing the substitution

(3.9) 3=--?_-
ε + 2

and rearranging the series (3.7) in increasing powers of the new variable
3. This brings the relally relevant value ε = l , corresponding to δ=l/3 ,
well inside the circle of convergence ] δ | < l .

The form of equation (3.3) suggests that it should not be too difficult
to determine in succession for a prescribed free boundary problem the
coefficients ψ0, ψl9 φ2, ••• of the series expansion (3.7). However, since
Φ behaves like y1+s for small values of y, it turns out to be more con-
venient to introduce the new unknown function

(3.10) U=-£
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and to study instead its power series development

(3.11) U(x, y; ε)=Uΰ(

The first term Uo is simply the stream function for the plane free
boundary problem, and it can be determined explicitly by the hodograph
method whenever the fixed boundary Γτ consists of polygonal arcs. By
substituting the power series (3.11) into the differential equation

(3.12) Uπ+Uyy + j-Ut-j U-O

satisfied, according to (3.3), by U, and by equating to zero the factors
multiplying the various powers of e in the resulting identity, we obtain
the recursive system of Poisson equations

(3.13) ΔU3=- E O ^ — ί < ^ ! = i

for the higher coefficients Uu U2, . All the terms Uή satisfy on the
fixed boundary Γx the same boundary condition

(3.14) U, = 0,

and by deriving a further recursive system of boundary conditions for
the Uj on the free boundary Γ2 of the known flow region Ω for the
plane case e==0, we shall contrive to formulate a set of linear boundary
value problems in this known region Ω which determine systematically
and uniquely all the coefficients Uj.

For arbitrary values of e we represent the free boundary curve Γ 2

in the parametric form

(3.15) z=z(s ε)

in terms of the arc length s measured, with the flow region on the left,
from the point of separation from Γτ. We introduce the notations

,« 1Λx - dz 3 1 / 3 . 3 \ 3 1 / 3 , . 3 \
3s dz 2\dx dyJ dz 2\dx dy /

According to the definition (3.10), we must have Z7=0 on I\, and com-
bining this with the constant pressure condition (3.2), we obtain the
single complex free boundary condition

(3.17) φ + iU=s

along Γ2, by virtue of the differential system (3.1), which can now be
expressed in the form
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(3.18) r t + iU-.= ^L.

Because of (3.18) and the relation 17=0 on Γ2, differentiation of (3.17)
with respect to s yields

(3.19)

We note that since s represents arc length, we have

sέ l z + ί(3.20) sέ l, + ί 2 & \ l
dε dε I dε

along Γ2, where /c denotes the curvature.
With these preliminaries in mind, we proceed to differentiate the

free boundary condition (3.17) with respect to ε. We find

(3.21) ^ ^
dε dε

whence by (3.18) and (3.19)

(3.22) (pβ + itfε)έ + ~ - = 0 ,
dε

since U=0 on Γ2. Differentiating (3.22) with respect to s and multiply-

ing by έ, we obtain

(3.23) - i Λ ( i ? ^ i?
3s 3s dε

We take the real part of (3.23) to derive by (3.20) the relation

(3.24) <*ϊ± + κU9=0.
3s

On the other hand, differentiation of (3.18) with respect to e yields

(3.25) a^ + ί l^^^L + iL,
dz dz 2y 2y

so that we can eliminate φs from (3.24) to obtain along the free boundary
Γ2 the condition

(3.26) A-(ifUe) + κifUe=0
dn

for the function Us alone.
If we set ε=0 in (3.26), we arrive at the boundary condition
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(3.27) Mh+KU^Q
dn

for the first order coefficient U,. By differentiating (3.26) repeatedly
with respect to e and setting e=0, we can derive analogous boundary
conditions along Γ% for the higher coefficients Uj. All these conditions
have the form

(3.28) <*L.+κui=Bi9

dn

where the Bό are known expressions involving only the earlier coefficients
Uo, •••, Uj-^ Thus we can find in succession all the coefficients Uό by
solving, one after the other, the linear mixed boundary value problems
(3.13), (3.14), (3.28) in the known region Ω of the plane flow calculated
for e=0. For larger values of j this program turns out to be unfeasible
in practice, but we show in this paper how even the first two terms Uo

and U1 can be used to give a good approximation for three-dimensional
axially symmetric free surface flows.

We indicate here how to solve the mixed boundary value problem
(3.13), (3.14), (3.28) in closed form when Γλ consists of polygonal arcs.
It suffices to determine in the plane flow region Ω a Green's function
H(z19 zz) with the following properties. At the point zL=z>, the function
H has a logarithmic singularity of the form

(3.29)

while in the rest of Ω it remains bounded and satisfies Laplace's equa-
tion

(3.30)

The boundary condition

(3.31) H=0

is imposed on Γlf whereas along Γ2 we require

(3.32) dH-+κH=0.
dn

The solutions of (3.13), (3.14) and (3.28) can easily be expressed in terms
of H and the given data by means of Green's formula.

We denote by

(3.33)
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the complex potential of our plane free streamline flow, and we consider
the conformal transformation

(3.34) w=1\og(idζ)
i \ dz I

of the flow region Ω onto a region Ω* of the w-plane which is bounded
by vertical lines Γf corresponding to Γτ and the #-axis and by horizontal
lines Γf corresponding to Γ2. The conformal transformation (3.34) leaves
the conditions (3.29), (3.30) and (3.31) invariant, but it brings (3.32) into
the simpler form

(3.35) dH-+H=0, ιv=u + iv ,
dv

without a variable coefficient. Hence the harmonic function

(3.36) H* = dH ±H
dv

solves a Dirichlet problem in Ω* with the single boundary condition
i ϊ* = 0, since the condition (3.31) appears only on the vertical lines Γf
and can therefore be differentiated with respect to v. Thus we can find
jff* in closed form with the help of the Schwarz-Christoffel transforma-
tion, and it is then an elementary problem to integrate the ordinary
differential equation (3.36) determining the desired Green's function H.

We carry out the details of the above procedure for calculating H
in the case where the logarithmic hodograph region Ω* is the semi-
infinite strip

(3.37) 0 O < * v>0.

This hodograph will occur when we study the vena contracta and the
infinite cavity. In the strip (3.37), we denote by G the Green's function
which satisfies everywhere the usual boundary condition G=0, and we
introduce analytic functions P and Q of the complex variable w and the
parameter t such that

(3.38) G(w, t) = έ? {P(w, t)} , H(w, t) = ̂  {Q(w, t)} .

In terms of these functions, (3.36) takes the explicit form

(3.39) d Q A ?ίQi
dw dτ

where τ is the imaginary part of t. We can integrate (3.39) to obtain
the representation
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(3.40) Q(w, t)=ieiw\e-tm(^^Q--P(w, t))dw
J V dτ /

for Q in terms of P. One verifies easily that

(3.41) P(w, ί)= log
cos 2w —cos2£

and thus (3.38) and (3.40) yield the explicit formula

(3.42) H(w,t)= og + 2 e h g t h ^
cos 2w — cos 2t 2%

-2eί(w-Γ)logthίv~~t\
2ί )

for the Green's function H of the strip (3.37), where th z stands for
the hyperbolic tangent of z.

In applying the perturbation series (3.11) to study specific models of
free surface flow, we must impose suitable normalizations on Z7, either
at infinity or at the point of separation, in order to obtain a well-defined
answer. Thus we need to investigate the variation of the separation
point under changes in the value of ε. According to (3.2), the first
order normal displacement δn of the free boundary Γ2 which results
from infinitesimal deviations in ε from the value ε=0 is given by the
expression

(3.43) dn=-εUι=-eψ1 .

The corresponding vertical shift δy in Γ2 is therefore

(3.44) δ ^ ή
y

X fife

We denote by Y the ordinate at the point of separation and we assume
that the tangent to Γ there is vertical. For this case we derive from
(3.44) the relation

(3.45) ^ ^
8ε

at ε—0, since s vanishes, by definition, at the point of separation. The
conformal transformation (3.34) allows us to bring (3.45) into the form

(3.46) ^ZM
de du

since by hypothesis ά=sinw-»0 as s->0. In practice (3.46) is more
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useful than (3.45) because, while the functions governing the flow have
regular series expansions in the w-plane at the point of separation, the
corresponding developments proceed in powers of the square root of the
argument in the physical plane. We notice that the formula (3.46) yields
the first order tangential shift of the point of separation in the case of
a general slope for Γ. We do not derive the analogous expressions for
higher order shifts because we shall not have occasion to use them.

We close this section with a few remarks about the scope of the
perturbation method we have just described. It can be seen that the
technique is not restricted to the case of polygonal fixed boundaries Γlf

since the shape of Γτ can be made to depend on the parameter e in such
a way that, while Γτ is polygonal at the initial stage ε=0, it represents
an arbitrary curved body when e = l. They only effect of this generali-
zation on the perturbation scheme (3.13), (3.14), (3.28) is to make the
boundary condition (3.14) along Γx inhomogeneous. In this generalized
form, we can even modify the method to make it suitable for calculating
plane free streamline flows past curved obstacles. The principal restric-
tion on the method arises from the difficulty in evaluating terms of high
order in e, but we shall indicate later how to obtain any desired degree
of accuracy in connection with our discussion of the Riabouchinsky finite
cavity model.

4* Formulation in terms of an analytic function* In this section
we discuss, for arbitrary values of e, a representation of the stream
function ψ in terms of an analytic function g(z) which serves to simplify
many of the calculations arising in the application of our perturbation
method. We shall not attempt to motivate the basic representation for
Φ, since adequate derivations have already been presented in earlier
papers [4, 5] for the typical case e = l. We simply verify here by direct
differentiation that the expression in terms of g(z) which appears has
all the characteristic properties defining φ.

The equation of the free boundary curve Γ2 can be written in the
form

(4.1) z=g(z)=g(z;e)

for any value of the dimension parameter ε, where g is an analytic
function of the complex variable z in the neighborhood of Γ2. This
form of the equation for Γ2 arises when we substitute into the more
usual equation for Γ2 in terms of x and y the values x=(z + z)j2 and
y=(z — z)!2i and solve for i. We shall establish that the stream function
φ for the axially symmetric free surface flow past Γ2 in space of ε-f 2
dimensions is given by the fundamental formula
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(4.2) Φ{x,V,ε) =

] χ t

in terms of the analytic function g(z ε) and the hypergeometric series

ε-
 ε -~£ i τ r U

2 ' 2 ' ' J
i τ r U f

2' 2 ' ' J Γ(-e/2)' «

where zQ is any fixed point on the free boundary Γ2.
In order to prove (4.2), we use the notations (3.16) to bring the

partial differential equation (3.3) for ψ into the complex form

(4.4) L{ψ] =l*.-
dzdz

+ o .
dzdz 2(z-z) dz 2(s-s) 35

If we treat z as the independent variable and ί as a fixed parameter,
we find easily that the integrand in (4.2) satisfies

(4.5) ψ - ^ - ^ P i f - J , -« i ^ ^ - ^
ί L 2 2 (z-t)(z-g(t;ε))

since it is essentially the Riemann function [4] associated with equation
(4.4). Thus to verify that the right-hand side of (4.2) is a solution of
(4.4), it will suffice to consider only differentiations involving the vari-
ation of the upper limit of integration. In applying the operator L,
the latter differentiations yield the terms

-g{z; e)] V(2 e H =

(4.6) \ ] ^
Δ oZ

and therefore the function ψ defined by (4.2) does satisfy the required
partial differential equation (4.4). This function also vanishes on Γ2f

since for z on Γ2 we can take the path of integration to coincide with
Γ2, and thus the integrand will be real by (4.1). To calculate 3̂ /3w-
from (4.2) and verify the constant pressure condition (3.2), we express
differentiation in the direction of the inner normal to Γ2 in the form

(4.7) A=i£.A._ijJ_.
dn dz dz

Applying this to (4.2), we find along Γ2
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(4.8) ψ-=^
dn

since gr'(« e)=z2 by (4.1). This establishes that formula (4.2) respresents
a solution of the Cauchy problem, with data given along Γ29 which
characterizes the stream function ψ for the axially symmetric flow that
has Γ.Λ as its free boundary. The Cauchy-Kowalewski theorem shows
the uniqueness of this determination of ψ, and thus the representation
(4.2) is proved to be correct.

We introduce next the analytic function

(4.9) ζ(z;ε)

which reduces to the arc length s when z lies on Γ2. It is clear that
C represents the complex potential of a plane flow which has for its
free boundary the meridian cross section Γ2 of the free surface of our
generalized axially symmetric flow. We restrict ourselves in this section
to flow models for which the rigid boundary Γλ consists only of vertical
lines, and we show in such cases how the free boundary problem for
(4.4) can be formulated conveniently in terms of the analytic function
C alone [4].

We choose for zό the point of separation of Γ2 from Γlf and we
notice that because Γλ is a vertical line segment the boundary conditions
ψ=0 and Ψ=0 along Γx are equivalent to each other, according to the
two representations (4.2) and (4.9) for ψ and Ψ in terms of the analytic
function g. To verify this equivalence, we remark that the condition
^ = 0 on Γλ implies that g\z; e)=ζ'(z; ε)2 is real and negative there and
hence that

(4.10) ^ {g(z e)-zΰ}=^ {z-zό} =0

for z on Γλ. Thus the factor multiplying g'(t ε)ΐ/2 in the integrand of
(4.2) is real for z and t on Γlf which leads in turn to the relation ψ=0
there.

The situation on the axis of symmetry is somewhat more involved.
For z=x real, we find that

U 11 ϊ F[ -±- - A- i ix "Z^K? ~ tβ' ε))Ί
K } L 2' 2' '(x-t)(x-g(t;e))}
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-FΪ-±- - ε • 1 l Ί - Γ ( 1 + ε )

and therefore

(4.12) φ , O ; e ) = ^ -

Thus the requirement that the #-axis appear as a streamline takes the
form

(4.13) ^ " I Γ C^—ί]β/2[^—^(ί e)]ε/2C'(ί e)dί i = const.

This condition on the #-axis, together with the relations

(4.14) Ψ=0 on Γ t , φ + iψ=8 on Γ2 ,

and the differential equation

(4.15) JΨ=0 in Ω ,

comprise our formulation of the free boundary problem for (4.4) in terms
of the analytic function ζ.

We can apply the perturbation method described in the previous
section to the boundary value problem (4.13), (4.14), (4.15) by expanding
Ψ in an infinite series

(4.16) Ψ(x, y e)=?F0(a?, y) + eWx{x, y) + ε*Ψ2(x, y)+

and determining the coefficients Ψj in closed form as the solutions of
successive linear boundary value problems in the hodograph plane. The
conditions characterizing the Ψs are somewhat simpler than the conditions
for the analogous coefficients φ5 in the expansion (3.7). Expressions for
the φj in terms of the Ψό can easily be obtained from (4.2). Thus evi-
dently ΦQ=ΨQ, and

(4.17) φλ= Ψ.Λ-1-^ [Tlog
2 JzϋL

since dFjdε=O at e=0, according to (4.3). One can take the point of
view that (4.17) is merely a substitution which simplifies the boundary
value problem for φτ. The conditions which determine Ψλ in the plane
flow region Ω corresponding to the value ε=0 are

(4.18) 8^=0 on Γx , ^ 1 + Λ?Γ1=0 on Γ2 ,
dn

(4.19) Ψτ= - 1 J? \* [log (x-t)(x-g(t 0))]C'(ί ;
2 J^o
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on the #-axis, and

(4.20) JΨτ=0 in Ω .

These conditions can either be derived from (4.17), or they can be
derived directly, by the methods of the previous section, from the basic
relations (4.13), (4.14) and (4.15). They have the advantage that among
them (4.19) is the only one which is inhomogeneous in particular,
the differential equation (4.20) is homogeneous, in contrast with the
corresponding equation for ψx. Thus Ψ1 has an especially simple repre-
sentation in terms of the Green's function H.

Some theoretical conclusions can be drawn from our discussion of
the perturbation series (4.16). To be specific, let us consider the Riabou-
chinsky model, for which Γ\ consists of two parallel segments of equal
length rising vertically from the #-axis. We introduce the conformal
transformations

(4.21) ξ=z + g(z) , y=z-g{v) .

For ε=0, the function ξ maps Ω onto a half-plane overlapping the upper
half-plane Imf^>0, with a rectangle deleted. For e=0, the function η
maps Ω onto a half-plane lying a positive distance above the real axis
and slit along a segment of the imaginary axis. Thus z — g(z) is bounded
away from zero in Ω when ε=0. Now if we attempt to invert the
functional equation (4.2) to solve for Ψ in terms of ψ, the only points
off the ίc-axis at which the inversion could break down are the roots
of the equation z—g(z)=0. Since z — g{z) is bounded away from zero
when ε=0, and since the boundary value problems defining the coef-
ficients Ψj of the series development (4.16) are properly set, it is reason-
able to assume that z —g{z) will not vanish in Ω for small values of e.
Hence ζ(z e) will be a regular function of z without singularities in the
flow region Ω for small ε, and, indeed, this should be true as long as
ε remains in the half-plane (3.4) where we expect convergence of the
series (4.16), rearranged in increasing powers of the more suitable para-
meter d given by (3.9). Our conclusion is that the boundary value
problem (4.13), (4.14), (4.15) for the analytic function ζ is actually equi-
valent to the free boundary problem for the equation (4.4) of generalized
axially symmetric flow, without any introduction of singularities for ζ
in the flow region Ω. The reasons justifying this conclusion for the
Riabouchinsky model are equally applicable in the cases of the infinite
cavity and the vena contracta.

It seems quite remarkable that the simplest free boundary problems
for axially symmetric flow can thus be reformulated in terms of an
analytic function ζ alone, with all the difficulties concentrated in the
non-linear boundary condition (4,13) along the axis of symmetry. While
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our main interest focuses on the physically significant case e=l, the
analysis of the last two sections indicates the usefulness of investigating
the solution ζ for any other special values of e, such as ε=0, from
which relevent information can be obtained. This remark suggests
studying, in particular, the cases where e is an even integer, for ex-
ample, the case ε=2. Here the hypergeometric series (4.3) reduces to
a polynomial and our reformulation of the free boundary problem can
be carried out by far more elementary substitutions. Although the
simpler problems thus obtained apparently still defy explicit solution,
they do serve as an additional justification for our reduction of the study
of the stream function ψ to a study of the analytic function ζ.

We close this section by pointing out a few significant properties of
axially symmetric cavities and jets which follow from the representation
(4.2). First, inversion of (4.2) can be used to establish that the free
boundary curve I\ is analytic [5]. Also, the hodograph method shows
that ζ h&s an expansion about the point of separation z0 as a power
series in (z —zQ)ir\ Hence by (4.2) the actual stream function ψ has a
regular development in terms of the variable (z — zo)

ιl\ Knowledge of
the nature of this development will be crucial for our later numerical
work when we wish to establish accurate interpolation formulas for ψ.
Finally, a generalized difference-differential equation governing the
asymptotic behavior of the free surface at infinity can be set up on the
basis of the boundary conditions on ζ, but the conclusions thus far
obtained in this direction do not justify going into details.

5 Monotonic dependence of the free boundary* In order to inter-
pret our numerical data and to deduce from it information about the
physical problem, it will be useful to have in our possession qualitative
results concerning the behavior of the flow in dependence on the para-
meters which appear. With this in mind, we discuss in the next two
sections a theorem about monotonic expansion of the flow region Ω as
the dimension parameter ε increases and some asymptotic formulas ex-
pressing gross physical characteristics of a steady state cavity in terms
of the cavitation parameter a.

For the sake of simplicity, we confine ourselves again to the Riabou-
chinsky model, with the rigid boundary Γτ composed of two equal
vertical segments rising from the a -axis in symmetric positions with
respect to the 2/-axis. For our analysis, we shall require that the dis-
tance 2h between the symmetric components of Γλ remain fixed and we
shall also fix the point of separation zQ of Γ2 from Γλ and the sym-
metrically located point z$ where Γ.z reattaches itself to Γlt We shall
attempt to show that with these normalizations the free boundary curve
Γ2 corresponding to a positive value of ε lies below the free boundary
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curve Γ2 for the case ε=0 of the plane flow. We shall be led to conclude
that the curve Γ2 shrinks monotonically downwards as e increases. In
particular, for a prescribed nose diameter and cavity length, the three-
dimensional axially symmetric cavity must have a meridian cross section
contained within the corresponding plane cavity.

On the other hand, it is easily established that for ε!>0 the free
boundary Γ2 is convex and hence lies above the horizontal line segment
joining the point of separation zQ to the point of reattachment z£. The
convexity of Γ2 is based on the fact that for ε^>0 the velocity q2 = (Fφf
is subharmonic in the sense that Aq2 + edqllydy^0. Thus q2 attains its
maximum value on Γ2, because it cannot have a maximum either in the
flow region Ω or on the fixed boundary Γlf since ψ can be continued
across Γλ by the Schwarz reflection principle to be even in its dependence
on the distance from Γlm But the condition for irrotationality of the
flow can be expressed along the free streamline Γ2 in the form

(5.1) -3£-+/c0=O.
dn

Since q is identically equal to its maximum value 1 along Γ2 by (3.2),
we see that dq/dn<^0 on Γ2, and hence the curvature K is positive
there by (5.1). This proves the required convexity and establishes a
crude estimate on the shape Γ2 may take.

In order to analyze the monotonic dependence of Γ2 on ε, as de-
scribed above, we study the sign of the infinitesimal normal displacement
dn of Γ.z given for small values of e by formula (3.43). According to
(4.17) we can write δn= — eψl9 and thus we must determine the sign
of Ψτ. We prove that Ψτ^>0 along Γ2 and thus show that for small e
the free boundary is lowered when ε is increased.

The maximum principle is not in itself sufficient to settle the ques-
tion of the sign of Ψlf since the boundary value problem (4.18), (4.19),
(4.20) has positive eigenvalues λ if we replace (4.18) along Γ2 by the
more general condition

(5.2) dΨl-{-λr,Ψ1=0
dn

and alter the other conditions to make them all homogeneous. However,
the value of the lowest eigenvalue λ decreases if we fix z0 and diminish
h steadily, since the image of the flow in the hodograph plane is a
domain which expands as h diminishes and since λ has a classical charac-
terization through a minimum problem for the Dirichlet integral in the
hodograph plane whose solution decreases under expansion of the domain.
Explicit calculation shows that the lowest eigenvalue approaches 1 as
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&—•(), and hence all the eigenvalues λ exceed 1 for the actual Riabou-
chinsky model. Therefore we conclude that the mixed Green's function
H for the hodograph of the Riabouchmsky flow is positive.

The requirements that the points zQ and zf of separation and reat-
tachment remain fixed give at both these points the condition

(5.3) — - 0 ,

according to the formula (3.46) for the tangential shift of the point of
separation. The presence of these two critical points of ψλ is compen-
sated for by the fact that Ψλ grows like a factor times y at infinity.
Thus there are two level curves Ψ1==0 in Ω which emanate from z0 and
zf and proceed either to the point at infinity or to the #-axis. For if
this were not the case, there would exist a subregion of Ω, bounded by
a level curve ^ = 0 and an arc of Γ2, in which Ψ1 would be of one sign,
and an application of Green's formula

(5.4) r,- -ί- \\w,ψ-Hψfs
27rJL dn dnJ

to such a subregion leads to a contradiction of the inequality H^>0.
We shall establish that ¥1<C0 on the #-axis, whence the above level
curves terminate at infinity and ?PΊ>0 on Γ2.

To show that ?Fi<0 on the x-axis, it suffices according to (4.19) to
show that

(5.5) ^\X [\og(x-t)(x-g(t;0))-\ζ'(t;0)dt>0 .

Because of the symmetry of the flow in the ?/-axis, it is enough to prove
(5.5) when # > 0 . We can integrate along Γ and the #-axis, where
ζ'(t; Q)dt=dΦy>0, and thus we have only to verify that

(5.6) arg(a?-ί) + arg(α?-0(ί; 0 ) ) ^ 0

there. By (4.9) we have g'(t;O)=C(t;O)2 and hence g'(t;O) lies between
— 1 and + 1 on the path of integration. Therefore

(5.7) - J? {g(t 0)} > J? {t} ^ 0

on this path, from which (5.6) follows. This completes the proof of the
monotonic dependence of Γ2 on ε for sufficiently small ε.

If we replace g(t;ε) in the representation (4.2) by the function
g(t;Q), we obtain on the left the stream function ψ* of a generalized
axially symmetric flow which has as the meridian cross section of its
free surface the plane free boundary curve Γ2. The stream function
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ψ* is seen to satisfy all the boundary conditions that we imposed on the
previous flow, φ, except that along the #-axis the condition φ=0 is re-
placed by

(5.8) Φ*=^{^f^^f\*al*-tl9l*l*-ff(t ojrc'ίί o)dt\.

By (5.6) and the evident inequality arg (x — t)(x — g(t 0)) < 7r/2, this implies
that φ*^>0 along the a -axis when ε lies in the interval 0<e<^4. We
can use a comparison of the stream functions ψ and φ*, which satisfy
the same differential equation (3.3), to convince ourselves that the plane
free boundary ^*=0 lies above the axially symmetric one φ=0.

To carry through this comparison, we introduce a family of inter-

mediate flows φ, depending on a parameter ε in the interval 0 < ε < 1 ,

which are chosen so that on the a?-axis Φ=εφ*, while elsewhere each φ
fulfills all the conditions satisfied by φ* and φ9 including the differential
equation (3.3) and the free boundary condition (3.2). By the technique

of Section 3, we find that the derivative dφjdε satisfies a linear mixed
boundary value problem for the equation (3.3) with the condition

(5.9)

imposed along the intermediate free boundary Γ2, with dφ/dε =0 on Γlf

and with dφ/dε^>0 on the α -axis. Since we fix the points zQ and z* of

separation and of reattachment, dφjdε must have critical points there,

whereas at infinity dφfdε can grow like a factor times yι+*.

Our objective is to establish that the free boundary curve φ=0

rises as ε increases, which can be done by showing that dφjdε < 0 on
Γ2. In order to prove this inequality, it would be sufficient, as in our
study of the sign of Ψλ on Γ2, to show that the homogeneous boundary
value problem

(5.10) jφτ-±^ή=θ in Ω , - M + Λ & = 0 on Γ2 ,
y dy dn

(5.11) ^i=0 on Γλ , φτ==0 on the α -axis ,

has no eigenfunctions φλ in any of the intermediate flow regions Ω. We
shall present here a proof due to Friedrichs [3] of this uniqueness
theorem for the initial case e=0.

For the uniqueness proof, we set
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(5.12) p=xψx + yψυ-(l + e)ψ,

and we note that this function satisfies the conditions (5.10) because it
actually represents the first order perturbation term corresponding to
an infinitesimal magnification of the flow whose stream function is ψ.
It is clear by the maximum principle that p ̂ > 0 in Ω, since a direct
calculation establishes that p is nonnegative on the boundary of Ω, due
to the convexity of Γ 2 . Indeed, p=y2+sd(xjy)[ds>Q on I\ . Thus we
can express any eigenfunction ψx for (5.10) and (5.11) as a product

and we find

(5.13) \\(rψιγ
t!±^=\\\tf(rvγ+ Vψpf-h2ppxVVx

y J y2

Ω ^ Γ,

by (5.11). Now on Γ2

(5.14) ^Ά
dn

whence (5.13) yields

(5.15)

f J dn y*

y2

dn

It follows that V=Q and therefore that no eigenf unctions for the
problem (5.10), (5.11) exist.

Our argument thus far shows that dψjdε>0 on Γ2 for ε=0 . If

the inequality were to be violated for larger values of ε, it would be
necessary for a subregion β* of Ω bounded by an arc of Γ2 and a

level curve 3^/3ε=0 to appear in the finite part of the plane. In

this subregion £?* the derivative 3̂ /3ε would be an eigenfunction ψx

satisfying conditions of the type (5.10) and (5.11).

Such a subregion β* might form if the region 3^/3ε^>0 were to

expand with increasing ε and were to penetrate to the free boundary

Γ2. In this event, 3̂ /3ε would be negative in the subregion β*,

which would lie entirely in one quadrant. Therefore we could obtain
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a contradiction by applying the integral identities (5.13) and (5.15) to
Ω* with p=φx, since this new choice of p, corresponding to infinitesimal
translation of the flow ψ, vanishes only on the ?/-axis and hence would
be of one sign in β* . In fact, for the physically significant case e=l
it can be verified by appropriate use of the maximum principle that

ψzy>0 for x^>0 , because ψx has on the positive x-axis in this case the
boundary values

(5.16) φ.=W=*. \'

according to (5.8), and the expression on the right is positive in view
of the inequalities

valid along the path of integration.
The only other way that a subregion β* of Ω possessing an eigen-

function ψλ could form as e increases would be for the subregion β* to
appear at first just in the neighborhood of I\ . The occurrence of such
a small subregion β* leads to a contradiction because here we can apply
to β* the integral identities (5.13) and (5.15) with p = ψx if Ω* lies in a

single quadrant or with p=xψx + yψy — (l'hε)ψ if β* intersects the 2/-axis,
since the latter choice for p is positive near the point where Γ2 crosses
the y-axia. Thus a subregion β* of Ω for which 3 ψ/ 3 e is an eigenf unction,
as described above, cannot exist.

It follows that 3^/3ε<0 on Γ2 for any ε^O, which proves that
the free boundary Γ2 rises as ε increases. Setting ε = l , we see that
in particular the free boundary of the three-dimensional axially symmetric
cavity lies below the corresponding free boundary for a plane flow which
has the same points of separation and reattachment. Although we
carried out the details of the proof only for the Riabouchinsky model,
the same method applies to the infinite cavity and to the vena contracta.
The general statement of the result in these cases is that for a prescribed
point of separation the flow region Ω expands monotonically as ε increases.
Thus, for example, the three-dimensional vena contracta is uniformly
thicker than the corresponding two-dimensional jet.

6. Asymptotic formulas* The remarks of this section apply ex-
clusively to three-dimensional axially symmetric cavities. For small
values of the cavitation number σ, we develop asymptotic expressions
for the drag coefficient and for the cavity dimensions. Some of these
formulas were known to Reichardt [14], who was able to give for them



636 P. R. GARABEDIAN

only an empirical derivation. We shall provide for the first time here
a sound theoretical derivation, and in the process we shall succeed in
extending the results considerably.

We introduce once more the Riabouchinsky cavity, with the sym-
metrically shaped nose and tail, which we now denote by Γτ and Γτ* ,
respectively, joined by a free boundary JΠ2 . We suppose that the nose
Γλ and the point of separation z0 are fixed throughout our discussion,
whereas we allow the tail /\* and the point of reattachment z* to
move off towards infinity. The stream function ψ will have at infinity
the asymptotic expansion

(6.1) yr
1/2

where a is the cavitation parameter. This normalization, which is
chosen to be consistent with the constant pressure condition (3.2), is
slightly unusual because the velocity at infinity varies with a, while
the velocity on the free boundary remains unchanged.

The drag coefficient CD is given by the formula

(6.2) CD(σ)=
\ ydy

where the integrations are carried out over the nose Γ1 only. This
formula is applicable to the case σ=0 of the infinite cavity as well as
to the case <7>0 of a finite cavity. We shall establish the asymptotic
expansion

(6.3) CD(σ) = (l + σ)CD(0) + θ(σ)

for CD in the limit as a -> 0 , where o(σ) represents terms such that

(6.4) W

We should emphasize that the remainder o(a) might be only logarith-
mically smaller than σ, and that the point of separation zQ is assumed
to be fixed.

For a fixed shape of the nose ΓΊ , we shall denote by ψ(x, y σ) the
stream function corresponding to the flow past Γλ with cavitation
parameter a . The choice of a determines the location of the tail Γ* .
In order to prove (6.3) it suffices, according to the definition (6.2), to
show that as cr->0

(6.5) Ψ(x,v;σ)=Ψ(x,y
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in the finite part of the meridian plane.

As a decreases, the finite cavity expands and fills out the infinite
cavity, while, by the maximum principle, the solution (l + σ)ll2ψ(x,y;σ)
— φ(x,y;0) of (1.1) decreases to zero through positive values. We
discuss first the possibility that there might exist a positive function
E(σ) which approaches zero so slowly as σ->0 that E(σ)jσ becomes
infinite, and yet such that the limit

(6.6) φΐ(x, y)= lim *S?.ϋύ*(*<>)
o E\a)

is a non-trivial solution of (1.1) in the flow region Ω for the infinite
cavity. The limit function φ* must be positive, since

(6.7) lim ^jX\?)τJi^yj^)= Mm (1 + <J)IΨ(X, V\o)~Φ(%, V10)Mm y

E{σ) °->o E(σ)

but on the other hand it must also satisfy the boundary conditions

(6.8) ^ = 0 on Λ , J^L-f^* = o on Γ9,
dn

according to § 3, since it represents a first order perturbation of the
infinite cavity flow. Because the point of separation z0 has been fixed,
we conclude that ψf has a critical point at z0, as in the examples
discussed in §5. Thus a level curve φ* = l should emanate from z0,
but this contradicts the statement that ψt is positive and excludes the
existence of the supposed function E(σ).

It follows that Φ(x,y;σ) — φ(x,y;0) approaches zero at least as
rapidly as a. Therefore we redefine ψf by (6.6) with E(σ)=a and
proceed to establish (6.5) by proving that the new limit function ψf
vanishes identically. We find immediately that

(6.9) φt= lim
0σ->0

Since the first term on the right is nonnegative, it can grow at most
like a constant factor times y2 as y->^> , whence the same follows for
Φt . Clearly, φ? is a solution of (1.1) satisfying the boundary conditions
(6.8) and vanishing on the x-axis, and since the point of separation z0

remains fixed, φf must have a critical point there. Hence a level curve
Φ* = 0 emanates from zQ and divides Ω into at least two subregions.
None of these subregions can be bounded exclusively by the level curve
ΦT = O and by Γ2 without extending to infinity, since otherwise Φf would
be an eigenfunction for a problem of the type (5.10), (5.11) in the
subregion in question and since the uniqueness proof based on the
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integral identities (5.13) and (5.15) applies in the present situation and
excludes the existence of such an eigenfunction. The conclusion to be
drawn is that a subregion of Ω bounded by a level curve ψ?=0 , by
Γτ, and by the #-axis can be found, and since y~2ψ? remains bounded
as 2/->oo , this outcome contradicts the maximum principle. We deduce
that ψί must vanish identically, and this completes the proof of (6.5)
and (6.3).

For the stagnation cup, for the circular disk, and for cones of
large half-angle, the formula (6.3) stands in remarkable agreement with
experimental data [2, 13, 14]. All experiments exhibit a linear plot of
CD against σ and, with the exception of cones of small half-angle, the
slope of the graph is approximately equal to the intercept with the
axis of ordinates. For cones with a half-angle as low as 15°, however,
the experimental graph remains linear, while the slope and intercept
appear to be unequal [13]. In view of our strict derivation of (6.3),
this discrepancy raises a question which must probably be explained by
taking into account subsidiary effects.

For our discussion of the cavity dimensions, we shall use the
formula (2.18) expressing the drag in terms of the virtual mass. We
note in this connection that in computing the virtual mass M and the
drag D the flow must be renormalized so that the speed at infinity is
1, in accordance with the definitions (2.5) and (2.15). Then (2.18) can
be restated in terms of the drag coefficient CD in the form

(6.10)
2π Y*h

where Y is the ordinate of the point of separation z0. Notice that the
factor 7rY2 represents the area of the projection of the obstacle Γx on
a plane perpendicular to the direction of the flow. We recall that (6.10)
is only valid when the nose Γ\ is a cone or a circular disk; however,
the asymptotic expressions for the cavity dimensions which we shall
deduce from it are doubtless valid for more general shapes.

By Euler's momentum theorem, which amounts to the statement
that the integral

(6.11) \\φψφψ
J L d d Ay

is independent of path, we obtain for CD the additional formula

(6.12)

where d is the ordinate of the highest point on the free boundary Γ.z,
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where the integral is evaluated over a semi-infinite vertical line rising
from this maximum point, and where

(6.13) Ψ = {X + σ)ll2ψ-tfl2

is the renormalized stream function describing motion of the obstacle
through the fluid at unit velocity.

In order to use formulas (6.10) and (6.12) to estimate the cavity
diameter 2d and the cavity length 2h in terms of the cavitation parameter
a , we fit an ellipse Γ' into the cavity whose foci are spaced 2h units
apart along the #-axis and whose minor axis is 2cZ units long. A very
large plane cavity is approximated quite accurately by an ellipse, because
for the plane flow the two conformal mappings (4.21), whose sum is
2z, transform the flow region Ω onto two regions bounded almost entirely
by a horizontal slit in the one case and by a vertical slit in the other,
and because the sum of two such slit mappings represents a transfor-
mation onto the exterior of an ellipse. For a given nose and cavity
length, we have shown in § 5 that the axially symmetric cavity lies
inside the corresponding plane cavity, and hence its shape should be
flatter. Thus it is reasonable to assume that the ellipse Γ' described
above lies essentially inside the axially symmetric cavity.

We can express the stream function ψ' for the axially symmetric
potential flow past Γ' in terms of a pair of elliptic coordinates μ and v
in the form [8]

1 _// 2 -- l 2

l 1 2 *3-1 2 ° A - l

where

#=/zy^-h const., y=h(μ2 —1)1/2(1— p2)ιl'z, μl=

and where the level curve μ=μ0 represents the ellipse Γ' itself. For
this flow we find by explicit calculation that as h —> co

(6.15) \ M-VY*L~£ (T|- log
J y h1 Ji L2 μ —

where the integral on the left is evaluated over the semi-infinite vertical
line segment which terminates at the top of the minor axis. Since the

functions Ψy and ψ'y—y should be of comparable magnitude, we deduce
from (6.12) and (6.15) the asymptotic relation

(6-16) c^ξ
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where the term O(d*/fi2Y2) denotes an expression which remains bounded,
as h-+oo , after division by d^hΎ2.

Because the ellipse Γ' is essentially contained within the cavity
with dimensions d and h, we can assume by the maximum principle
that ψ' — (l±σ)ll2ψ is positive in the flow region Ω . Thus at the summit
of the cavity, which coincides with the upper end of the minor axis of
the ellipse, we find for large h the estimate

(6.17) (1 + σ) (1 + a)^^ 1 +
y Zn y dn 2μ0

since ψr — (l + σ)ll2ψ vanishes there. Hence for large h

(6.18) .if tog *>(*).

On the other hand, the virtual mass M for the cavity should exceed
the virtual mass of the ellipse, whence

(6.19)

We can substitute (6.19) into (6.10) to obtain

σ V l o g(6.20) C i , Y A ^ σ V v l o g ^

Since the free boundary Γ2 is convex, we have V <£πdιh, whence

(6.21) CBY*h^3adrh-f log ^ + θ(f
h d2 \ h

by (6.16), or

(6.22) 2CZ,ΓW^d 4 log - |

Therefore as h->co



CAVITIES AND JETS 641

( 6 2 3 > i ^
JιΎz

Mog

and (6.16) can be refined to yield the asymptotic formula

(6.24) - l - ~ —

expressing the maximum width 2d of the cavity in terms of the cavitation
parameter σ for small values of σ .

From (6.22) and (6.24) we derive

(6.25) ξ l o g

and by comparing this with (6.18) we deduce that there is a constant
such that

(6.26)

Thus according to (6.24)

(6-27)

To evaluate B we have to differentiate (6.10) with respect to σ. From

(2.12) we find

(6.28)
dσ dσ dσ

and hence multiplication of (6.10) by hY2, followed by differentiation
with respect to σ , yields

(6 29) YZC ^ -\-Y'zh^^D — ̂ ^ + 3Y2C ~^-
3<j 3<7 2π dσ

If we consider only terms in (6.29) of the lowest order in σ and if we
note that according to (6.27) we have dh\dσ^—h\σ, we can derive
from (6.29) and (6.24) the asymptotic identity

(6.30) V~ Aπ~hd2 .
3

Substituting this result into (6.20), we find

(6.31) CD<L H
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by (6.26). Hence B<Ll and we must have, in fact, B=l. Thus we
can bring (6.26) and (6.27) into the final form

(6.32) I r - ^ l 02 -- > 5 ~ λ ^ λ •Yλ or a dλ a a

The formulas (6.32), together with (6.24) and (6.3), serve to describe
the three flow quantities CD, d/Y and kjY asymptotically for small
values of a in terms of the single numerical factor CΌ(0) associated with
the shape of the obstacle Γ1. It is consistent with physical intuition
that the ratio kjd is asymptotically independent of the nose shape
altogether. The fact that the numerical factor CD(0) which appears is
to be calculated directly from the infinite cavity flow justifies our use
of the special Riabouchinsky finite cavity model and shows that the
introduction of the artificial tail Γ* need not disturb us. Thus nothing
essentially new would ensue if we were to study instead, for example,
the re-entrant jet model.

In closing this section we carry out a crude check on the asymptotic
expressions (6.24) and (6.32) for the finite cavity dimensions d and h by
comparing them with Levinson's asymptotic formula [10]

(6.33) y^21'2Yίliσj'--x—---ί

(log x)ιlί

for the shape of the free boundary Γ2 of the infinite cavity. Since the
finite cavity is contained within the infinite cavity for a given nose Γτ,
we should find when we set the abscissa x in (6.33) equal to the distance
h from the nose to the center of the finite cavity that the resulting
ordinate y exceeds the maximum altitude d of the finite cavity. Thus
according to (6.33) we should obtain for large values of h the inequality

(6.34) ^
(log h)1"

Actually, (6.24) and (6.32) combine to show that

(6.35) d~Γ _
(log h)Uί

which is in agreement with the estimate (6.34). It is interesting that
the coordinate y of the infinite cavity exceeds the altitude d of the
finite cavity asymptotically by the simple factor 21/2

7. Calculation of the contraction coefficient. We turn in this
section to the numerical calculation of the contraction coefficient Cc for
the axially symmetric vena contracta. In the meridian plane, our model
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is composed of a flow region Ω bounded by the x-axis, by a rigid wall
Γλ consisting of the semi-infinite segment y^>Y, x=0 , and by a free
boundary curve Γ2 which separates from Γλ at the point za=iY and
proceeds to the right, descending to fit at infinity the horizontal asymptote
y=X. For three-dimensional flow, the contraction coefficient Cc that
we must compute is defined by the formula

(7 D C . - ^ - .

Our method of calculating Cc is based on a consideration of the
above vena contracta model for generalized axially symmetric flows ψ
satisfying equation (3.3), and on the introduction of the corresponding
contraction coefficient

(7.2) Cc(e) = X(ey+*IY(ey+* ,

which depends on the dimension parameter ε . The generalized stream
function ψ=ψ(x, y ε) is a bounded solution of (3.3) in Ω satisfying the
boundary conditions

9,
(7.3) ψ=0 o n Λ + Λ , λdA=i o n Γ

y* dn

(7.4) φ=Xι+2l(l + e) for y=0.

To supplement the perturbation scheme outlined in §§ 3 and 4, we shall
determine the vena contracta explicitly in the degenerate cases e= —1
and ε=4-oo.

For ε!>0 it can be shown by the method of § 5 that the free
boundary Γ2 of the vena contracta is a convex curve. The proof,
which is based on (5.1), will not be repeated here. It follows that Γ2

lies below that line y=Y, but Γ2 must rise towards this line as e
increases, by the monotonicity theorem of § 5. To study what happens
in the limit as e—> + oo , it is best to consider the velocity potential φ,
which satisfies the partial differential equation

(7.5) Aφ+—φy = 0.
y

In the limiting case ε= -f oo , (7.5) reduces to the first order equation
φv=0 , which states that ψ is a function of x alone. If we calculate φ
for finite values of e at points inside the jet and allow x to approach
4-oo, we find for φ by (7.3) the behavior φ~x. From these remarks
we conclude that

(7.5) Km <p(x, y; ε)=χ
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inside the jet. Thus as e->4-oo the free boundary curve Γ2 approaches
the straight line y=Y and X—>Ύ, whence we have

(7.7) * ( + )

However, because of the occurrence of the exponent 1 + e in the defi-
nition (7.2), we can deduce nothing from (7.7) about the value of

The situation when ε->—1 is even simpler to analyze. We set
^==tan."1(2//a?) and we note that for each value of ε the function

Z Ginε/9 rift

r ft
(1 + e) sin'W

Jτr/2

is a solution of (3.3) representing flow from a source at the origin to a
sink at infinity. Since evidently

rv t

(7.9) lim (1 + e) Γ sinεM#i= Km v-"^2 — = 1 ,
Έ-*-l Jτr/2 ε->-l ΓΛ . 2Q n -in

JW2

we find

X
(7.10) ψ'(x, y; -1)== lim —

)it\

=log

Thus for e=—1 the entire ?/-axis appears as a free boundary for the
flow with stream function ψ', since

(7.11) yψ=-yφ>χ=\
on

there. Hence we must choose for Γ2 the segment 0<^y<LY, ^=0 in
this case, and the stream function ψ=ψf will satisfy all the require-
ments (7.3) and (7.4) for the vena contracta flow. The conclusion to
be drawn is that the jet becomes quite narrow as e decreases and
degenerates altogether in the limiting case e= — 1 , so that

(7.12) f(Ξϊ}=°
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We can also calculate the limit of Cc(ε) as ε-> — 1. For generalized
axially symmetric flows, Euler's momentum theorem remains valid
because the integral

(7.13)

is independent of path. From the momentum theorem one deduces in
a standard way the formula

(7.14) 2X1 + ε=Γ I + ε+(14-ε) V Φ\

where the integral on the right is evaluated along the ?/-axis. To
estimate this integral, we note that the solution ψ — ψr of (3.3) is positive
in the second quadrant, by the maximum principle. Since ψ=ψf=O for
%=0 , V^Y 9 we conclude that

(7.15) _ a^M
dn dn

there. Substituting this bound into the integral in (7.14), we find by
(7.8) that

(7.16)
(V s in^ cos θj

( sin^dθ
\JW2

while obviously Cc(ε)<;i. Letting ε-> —1, we conclude from (7.16) that
+C c(-1) 2, whence

(7.17) C β ( - 1 H 1

At first sight, the two calculations (7.12) and (7.17) may appear to
be contradictory. However, these values of Cc and X\Y are consistent
with the occurrence of the exponent 1-fε in (7.2) and they indicate a
reasonable behavior of both quantities in the neighborhood of ε== —1.
The monotonicity theorem of § 5 shows that XjY is an increasing func-
tion of ε. The fact that the lower bound (7.16) on Ce(e) decreases as
ε increases is an indication that Cc(ε) is a decreasing function of ε, and,
at any rate, (7.17) proves that Cc(e) does not remain constant.

To complete our analysis of Cc(e), we must determine explicitly the
plane jet corresponding to the value ε=0. The plane flow is discribed
by the complex potential ζ(z) and the analytic function g(z) defined by
(4.9) and (4.1) with ε=0. One establishes readily by the hodograph
method, or alternately by an investigation of the conformal mappings
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(4.21), that z and g are given in terms of ζ by the relations

(7.18) z=i-ζΛ U-e*ζl2-~(l-e«ζyi2 + — log [1 + (1 -β^)1/2] ,
π π π

(7.19)
π

if we normalize so that X=l and if we choose the sign of ζ so that
the flow moves in a reversed direction from the vena contracta back
into the left half-plane. With this normalization, ζ is negative on the
free boundary Γ2 and represents the arc length there measured from
the point of separation with the region Ω on the left.

We verify by direct inspection of (7.18) the classical result

(7.20) cβ(0)

Before applying the perturbation method in order to compute the
derivative of X/Y with respect to e, we make a first estimate of
X(l)/Γ(l) using only the more elementary data (7.7), (7.12) and (7.20).
In § 3 we indicated that ψ is a regular function of ε in the half-plane
(3.4) and therefore is a regular function of the more suitable variable
δ=e/(e + 2) in the unit circle |<5|<1. Thus the most accurate way to
calculate X(l)/Γ(l) from the data (7.7), (7.12), (7.20) would seem to be
interpolation based on an approximation for XIY in the form of a
quadratic polynomial in δ. The expression

(7.21) i

fits all the data (7.7), (7.12), (7.20). Since ε = l corresponds to 3=1/3,
this yields for X(l)/F(l) the approximate value .765. By definition
(7.1), we can derive from this the preliminary numerical result

(7.22) Cβ(l) = .586 .

It is remarkable that an answer as accurate as (7.22) can be found for
the contraction coefficient Cc of the three-dimensional vena contracta by
calculations which scarcely require pencil and paper.

We determine next the derivative of XjY with respect to e at e=
0. For this purpose, we normalize the flow so that X=l for all e.
Thus the problem reduces to calculating 3F/3ε, which can be done by
an application of (3.46). By (4.17) it is permissible to replace ψx in
(3.46) by the more convenient perturbation term Ψ1 and to use the
revised formula
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(7.23) 3 7 ^ ^ .
dε dU

The term ψx can be found in the logarithmic hodograph image β* of
the plane flow region Ω, which is easily seen to be the semi-infinite
strip (3.37) in the present example, after suitable translation. Since all
the conditions (4.18), (4.19) and (4.20) determining Ψλ are homogeneous,
with the exception of (4.19), we can express Ψλ in terms of the Green's
function (3.42) in the form

(7.24) Ψiu, v)=M~ Ψtf, τ) d

2h dτ ,
dn

where the normal derivative is taken with respect to the second argu-
ment of H. Since the point of separation corresponds in the hodograph
plane to the point w=π/2y we can substitute (7.24) into (7.23) to obtain
by (3.42)

(7.25) df = L[Ψl(0, T) mf +4e~* tan -V'
oε π Jo L cfiτ

It remains to calculate Ψτ(0, τ) from (4.19). If we take the bound-
ary condition (7.4) into account, we can rewrite (4.19) in the form

(7.26) ¥,(0, τ)=log2-l-Ml\og\x-t\\x-g(t)\dΨ
2 Jo

-^PrdΦ ,V
J*

where ζ=Φ + i¥ is treated as the independent variable and corresponds
to z=t, where s + i, x and iτ represent corresponding points in the ζ-
plane, in the z-plane and in the w-plane, respectively, and where the
first integral on the right is evaluated over the level curve 0 = s * < O
and the last one over the level curve Ψ = l. Substituting the relations
(7.18) and (7.19) into (7.26) and letting s*->-oo, we find

(7.27) Srl(0, 0 = 1 ^ - ^ + 1 + ̂ ^ ^
2 Jo I L2 π π

Ί c o t
)1 '2 J

where a=s — Φ and e*β=sh2r. We introduce the new variables of integra-
tion a=e~r and b=ae~T and put (7.27) into (7.25) to derive the final
formula
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(7.28) *Σ — λ[\\-8+^.+^^Ίtan- 2 I α dbda ,
3ε π Jojo L( l + α 2 ) i a J 4τrα24- πbz4-f&

where

(7.29) r = 2 + ( l-α 2 )e- r t / a α -[4

+ 2α log
(1 + α)2

The integral (7.28) was evaluated by Simpson's rule on an IBM
calculator. A suitable asymptotic expansion for the integrand was used
for arguments δl>4, while for the numerical integration the interval
0 < : 6 < I 4 was subdivided into 40 equal parts and the interval 0 < I α < l l
was subdivided into 12 equal parts. The answer obtained in this manner
turned out to be

(7.30) ^ = - . 6 5 0 5 4 4 ,
3e

where at least the first four figures are significant.
In order to use (7.30) to improve our estimate of the contraction

coefficient Cc(l), we compute

(7.31)
9 x.

deY

= .24287
ε = o

With this new piece of information, we can approximate the ratio X/Y
by interpolating with a cubic polynomial in <?=e/(e-f-2). Indeed, using
all four of the known values (7.7), (7.12), (7.20) and (7.31), we are led
to the expression

(7.32) Z / r = . 6 1 1 0 + .4857(5- .111O<52+ .0143<53

for XjY. Since e = l corresponds to (3 = 1/3, we obtain from (7.32) the

result

(7.33) Z(l)/Γ(l) = .7611 .

Putting this into (7.1), we obtain the final numerical value

(7.34) C c ( l)=.5793^.58

for the contraction coefficient Ce(ί) of the three-dimensional jet. The
close agreement between the preliminary estimate (7.22) and the final
answer (7.34) indicates that our procedure converges rapidly, as does
also the steady decline in the magnitude of the coefficients in the ex-
pansion (7.32). The error in the first approximation (7.22) was only 1
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per cent, and the error in the final answer (7.34) can be expected to
be of about the order of 1/10 per cent.

Our figure .58 for the contraction coefficient Co is in significant dis-
agreement with the generally accepted value .61. The theoretical
justification for the value .61 stems from the early work of Trefftz
[17], who advanced the conjecture that the contraction coefficients for
the plane and axially symmetric cases would be identical. The result
(7.17) gives evidence of the weakness of this conjecture, because it
shows, together with (7.20), that CG must change its value as the
dimension parameter e varies, whereas if Trefftz' conjecture were true
one would expect Cc to remain constant. On closer examination, even
Trefftz' numerical data do not necessarily indicate a value for Cc as
high as .61, and it may be that his interpretation of the data was
unduly influenced by the conjecture. The work on the contraction coef-
ficient by relaxation methods [15, 16] was carried through after the
value .61 had been accepted as a reasonable point of departure, and it
would appear that in the form in which it was applied relaxation was
not sufficiently sensitive to detect the error in this value, which is only
about 5 per cent.

Comparison of our answer Cc=.58 with experimental data proves
to be quite interesting. Experimental values of the contraction coef-
ficient CCf or of the related discharge coefficient Cd9 are measured for
flow from a pipe of radius Z through an orifice of radius F, and the
results are plotted against the ratio Y/Z. In the graph compiled by
Lansford [9], the values of Cd decrease steadily as Y\Z decreases from
1 to about .24, where they reach a minimum of approximately .60.
The graph proceeds to rise again as Y\Z descends below .24, but the
experimental data terminate for Y\Z just a little larger than .1, leaving
one with the impression that in the limiting case Y/Z=0 the discharge
coefficient Cd might even exceed .61. We shall prove in a moment with
complete mathematical rigor that CG decreases monotonically with Y/Z,
which will establish the same result for Cd9 since

Γ*

(Π Qg\ Q ._ υ

v ' ' a {icι

is a monotonic function of Cc. Thus on theoretical grounds the value
of Cd could not actually rise as Y[Z falls below .24. The disagreement
here between theory and Lansford's data is undoubtedly due to the
difficulties inherent in making correct experimental measurements for
small values of Y\Z. In any case, if one extrapolates from the experi-
mental graph using only values of Cd measured for YjZ exceeding .24,
one is led at Y/Z=0 to, for all intents and purposes, the value Cc = Cd

= .58. Our calculation (7.34) is thus in substantial agreement with this
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interpretation of the experimental data.
It remains to establish the monotonic dependence of the contraction

coefficient Cc=X2jY2 on the ratio YjZ. For this purpose, it suffices to
normalize so that Y=l and then to show that X decreases as Z increases.
Suppose, on the contrary, that there exist two pipes of radii Z and Z*,
with Z* > Z, which give rise to a pair of jets whose respective radii X
and X* at infinity stand in the relationship X*^>X. We denote by ψ
and ψ* the corresponding stream functions, normalized so that ψ=φ* = \
along the #-axis and so that both functions vanish on their respective
free boundaries Γ2 and Γf. Since X*I>X, we can translate the flow
region β* in which ψ* is defined to the right, if necessary, until it just
includes the flow region Ω in which ψ is defined. In this situation we
shall have ψ*^>ψ in Ω, by the maximum principle, with ψ* = ψ^O at the
point where the free boundaries Γ2 and Γf touch. Hence at this point
we find by a standard comparison argument [7]

(7.36) 1 M 1 3 ^
y dn y dn

Since ψ=ψ* = l on the α-axis, the flux through the two jets must be
the same, whence

(7.37) gX2=g*X*2 .

In view of the hypothesis X*^>X, this contradicts (7.36), and we are
thus led to the desired conclusion that X* < X when Z* > Z.

Finally, we point out that the technique of this section can be
generalized to enable us to compute the contraction coefficient for a jet
issuing from a pipe of arbitrary finite radius Z. The results here would
show that the contraction coefficients for the axially symmetric jets are
slightly smaller than the contraction coefficients for the corresponding
plane flows which have the same rigid boundaries in the meridian plane.
By an even easier application of the method, we can calculate also the
jet through a circular hole at the end of a cone, an example in which
the fixed boundary Γ1 appears in the meridian plane as a semi-infinite
line segment with a finite slope.

8. Drag coefficient for the infinite cavity* We calculate next by
the methods of § 7 the drag coefficient CD for the infinite cavity flow
past a circular disk. In the meridian plane, the fixed boundary Γ1 con-
sists of the segment 0<Ly<LY of the ?/-axis, and the free boundary JΠ2

emanates from the point of separation zo=iY and proceeds indefinitely
upwards and to the right. We consider this model for all values of
the dimension parameter ε, and thus the stream function ψ will be a
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solution of (3.3) which vanishes on the entire boundary of the flow
region Ω, which satisfies the constant pressure condition (3.2) along Γ2,
and which has the asymptotic behavior

(8.1) φ. , yι+Έ

1 + e

at infinity. For each value of e, the drag coefficient CD=Cΰ[ε] is given
in terms of the stream function Φ=Φ(x,y e) by the formula

(8.2) cj
y ΓI

In this section we consider CD only as a function of the parameter e,
and thus we use the square brackets in (8.2) to avoid confusion with
the notation (6.2) for CD as a function of the cavitation parameter σ,
which is zero in the present case. We shall estimate the physically
significant value CD[ΐ] of the drag coefficient for three-dimensional flow
by calculating the three quantities CD{— 1], CD[0] and Ci[0] and sub-
stituting them into a suitable interpolation formula for the function

To evaluate CD[ — 1], it is first necessary to find a bound on (Fφf=
Φl along the fixed boundary I\. Since - ^ is a solution of (3.3), it
must assume its maximum value on the boundary of Ωy and it cannot
reach this maximum in the interior of Γτ because, by the Schwarz re-
flection principle, it can be continued across Γλ as an even function of
x. Thus — φx attains its maximum value on Γ2, and for ε<ςθ we can
even state that the maximum will be achieved at the point of separa-
tion zύ=iY, since —φx<^dφldn=yz along Γ2. Hence

(8.3) {VΨΪ=Ψl<,Y*

on Λ for ε <: 0 .
If we substitute the inequality (8.3) into (8.2), we find

(8.4) C J e l ^ l - —
1 —ε

for ε<I0, while obviouly CD[ε]<^l for all values of e. Letting ε—> —1,
we derive from (8.4) the final result

(8.5) c y ; - i ; ] = i .

Unfortunately, we have not succeeded in establishing a corresponding
relation for the limiting case e=-foo.

From here on we assume, without loss of generality, that Y=l.
We must study in detail the plane flow corresponding to ε=0 and the
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first order perturbation terms associated with it in order to compute
CD[0~] and C^[0]. As in the case of the vena contracta, the plane flow
is governed by a complex potential ζ(z) and by an analytic function g(z)
describing the free boundary curve Γ2 in the form (4.1). By the hodo-
graph method, or from the mappings (4.21), we find that z and g are
given in terms of ζ by the two formulas

(8.6) z

_ 2 j _C1/2 + jC + 2 / ( 4 + 7Γ

4 + * {

and

(8.7) , - ( C H-/ί-Y»_ 2 j ( J L Y'YC+ A )'«
\ 4-f-τr/ \44-7z7 \ 4-fττ/

- - 2 _ w C ^ ί C + 2/(44-TΓ)}
44-TΓ

We deduce immediately from (8.6) the familiar expression

(8.8) cyO] = — -.87980
4 + 7Γ

for the plane drag coefficient CD[0].
By differentiating (8.2) with respect to ε and setting ε=0, we

derive

(8.9) Ci[0]

where the integrals are evaluated along the y-axis and where φ1=dφ\de
and Ψι=dψjde are the first order perturbation terms connected by (4.17).
By Green's theorem, we have

(8.10) -zUj^dy^-πAi^-T + z\ φxyΨLdx ,
Jθ dX \4 + 7Γ/ J - ~

where the integral on the right is taken over the a -axis and where A
is the coefficient defined by the asymptotic expression



CAVITIES AND JETS 653

(8.11) w^

for ψt in the limit as y-+ cχ>. Using (8.10) and (4.19), we can bring
(8.9) into the form

Jo Jί ψy + t)(ιy-g(t)) J-~ J*

Note that in these formulas ψ represents the stream function of the
plane flow.

Further reduction of (8.12) requires an expression for the coefficient
A in terms of the Green's function H introduced in § 3. In the present
case, the logarithmic hodograph image β* of the plane flow region Ω is
easily seen to be the semi-infinite strip (3.37), and therefore H is given
again by (3.42) in terms of variables in the hodograph plane. In order
to evaluate A, we consider the value of the partial derivative dHjdu
when the parameter w=u~\-iv lies at the origin and we note that the
line integral

(8.13)
du dn dndi

taken with respect to the other argument of H, vanishes over any
closed contour in the interior of β*. When we deform the contour of
integration to bring it onto the boundary of β*, there is no contribution
from the singularity of dH/du at the origin, which corresponds to the
point of separation, because Ψλ has a critical point there, but the con-
tribution from the singularity (8.11) of Ψλ amounts to a numerical factor
times A. Thus we derive for A the formula

(8.14) A=-A-(-=- Wi^^ds,

where the integral is evaluated over the semi-infinite vertical line seg-
ment bounding £?* on the right, which corresponds in the physical plane
to the negative a -axis. We can substitute into (8.14) the explicit values
for H and for Ψλ given by (3.42) and by (4.19) to obtain

(8.15)

A=l-(-?-- Y T Γ 3 4 ^ - +4β"τ tan-1 e- ΊΓ[arg (x-t)(x-g(t))]C(t)dtdτ ,
2π\i-\-π/ JoL ch 2 r J J i
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where x can be expressed in terms of τ by setting

(8.16) C = - ^ - c o t h 2 r

in (8.6), according to the hodograph transformation (3.34).
The final step is to insert (8.15) into (8.12) and to replace the func-

tions z and g by their explicit representations (8.6) and (8.7). In this
connection, it is convenient to introduce new variables of integration.
We find that

(8.17) c;[0]=-/14-/2-/3 + Z^/ 5 -/ 6 ,

where

(8.19) /2=^4_(T/2(α)Γtan- 3£WW_. ...1 * 1 * dbda

(8 20) / = 256Γ1 Γ' 14MP ~ mi + VY}_ {(μ^aWΛ-a* f} dbda3 J J Λ y 7 ΛτrJoJα

(8.21) Z4=
 U1± \ \ /2(α) " τ " tan-1 — i — dαdδ ,

(8.22) /,= - A - f f" Λ(α) j/β(α, 6) tan-1 _ ί -
( 4 + π )2Ji/2ji;2 I /β(tt>'

(8.23) / . = ? J ^ ( Λ(α) \f-^'^ tan-1 -1 - + f log [1 + /.(α,
(4 + )2Ji/ I α / 6(α, a) 2a

- log (l + i [ A - log 3 + /3(α)J)

with

(8.24)

(8.25)
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(8.26) /,(α) = tan-1 2 a 4-2 3 α 4 " " ; l

1 — α 2 (l + ά2)'1

(8.27) Ma, 6 ) = 1 Γ 2 ^ Λ ^ " ^ ^ + 2
L (1 α2)* ( l α ) ( l f δ )TΓ

The meaning of the variables a and δ depends on the formulas in which
they appear. We always have a=e~τ, where r is the ordinate in the
logarithmic hodograph plane. However, /,, f:i and f6 occur in integrals
evaluated over the negative #-axis and therefore when a is an argument
of these functions the corresponding value of r yields through (8.16)
and (8.6) an expression for x, whereas fΓi occurs in an integral over ί\
and thus when a is its argument the corresponding value of τ gives by
means of

(8.28) C = - 2--th2r
4-hτr

and (8.6) an expression for the quantity iy. The variable b has the
same meaning that we have just ascribed to the variable a, except that
δ corresponds to the point in the physical plane which we have denoted
by ί, whenever it occurs, rather than to the point z. The equation
(8.28) must be used to find the right expression for the corresponding
variable in the physical plane when δ is the argument of fλ and fi9

whereas when δ is an argument of f6 we must use instead the equation
(8.16), because fλ and /4 are involved in integrals over Γu whereas fΰ

is involved in an integral over the negative real axis.
In the formula (8.17) for C^[0], the integrals lι and Iό correspond

to the second and third terms, respectively, on the right in (8.12), while
J2, Zi, I5 and I6 represent the first and last terms. In particular, integra-
tion by parts shows that

(8.29) / d -/ 5 -/ 6 = = 64 [Vf2(a) & + ^ tan- / dbda ,
(4 -f 7r)2JoJ ϋ (1 - δ 2 ) 3 /«j(α, δ)

and the only reason for breaking this integral up into three separate
components is to facilitate its numerical computation.

The integrals in (8.17) were evaluated on an IBM calculator. Simp-
son's rule was used, with every interval subdivided into 16 equal parts.
The results turned out to be

(8.30) Jχ=.103166 , /2=.0090901 , /,= .003486 ,

(8.31) 74 = .018545 , IΓi = .0153746 , I{ ~ -.020204 .

Therefore the desired quantity C^[0] has the numerical value
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(8.32) Ci[O]=-.07419 ,

In order to calculate CΌ[Y] from the established data (8.5), (8.8) and
(8.32), it is best to interpolate by expressing CD as a quadratic polyno-
mial in the variable o=ε/(ε + 2), since, as has been pointed out before,
it is in terms of 3 that our perturbation expansion has a maximal circle
of convergence. Clearly, the formula

(8.33) CD= .87980 - .14838(5 - .0281832

fits the data (8.5), (8.8) and (8.32), and, since (5=1/3 for e=l, this gives
the final result

(8.34) G^[l] = .82721 ~ .827

for the drag coefficient CD\1\ of a circular disk in the case of the infinite
cavity corresponding to the value ^ = 0 of the cavitation parameter. We
can expect the error in the answer (8.34) to be less than 1/2 per cent,
since this would have been the order of magnitude of the error in our
earlier work on the contraction coefficient if we had used only the data
(7.12), (7.20) and (7.31) and had ignored the limiting case ε= + oo.

Our result C2J[1] = .827 compares quite favorably with experimental
data [2, 13, 14]. The available experimental graphs of the drag coef-
ficient CD(σ) as a function of the cavitation parameter σ are linear, and
one can extrapolate from them to determine the value of CD(0). One
finds in this manner a spread of estimates for CD(0) varying between
the value .79 obtained by Reichardt [14] in a free jet tunnel and the
value approximately equal to .83 obtained in the high speed tunnel at
the California Institute of Technology [13]. Our answer CD(0)=CD[1]
==.827 is thus in substantial agreement with the largest experimentally
observed values of the drag coefficient. A more interesting comparison
of theory with experiment ensues when we substitute the numerical
result CZ)(0) = .827 into the asymptotic formula (6.3) to derive for the
circular disk the approximate relation

(8.35) CD(σ)=. 827(1+ <J).

The line (8.35) passes directly through the midst of the experimental
data, and it fits the median of the observed values in the range near
<7=l/8, where the most experimental information is available.

It is perhaps worth commenting, in conclusion, that our method of
arriving at the answer (8.34) for the drag coefficient CD of a circular
disk extends without severe difficulty to the case of conical noses of
arbitrary half-angle. It is also possible, by more elaborate modifications,
to handle curved obstacles such as the sphere.
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9 Calculation of a finite cavity. The perturbation method alone
does not suffice for a satisfactory analysis of finite cavities, because it
gives really accurate results only for physical quantities which change
relatively little in the transition from plane to axially symmetric flow,
while the cavitation parameter a varies sharply with the dimension ε +
2 for cavities of roughly the same size. Thus we shall divide our dis-
cussion of three-dimensional finite cavities into two characteristically
different parts. In the present section we shall obtain by the perturba-
tion method a first estimate of the cavity width 2d for a prescribed
value of the cavity length 2h. We shall follow this with a section de-
voted to a systematic iterative scheme for calculating all the desired
flow quantities with successively improved accuracy.

We consider again the Riabouchinsky model, with the nose Γ1 and
the tail Γ* consisting of equal vertical line segments, spaced symmetri-
cally with respect to the ?/-axis. We use the notations of §6, and we
study the maximum cavity altitude d=d(ε) as a function of the dimen-
sion parameter e for fixed values of the cavity length 2h and of the
ordinate Y of the separation point. We calculate <Z(+oo), d(0) and d'(0),
and we interpolate using these data to find d(l).

The stream function Φ=Φ{x, y e) is a solution of (3.3) which
vanishes on the #-axis and on Γ1-{-Γf + Γ2 and satisfies the free
boundary condition (3.2) along Γ2. At infinity ψ has the behavior
Φ ~yι+sl(l + ε)(l-hσ)112. On the other hand, the velocity potential <ρ =
ψ{x, y ε) is a solution of (7.5) satisfying related boundary conditions
and exhibiting the behavior

(9.1) φ~xl(l + σ)112

at infinity. By (7.5), the limit of φ as e-> -f oo should be a function
of x alone. We conclude from (9.1) that

(9.2) lim φ(x, y e)=

As was indicated in § 5, the free boundary Γ2 is a convex curve which
falls steadily as e increases, and thus we deduce that Γ2 collapses to
the line y=Y(+<χ>) in the limit as ε->+oo. Therefore

(9.3) ^±_°^I = i .
Γ(+co)

For e=0, the Riabouchinsky flow is governed by a complex potential
ζ(z)=ΦΛ-iΨ and by the analytic function g(z) in terms of which the
free boundary Γ2 has the representation (4.1). By the standard techni-
que of conformal mapping, we find that z and g are given in terms of
C by the formulas
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and

where & is a parameter in the interval 0 < k < 1 and where we have
normalized so that

(9.6) y = Γ(θ)=1-A + f (\ - kΛ dζ .

The interval ~-k <^ζ <^k corresponds to the free boundary Γ2, the
intervals k<Cζ<^l and —l<Cζ<^ — k correspond to the nose Γι and
the tail Γf, and the remainder of the real axis in the ζ-plane maps
into the real axis in the physical plane.

We shall find it convenient to introduce the notations

Γ L rlΓ Γ1/1 ZrV2V/2

(9.8) K* = \ dζ , E* =
0(1

for the familiar complete elliptic integrals of the first and second kinds.
In terms of these quantities, we find easily from (9.4) the relations

(9.9)

(9.10)
/€'"•'+ J&' ' — fCΆ"'

Since we fix both h and Y in our discussion, the cavitation parameter
rτ=tf(ε) becomes a nontrivial function of e. By (9.4)

(9.11) <,(())=. 2 f c* .

We can calculate the derivative eẐ O) in terms of the first order
perturbations φι==dψldε and Ψ1=dΨjdε of the stream functions ψ and
Ψ. By (3.44) and (4.17), we find

(9.12) d'(0)=-&(0, d)-- ?/X0, d) ,
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where, as indicated, the functions ψx and Ψλ must be evaluated at the
highest point on Γ2. As in the earlier examples, we shall work with
Ψι rather than with ψx. We express W\ in terms of the Green's func-
tion H of § 3, which must be determined explicitly for the present
flow.

For the Riabouchinsky model, the image Ω* in the logarithmic
hodograph plane of the flow region Ω is the semi-infinite strip — π/2<
u<^π[2y slit along the semi-infinite segment v^>2~1 ch~1(2fe~2 — 1) of the
imaginary axis. Here we have chosen to normalize the hodograph
transformation so that

(9.13) , ^ l l o g f = ί l o g ^ ^ .

We make use of the symmetry of Ω and of Ω* in the imaginary axis,
and we introduce the function

(9.14) P*{ζ, t)=\og i £ ^
(ζt

whose real part is the symmetric sum of two classical Green's functions
of Ω, rather than the function P of § 3, whose real part is a single
Green's function.

To calculate d'(0) from (9.12), it will suffice to determine the mixed
Green's function H for the special case where the singularity lies at
the origin in the w-plane. However, there is still a difficulty involved
in using the differential equation (3.39) to find the analytic function Q
whose real part is H, because dQ/dw has a singularity at the tip of the
slit along the imaginary axis bounding β*. For our application, we
can overcome this difficulty by subtracting from the value of 2Q with
parameter point located at the origin a suitable constant factor times
the sum of the derivatives of Q with respect to the parameter when
the latter lies at — π/2 and at πj2. We choose the constant factor so
that the resulting symmetric expression, to be denoted by Qu has a
finite derivative dQλldw at the tip of the slit bounding £?*. For our
purposes, the singularities of Q1 at the corners —πj2 and π/2 of Ω* will
not cause trouble, since these points correspond in the physical plane
to the points of separation and of reattachment, where Ψv has critical
points. Thus we shall be able to use Qu rather than Q, throughout
what follows.

For the analytic function Qx(w) defined in the above manner, we
obtain a differential equation

(9.15) d

7

Q l -iQ^iPf + (const. )P*
dw
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analogous to (3.39), where Pf and P2* are appropriate derivatives in
the logarithmic hodograph plane of the function (9.14) with respect to
the parameter point when the latter is located at 0 and at π /2. The
equation (9.15) can be worked out and integrated explicitly to yield

A 7 Γf I— ^ 7 S£9 6* —I 7

where ζ and w are connected by (9.13) and where the constant γ is
determined by the condition

expressing the fact that Q^π/2 + iv) should be pure imaginary.
In order to evaluate the integral in (9.16), we introduce the Jacobi

elliptic functions [11]

(9.18) sn α=sn (a, k), en α=cn (α, k), dn α=dn (α, k), zn α=zn (α, k)

and we make the change of variable

(9.19) £ = - — .
sn a

If we perform the substitution (9.19) in (9.16) and differentiate with
respect to α, we obtain the representation

(9.20) ^ = - J?Asaα V^ s i n _ x g n α _ r ^ ^ k * j m a
da dna-hk*L en a

+ (l-2r)(zn α+ ^
dn a dn2 α

for the derivative dQJda, which is the actual quantity required later
on. Similarly, the constant γ can be calculated explicitly and has the
value

(9 21) r- πk*+2E

We set H1=^ {Q^\ and we express 3 (̂0, d) easily in terms of
by Green's formula to derive

(9.22) Ψ^,d)=
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where the integral on the right is evaluated over the interval 1
co of the real axis in the C-plane. Using (9.12) and the new variable
α, we can bring (9.22) into the form

(9.23) d'(θ)=--UV^dα.
Zπijo aa

Thus it remains only to represent the boundary values of Ψ1 along the
#-axis in terms of the variable α.

We find Ψλ along the #-axis by substituting the explicit formulas
(9.4) and (9.5) into the boundary condition (4.19). This yields in terms
of ζ the expression

k*{l-tψ>Λ^-^Tdτ
(9.24) Ψ{ζ)=M tan- J ^ ^ , dt

I

2 J ι
tan"1 ,>— .2 —j^-φ — dt

• 2 — 1 /

- | \ t e n -

Γ 2 — 1

To reduce these integrals to a tractable form, we introduce the Jacobi
elliptic functions with the complementary modulus &*, for which we
shall use the special notation

ί sn* 6= sn (6, h*) , en* 6= en (6, &*) ,
(9.25)

t dn*δ=dn(δ, &*) , zn*δ=zn(δ, &*) .

In the first two integrals on the right in (9.24) we make the change of
variable

(9.26) ί=dn*δ ,

while in the last integral we set

(9.27) ί^-1 .
sno

We use the relation (9.19) throughout for ζ. With these substitutions
completed, we can put (9,24) into (9.23) to obtain the final result
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(9.28) ri'(O) = -Ir~I,Λ-L-IA,

where

(9.29) / , = A + 2 Γ Γ + / 1 ( α ) c n * 6 s n * 6 t a n - 1 ^ α > & ) dbda ,
4ττ Jo Jo Ma,b)

(9.30) 1^1 Γ ί " / l ( α) c n δ d

;

n 6 tan- ' / dadb ,
4:7τ J/v/2 Jo s r r o /i(^, δ)

(9-31) /,= ~ /,(«) /,(«,&)
2π- Jo j« L

tan- /
/4(α, b)

log {l + / ( (α, 6)2} "I f S n f dδrfo ,
Jdno —κ'~

(9.32) /,= } \KltMa)Ma)da ,
2π Jo

with

(9.33)
da

given by (9.20), and with

(9.34) /,(«, δ)=2/ 0 (α)[(^*-#)(#*-6) - zn* δ] ,

(9.35) /.(«, b)=f6(af + \(E' -Ic1 \2Kl-b)-zn* δ + fc*2sn*ft1

x Γzn* b + Γ-~ - fe12 ̂  6 + fc*2 sn* 6 Ί ,
L \K* ) J

(9.36) / t (α, δ)= 1 Γ c n α d n α-f zn α - c n b d n δ - z n δ
^ ^ - k 7 ^'^ ί x l snα snδ

sn a sn

(9.37) Ua){EieK{ ? ^ Ί / ^ a ' ^ / 2 ) t a n > 7 V , O Λ
L /r en Kj2 1 /,(α, Z/2)

log (1 + /,(α, Kj2f) } - d " , α + fcΊ/.,(α, α) tan-1 log (1 + /,(α, Kj2f) } , Ί/.,(α, α) tan
2 ) ί^cnα 1 fA{a, a)
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(9.38) f6(a) = cnaάna+ Zna + (k)(aK)+k
sn a \K / snα

The quantities <Z(-f oo), d(0) and d'(0) can be computed from (9.3),
(9.9) and (9.28) for any value of the parameter k in the interval 0<&
<C 1. The different values of k correspond to finite cavities of different
shapes, and it would be interesting to calculate several of these. How-
ever, we shall restrict ourselves here to one single example, chosen so
that the cavitation parameter σ lies in a physically significant range,
while at the same time the numerical work is not excessively involved.
Thus we take &=.96 from this stage onward.

The integrals (9.28) were computed by Simpson's rule on an IBM
calculator. For numerical evaluation, the elliptic functions were ex-
pressed in terms of theta-functions. The intervals of integration were
subdivided into 12 equal parts, and the results turned out to be

(9.39) 2"!= .002667 , I2=.0152214 ,

(9.40) J3=.0156017 , /,= .023300 .

Therefore cZ'(O) has the numerical value

(9.41) dXO)= -.025587 .

From this calculation and from (9.3), (9.6) and (9.9) we find

(9.42) ψ ^ 1 - 1 > ^=2.4338840 , ψ® = - .17471 .

Also, by (9.10)

(9.43) A(P).=6.2263286 , ^ 0 ) =2.5581863 .

In order to evaluate the desired ratio d(l)/F(l) of the radius d(l)
of the three-dimensional cavity to the radius F(l) of the circular disk
Γλ forming the obstacle, we interpolate by means of a quadratic poly-
nomial in <?=e/(e + 2), as usual. One checks easily that the expression

(9.44) — =2.433884- .34942<5-1.084464<52

fits the data (9.42). Putting δ=l/3 in (9.44), we derive the final result

(9.45) d(l)/F(l)=2.19691 ^ 2.197 .

It is of interest to compare the answer (9.45) with the asymtotic
formulas (6.3), (6.24) and (6.32) before proceeding to carry through
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more accurate and more intricate calculations. Actually, we look one
step further back to the inequalities which led up to these asymptotic
formulas. By (6.12) we have Y'2CD <I od\ and combining this with (8.35)
we find .827YZ(1 + σ) <^σd\ In the opposite direction we can use the
inequality (6.18), and therefore we obtain the estimates

(9.46) J 2 7 F _ < < (F j h

for the three-dimensional cavitation parameter σ, where a moderate error
might be expected due to neglect of higher order terms in the deriva-
tion. Recalling that h and Y have been held fixed, we substitute the
numerical data (9.43), (9.45) into (9.46) to find

(9.47) . 2 0 6 7 ^ ^ . 2 5 9 4 .

The result (9.47) serves to indicate the accuracy of the asymptotic
formulas (6.3), (6.24) and (6.32), but the interval in which it predicts
that a will lie is so large that a more precise calculation is obviously
called for.

lO Iterative method of solution. In this section we develop a
scheme of successive approximations for determining an arbitrary three-
dimensional axially symmetric free surface flow and we apply the pro-
cedure to improve the accuracy in the calculation of the Riabouchinsky
finite cavity begun in § 9. While our iterative scheme differs in principle
from the perturbation method described in § 3, both approaches are
based on the same type of linear mixed boundary value problem. The
iterative method applies to curved obstacles and to plane flows, although
such examples will not be treated here.

We explain our technique by continuing the calculation of the
Riabouchinsky model introduced in § 9. Let ψ denote the stream func-
tion for the exact solution of the problem set there, and let Γf denote
a curve joining the point of separation z0 to the point of reattachment
s? and approximating the exact free boundary Γ2. Neglecting terms
of order higher than the first in the normal displacement δn of Γ2 into
Γf, we seek a boundary value problem determining ψ in the approximate
flow region ί2* bounded by Γ£, by the fixed boundary components Γτ

and Γf, and by the #-axis.

Clearly, φ satisfies the partial differential equation

(10.1) Δφ-±-φy=Q
y

in £?* and satisfies the boundary condition
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(10.2) φ = 0

on Γ1 and Z7* and on the #-axis. The essential step is to find the
boundary condition to be imposed on ψ along the approximate free
boundary Γf. On Γz we have evidently

(10.3) φ=0, - - ^ - = 1 ,
y dn

and also from the condition that the flow should be irrotational we

obtain

(10.4) Alϋ l M ^
dn y dn y dn dn

there, where q denotes the speed of the flow and where K denotes the
curvature of the boundary. From (10.3) and (10.4) we derive along Γ2

the relations

(10.5) J L M + Λ . ^ 1 ,
y dn y

(10.6) ?Jλ*tJ)+φ) + + φo .
dn\y dn y / dn y dn y dn dn y

It follows that the boundary condition

(10.7) I M + A^l
y dn y

is fulfilled along Γf except for an error term of the order of the
square (dn)2 of the normal displacement δn. We impose the require-
ment (10.7) on φ along Γf with the aim in mind of calculating an
approximation for φ with an error of the order of magnitude (δn)2.

The conditions (10.1), (10.2) and (10.7) do not quite suffice to deter-
mine φ in £?*, since the value of y%ψ at infinity involves the cavitation
parameter a, which is an unknown in our formulation of the problem.
To compensate for this, we can use the hypothesis in our treatment
that the points of separation and reattachment, z0 and zf, are held
fixed. We showed at the end of § 4 that in the neighborhood of z0 the
stream function ψ has a regular power series development in terms of
the variable (z — z0)

112 and its conjugate. We must seek the solution of
the boundary value problem (10.1), (10.2), (10.7) in a form exhibiting
such a development, and in general we would expect that the answer
would have a non-trivial term of the first order in (z — zQ)lβ. However,
since the velocity of the flow ψ remains bounded, the first term in its
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expansion must drop out and we must have

(10.8) lim — Φ—=0 , lira - ^ = 0 ,
v ' ~ 0 (2-zof2 «-? {z-ztr

where the second equation is valid at z* by reasons of symmetry. The
addition to the original boundary value problem (10.1), (10.2), (10.7) of
these conditions, which state that in a certain sense ψ has critical points
at zQ and at zf, serves to determine ψ uniquely, as is shown in essence
by the discussions of § 5. We emphasize that the value of y~2ψ at
infinity must be adjusted so that the relations (10.8) will hold and that
it is thus necessary to allow ψ to have a suitable pole at infinity in
order to ensure that it have critical points at z0 and z*.

The boundary value problem (10.1), (10.2), (10.7), (10.8) defines an
approximate solution ψ of the Riabouchinsky flow problem with an error
of the order of magnitude (δnf, whereas our original approximation
Γf of the free boundary Γ2 was in error by precisely the amount δn.
The curve φ=0 defines a new approximation to Γ% and we can repeat
our construction on the basis of this improved choice for Γ*. The
iteration process thus defined can be carried through in successive
stages, each based on the previous one, until any desired degree of
accuracy is achieved. The scheme is analogous to Newton's method,
and the simplicity of its formulation is the only aspect in which it is
distinguished from the usual approach to non-linear problems through
linearization.

In connection with our derivation of the condition (10.8) to be
imposed at the separation point zθ7 it is worth while to insert at this
stage a remark about the proper modifications to be introduced if we
want to apply the iterative method to curved obstacles with the require-
ment that the separation be " e n proue," or, in other words, that the
curvature at zQ be finite. To obtain such smooth separation, one must
allow the location of zQ to vary, and in our formulation of the problem
we should compensate for this added degree of freedom by asking not
only that the coefficient of (z — z0)

112 vanish in the expansion of ψ about
zQ, as described by (10.8), but also that the coefficient of (z —zΰf

12 be
zero. This remark settles quite simply the worst difficulty encountered
in extending our procedures to include the determination of flows past
more general bodies, such as the sphere.

We turn to the explicit solution of the mixed boundary value pro-
blem (10.1), (10.2), (10.7), (10.8) in the case of the Riabouchinsky
model. Our first approximation Γ* to the free boundary Γ2 will be
based on the calculation (9.45) of the cavity altitude d, and because
the iterative method converges so rapidly, we should find it necessary
to carry through only one iteration in order to obtain quite accurate
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results.
For our choice of Γf we perform an affine transformation on the

plane free boundary given by (9.4) in order to bring it into a curve
passing through the points (-Λ(l), Γ(l)), (0, d(l)) and (A(l), Γ(l)).
The curve Γf obtained in this manner has the parametric representation

(10.9)

(10.10) y=—(k
k

with w in the interval —K<Lu<^K, where β is a constant selected so
that y=d(l) when a?=0. We introduce the explicit values of the com-
plete elliptic integrals corresponding to &=.96 and we use (9.45) to
bring (10.9) and (10.10) into the numerical form

(10.11) α=1.0416667 zn u + .33859295^ ,

(10.12) y=.07828039 + .24348204 dn u .

With this definition of Γ}, we shall solve the boundary value problem
(10.1), (10.2), (10.7), (10.8) numerically by expressing ψ as a linear
combination of ten appropriate particular solutions of (10.1) and (10.8)
with coefficients determined so that at 24 suitably specified points the
boundary conditions (10.2) and (10.7) are fulfilled as closely as possible
in the sense of least squares.

We choose as our particular solutions of (10.1) those found in Lamb
[8] by separation of variables in elliptic coordinates and those obtained
by placing sources and sinks along the axis of symmetry. The former
system of solutions is based on ellipsoidal harmonics defined in the ex-
teriors of the circular disks Γτ and Γf, which can be thought of as
degenerate ellipsoids. The aim in introducing solutions derived by se-
parating variables in the exteriors of the disks Γτ and Γf is to obtain
terms in our expression for the stream function ψ which have at the
point of separation z0 the required development in powers of the varia-
ble (z — z0γ

12 and its conjugate. It is fortunate that we are able to
arrive in this simple manner at a representation for ψ having precisely
the correct asymptotic behavior at the separation and reattachment
points, so that no exceptional error is to be expected in our calculations
due to the singularities of the flow at these points. As to the introduc-
tion of sources and sinks along the axis of symmetry, this technique
is familiar in the construction of flows past long narrow bodies of
revolution [8], and it requires no further comment.

In order to define the ellipsoidal harmonics associated with the
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disks Γx and Γ*, we need the two pairs of elliptic coordinates μu vλ

and μ2, v2 given by

i)"Ά=(-i)-r/ί^». 2/=

with m = l and m=2, respectively, or, in numerical form, by

(
(10.14)

In terms of these variables, we shall be interested in the four solutions

(10.15) Pj=f

j=2, 3, 4, 5 ,

of (10.1) and (10.8), where the functions P'ό(v) are the derivatives of
the Legendre polynomials, defined by

(10.16) PίW=l , P&)=Sv ,

(10.17) jPj+1(,)-(2j + l),Pj(.) + (j + l)Pjφ) = 0f

and where the qό{μ) are the derivatives of the Legendre functions of
the second kind along the imaginary axis defined, to be precise, by

(10.18) q'1(μ) = -JLϊ - cot"1 μ , <ίlμ)=Sμ COt"1 μ - ^ ±A ,

(10.19) 3QJM + (2j+ l)WX/i)-(i + l)g;_1(//)=0 .

For large values of μ it is more convenient to use the representation
[12]

(io.2O) qiμ)

2 ' 2 2 ' 2(// + l)1/2 J

for q'j{μ) in terms of the hypergeometric series

(10.21) F[^, - | ; i + | ; Tf]

= _Z01+8/2i_ y Γ(m + 3/2)Γ(m-l/2) ^ M

Γ(3/2)Γ(-l/2) ™-o Γ(m+i +3/2)Γ(m + Γ)

We point out that the solutions pz, p3, plt φ-ό of (10.1) are even in their
dependence on x, in conformity with the symmetric formulation of our
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flow problem. We also remark that we have included in (10.15) only
terms based on functions P3 and q3 with odd subscripts j, since the
analogous solutions of (10.1) corresponding to even subscripts drop out
of the present problem because on the disk Γlf where ψ vanishes, they
involve nontrivial terms of odd degree in the variable (s—so)

1/2 How-
ever, for more general obstacles, such as the cone or the sphere, these
terms should not be omitted.

We introduce the solution

(10.22) p(x, y; ξ) = ξ~±QC- -f -

of (10.1), which represents the flow due to a source at the point x=ξ
and a sink at the point x=— ξ on the axis of symmetry. In addition
to p2, p3, pu pδ, we shall use the following six solutions of (10.1) and
(10.8):

(10.23) Vι=tf ,

( 1 0 . 2 4 ) PJ=P(X, 2 / ; [ . 1 5 + .075j]A) , j = 6 , - - - , 1 0 ,

where, of course, h=.91187922 represents half the distance between the
disks Γλ and Γ*. Our choice of the location of the sources and sinks
generating the flows p0, , p10 was based on a certain amount of
numerical experimentation with linear combinations of functions of the
type (10.22) depending on the parameter ξ.

We approximate the stream function ψ by an expression of the
form

(10.25) φ= Σ hVi ,

where the ten coefficients λ3 are to be found from the requirement that,
in the sense of least squares, the boundary condition (10.2) is to be
fulfilled at 11 specified points on Γτ and that, in the sense of least
squares, the boundary condition (10.7) is to be fulfilled at 13 specified
points along the curve Γf defined by the parametric equations (10.11)
and (10.12). An essential feature of our program will be that we
impose both boundary conditions at the separation point. Thus we ask
that ψ=0 and that dψ\ydn=\ there, although these two relations are
theoretically equivalent, according to (10.8). In practice it turns out
that requiring dψlydn=l at the separation point is the most effective
way to formulate (10.8) numerically, and omission of this apparently
redundant condition leads to rather inaccurate results.

The points zl9 , zvi on Γf at which we impose the boundary condi-
tion (10.7) will be chosen to correspond, respectively, to the values
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u=(l~l)Kil2 of the parameter u with Z=l, , 12. The points
#14, •••, z-zί on Γτ at which we impose equation (10.2) will be taken to
have the coordinates x = h and y=(l-Pll00)Y with 1 = 0, 1, , 10,
respectively, where, of course, Γ = . 14645536 is the radius of the disk
Γλ. We let 213=;214 and use this duplicate notation for the point of
separation because we impose there the additional boundary condition
dφlydn=l. Also, at the point zu we must interpret the requirement
(10.2) to mean that ψ(h, y)lyι -> 0 as y -> 0.

We set

(10.26) ( I 2 K ,

for 1=1, •••, 12; .7 = 1, ••• , 10, where κι stands for the curvature of
Γt at the point zι=xι

J

riyι, we set

(10.27) g^ljgjfo'fr)
2/ 3 ^

for £=13; i = l , •••, 10, and we set

(10.28) α w = — ^
2/

for Z=14, •••, 24; j=l, ••• , 10. We introduce the notation

(10.29) bι=—±— for 1 ^ ^ 1 2 ; δ L 3 = l ; & , = 0 for 1 4 ^ ^ 2
1 +

so that, for the purpose of our numerical calculation, the boundary
conditions (10.2) and (10.7) reduce to the extremal problem

24 / 10 \2

(10.30) Σ ( Σ a>v*j-1>ι) = minimum
1 = 1 \ j = l /

for the determination of λl9 , λ1Q. The derivatives of the left-hand
side of (10.30) with respect to the unknowns λm must vanish at the
minimum point, whence we derive the system

(10.31)
j

of ten simultaneous linear equations to be solved for the ten parameters

The elements of the ractangular matrix a^ were computed on an
IBM calculator, using (10.11), •• , (10.22). The results are listed in
Table I. The ten simultaneous linear equations (10.31) for the unknowns
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h, •••, λ1Q were solved numerically on an IBM calculator, and the
answer was substituted into (10.25) to yield for the stream function ψ
the approximation

(10.32) ^ = . 4 5 0 7 7 0 ^ - . 0747027pa-. 0136344^-. 00412697p4

- .000848527^5- .0722477p6+ .193757p7

- .267881p84-.206857p9- .0913614p10 .

The error in this numerical solution of the boundary value problem
(10.1), (10.2), (10.7), (10.8) should be proportional to the values of the
24 expressions

10

(10.33) e,= Σ ^ A - & z ,
3 = 1

since

(10.34) ( )

for 1=1, , 12, since

(10.35)

for Z=14, « ,24, and since yγβΏ) = dφ{x1Zi y13)!dn — y13. The numerical
values of the quantities ez are listed in Table II and they indicate an
error in ψ of about 1.5 per cent, which is not surprising in view of
the small number of functions used in our interpolation to the solution
of the linear problem (10.1), (10.2), (10.7), (10.8).

From (10.23), (10.25) and the asymptotic expansion ψ ~?/72(l-f tf)1/2,
we find that the cavitation parameter a is given by

(10.36) σ=hflf

and therefore we derive from (10.32) the numerical estimate

(10.37) *==. 23035 ^ . 2 3

for σ. We calculate the drag coefficient CD directly from the definition
(6.2) by numerical integration based on subdivision of the nose Γx into
the ten intervals whose end-points have the ordinates yu, y15, , y,Λ and
evaluation of (Fψf=ψl at the subdivision points by means of (10.32).
We obtain in this manner the result

(10.38) CA°L = .89438 =\ .89 ,
(1 + σ)
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or

(10.39) CD(.2S) = 1.1 .

The values of the pressure p = [ l —(FY)2]/2 at the subdivision points on
Λ are listed in Table III.

We also determine from (10.32) a numerical estimate of the cavity
shape. Since we should have ^ = 0 and dφjdn^y along the exact free
streamline Γ2, we conclude that the normal displacement δn of Γ2 into
Γf has on Γ2* the value δn=Ψly to the first order of approximation.
Thus substitution into the formula

(10.40) z=z-*-**-
y dn

of the equations (10.11) and (10.12) for Π yields points z on a higher
order approximation to the exact free boundary curve Γ2. In Table IV
we have listed the coordinates xl9 yτ of the 13 points zlf •••, z13 on the
first approximation Γ£, together with the corresponding values of the
normal shift ψ(xu yι)lyι and the coordinates xl9 yx of the corresponding
points on our second approximation to the free boundary. Since zx lies
at the widest section of the cavity, (10.40) provides in addition the
new estimate

(10.41) | g =2.38

for the cavity radius d=d{l)y indicating that the actual cavity is larger
than the approximation we found by affine transformation of the plane
free streamline. Notice that near the separation point numerical errors
deprive ψ\y of geometrical significance, although higher terms in the
expansion of ψ there still describe Γ2.

We compare the numerical estimate (10.38) of the drag coefficient
CD with our earlier calculation (8.34), using the asymptotic formula
(6.3). We start by establishing the more precise inequality

(10.42) ^ W

which is valid for all values of a and for arbitrary nose shapes, pro-
vided that the point of separation z0 is held fixed. To prove (10.42),
we show that the term on the left is an increasing function of σ.
From the definition (6.2) of CD(σ), it suffices to establish that

(10.43) i 2 ^ ^ 0
dσdn
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on the obstacle Γλ. For this purpose we study the solution dψjdσ of
the basic equation (10.1). We suppose that the nose Γι is held fixed,
while we allow the tail Γf to approach Γ1 steadily as a increases.
Thus dφldσ^>0 on Γf, whereas dφjdσ = 0 on Γx and along the axis of
symmetry. At infinity dψldσ ~ — y1j^{lΛ-σ)m by (6.1), and from our
perturbation technique we easily deduce that dψjdσ satisfies the homo-
geneous boundary condition

(10.44) d 3 *U K - a i -=o
du dσ dσ

along Γ%. Since the point of separation z0 remains fixed, we conclude
that dψldσ has a critical point there. Hence a level curve dψldσ=0
must emanate from zQ, and the analysis of § 5 shows that this level
curve divides the flow region Ω into a connected subregion Ω+ where
dψjdσ^>0 and a connected subregion Ω~ where dψ/dσ<C0. The point at
infinity lies on the boundary of fl", whence Ω~ must border the entire
nose Γu and (10.43) follows. In addition, the subregion Ω+ must border
the entire free boundary Γ2, and thus the cavity must shrink monotoni-
cally as a increases.

The monotonicity of CD(σ)j(l + σ) as a function of a and the numeri-
cal results (8.34), (10.73) and (10.38) show that

(10.45) .827(1 + σ)^CD(σ)^ .89(14- σ)

in the interval 0<Itf<jI.23. It is apparent from the asymptotic formula
(6.3) that the bound on the right in (10.45) is considerably too large.
Consequently we must make a detailed analysis of the errors in the
numerical calculations performed thus far before proceeding to draw
conclusions from the data.

The oscillations in the figures listed in Table III indicate a sub-
stantial error in our determination of the pressure distribution along the
disk Γlf since the pressure p should be a monotonic function of y
there. An error of this type would appear to be unavoidable, since
calculation of the pressure involves computing derivatives of the stream
function ψ on the boundary of the region in which the flow is defined.
A crude analogy with the problem of approximating a function and its
derivative by the same number of terms of a power series expansion
indicates that the expression (10.32) for ψ in terms of the ten solutions
Pj of (10.1) could result in errors in evaluating derivatives which are
roughly ten times as large as the error in ψ itself, which we estimated
to be about 1.5 per cent. This difficulty has led us to an inaccurate
value (10.38) for the drag coefficient, although the figures given in
Table III do display some of the characteristics of the pressure distribu-
tion, which remains almost constant near the center of the disk, but



674 P. R. GARABEDIAN

falls off sharply at the edge.
Similarly, the normal shift dn=φjy is computed at the boundary

of the region of definition of ψ, and it also exhibits an unusually large
error. However, we can assume that the sign of the normal shift is
correct, and it is probably safe to conclude that the exact free boundary
lies half way between our first approximation Γf and the correspond-
ing approximation which we would have obtained if we had neglected
the sizable term involving d2 in (9.44). Thus the estimate

(10.46)

can be expected to differ as little as 1.5 per cent from the true value
of d(l)/Γ(l).

More precise information about the errors just discussed can be
found through approximation of ψ by linear combinations of fewer than
ten of the functions Pj. The formula

(10.47) *i = .449026ft- .0487115ft- .00717523ft-- -00278161ft

- .0278822p6 + .0312522p8- .0390783p10

gives the best approximation in the sense of least squares to the
boundary conditions (10.2) and (10.7) at the points zl9 •••, zu when we
use only the seven solutions ft, ft, p3, p±, p6, p8, p1Q of (10.1). The average
error in fitting the boundary conditions here is 3.3 per cent. The value
obtained for CD(σ)l(l + σ) is .94 and the value obtained for the normal
shift δn=Ψly at the intersection of Γf with the 2/-axis is —.055. These
results are obviously out of line with the actual solution of the problem.
On the other hand, (10.47) gives for a the more reasonable estimate

(10.48) σ=.23993 .

Our investigation of (10.47) shows that addition of the three terms
involving p5, ft, and p9 in the approximation to the stream function ψ
improves the accuracy decisively. Computation of the pressure distribu-
tion on Γτ for the flow (10.47), for example, establishes that the oscil-
lations in the pressure are significantly smoothed out when we include
pδ, p7f and p9 in our interpolation scheme. We conclude that the principal
errors in our numerical calculation of the free surface flow ψ could be
eliminated by interpolating with a larger number of solutions of (10.1)
and by fitting the boundary conditions (10.2) and (10.7) at more points
along Γλ and Γ*. A linear combination of fifteen or twenty solutions
satisfying the boundary conditions at forty or fifty points in the sense
of least squares should suffice to give physically significant results.

In spite of the limited accuracy of our present numerical solution
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of the linear boundary value problem (10.1), (10.2), (10.7), (10.8), we
can still deduce from it relevant information about the flow. In parti-
cular, the small difference between the two estimates (10.37) and (10.48)
of a indicates that the equation 1 + ̂ =1.23 is in error by less than 1
per cent. The explanation for this increase in the accuracy of our
determination of σ over that encountered in evaluating the drag lies in
the fact that the formula (10.36) for σ involves only the quantity λl9

which represents a coefficient in the expansion of ψ about the point at
infinity. Such quantities, whose calculation depends only on the
characteristics of ψ in the interior of the flow region, can be computed
with an error significantly smaller than the error occurring in our ap-
proximation to the boundary conditions. The situation here is analogous
to the rapid convergence of a power series near the center of its circle
of convergence. These remarks suggest that we attempt to evaluate
the drag coefficient in terms of quantities which can be calculated in
the interior of the flow region, and this is indeed made possible by the
variational formula (2.18) for the drag.

By introducing the coefficient a in the expansion (2.1) of the velocity
potential φ about the point at infinity and making use of the familiar
representation (2.6) for a in terms of the virtual mass M, we can bring
(2.18) into the more suitable form

(10.49) C ^ = 3 Γ F _ 4 α Ί
1 + σ 2hY2iπ 1 + J

The chief difficulty encountered in applying (10.49) lies in the calcula-
tion of the volume V. For the flow (10.32) it is useless to attempt to
compute F, since this would again lead to integrals over the boundary
of the flow region and would therefore involve large errors. However,
the stationary character of the right-hand side of (10.49), as establish-
ed in § 2, spares us the necessity of using the approximation (10.32).
Instead, we calculate directly the flow past the body bounded by the
disks Γτ and Γ? and the approximate free boundary Γ* and use the
values of V and a for this flow in (10.49), together with the value of
a computed earlier. According to the variational principle (2.7), this
procedure should yield an exceptionally accurate lower bound for the
drag coefficient CD. The only source of significant errors will stem
from subtracting two large numbers on the right in (10.49) to determine
a small number on the left.

In order to calculate the flow past Γ19 Γf and Γf, we write its
stream function ψ* in the form

10

(10.50) φ*=Pi+Σ,l*P,
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and choose λf, ---,λ?0 to fit the boundary condition ψ*!y2=0 at the
points zlf , zu in the sense of least squares. Setting

(10.51) c vAxuyA

for 1=1, •••, 24; i = l , •••, 10, we arrive at the extremal problem

24 / 10 \2

(10.52) Σ ( Σ cι}λf +1) =minimum

for the determination of λ%, , λfQi whence, as in our previous example,

(10.53) Σ ( Σ clnc
1=1

The coefficients cυ can be obtained from Tables I and V, which were
compiled before during our development of the flow (10.32). λVe use
the solution of the system (10.53) of nine simultaneous linear equations
to derive for ψ* the approximate expression

(10.54) s * * * ^ - .138356ft- .0270098ft- .00570592ft

- .00232521p5- .139902p6H- .372071p7

-.507771p8+ .388026p9-.169804p10 .

The average deviation here from the boundary condition ψ*jy2=0 is
1.2 per cent.

From (10.54) we derive for a the numerical value

(10.55) α=.041236 ,

while explicit integration gives for V the result

(10.56) V= .458433 .

Substituting this data into (10.49), we arrive at the approximate
relation

(10.57) 5?W =11.19100 - l 2 ^ 4 ,
1-ftf 1-hσ

which yields for CD the final estimate

(10.58) ^ ^ = .90956^.91
1-f cr

when σ=.23035. This result is in quite good agreement with the
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earlier value (10.38), but is still subject to suspicion because of its
sensitivity to small variations in the value of o. For example, in order
to obtain the quite possibly correct value .83 in (10.58) using (10.57),
it would suffice to replace (10.37) by the reduced estimate #=.221.

The best criterion for detecting sources of error such as we have
discussed here is an examination of the pressure distribution along the
obstacle Γλ. Only when we have achieved accuracy sufficient to yield
a properly behaved pressure distribution should we expect final accep-
tance of our numerical data. Thus, in contrast with the situation in
§§ 7 and 8, no decisive statement of conclusions can be made on the
basis of the preliminary numerical data accumulated in the present
section. However, the material developed here can be considered as a
sufficiently successful beginning to assure us that our fundamental
method of attack on the free surface flow problem will yield answers
of any desired degree of accuracy when we push through a more ela-
borate numerical analysis of the linear boundary value problem (10.1),
(10.2), (10.7), (10.8) by interpolating with a significantly larger number
of solutions of (10.1). In support of this contention, we note that our
numerical data all lie in a reasonable range and that the improvement
in results has been satisfactory when we advanced the number of in-
terpolating functions from seven to ten. Thus the only major trouble
we have encountered occurs in solving (10.1), (10.2), (10.7), (10.8) in a
given region, and apparently we have overcome completely the original
difficulty of not knowing beforehand the shape of the free boundary.
Only limitations on time, space and patience prevent us from carrying
through a definitive calculation in this initial report. In any case, it
is to be hoped that the numerical data presented here will provide an
adequate description of our method for the reader interested in pursu-
ing the problem further.

In closing, I should like to express my appreciation to Michael
Maschler for an exceptionally fine job of preparing my numerical cal-
culations for the IBM Card-Programmed Electronic Calculator at the
Stanford Computation Center. I am also immeasurably indebted to
Gladys Garabedian for untiring efforts on a desk calculator and to
Priscilla Feigen for an elegantly typed manuscript.
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