A GEOMETRIC PROBLEM OF SHERMAN STEIN

M. K. FORT, JR.

1. Introduction. Recently, Sherman Stein [1] has proposed the following problem:

Let $J \subset R_2$ be a rectifiable Jordan curve, with the property that for each rotation R. there is a translation T, depending on R, such that $(TRJ) \cap J$ has a nonzero length. Must J contain the arc of a circle?

We interpret "length" to be the measure induced on J by arc length, and in §2 we give an example to show that J need not contain the arc of a circle. In §3 we show that if "nonzero length" is replaced by "nondegenerate component", then J must necessarily contain an arc of a circle.

2. An example. Let C be a circle in R_2 , and let L be the circumference of C. Using standard arguments, we can obtain a subset D of C which is open relative to C, which is dense in C, and which has length less than L/3. We define J to be the point set which is obtained if we modify C by replacing each component K of D by the line segment whose end points are the end points of K. J is obviously a rectifiable Jordan curve. If R is a rotation, we choose T in such a way that TR maps C onto C. It follows that $(TRJ) \cap J$ contains $C-(D \cup TRD)$. Since D and TRD each have length less than L/3, we see that $(TRJ) \cap J$ has length greater than L/3. The curve J which we have defined satisfies the conditions of Stein's problem, but J does not contain an arc of a circle.

3. A theorem about Jordan curves. Before stating our theorem, it is convenient to prove first a key lemma about arcs in R_2 . It seems to the author that this lemma is quite interesting in itself.

LEMMA. If A and B are topological arcs in R_2 and A contains an infinite number of subarcs, each of which is congruent to B, then B is either an arc of a circle or a segment of a straight line.

Proof. We assign natural linear orderings to A and B, and define G to be the set of all isometries of R_2 onto R_2 which map B into A. Either an infinite number of members of G are order preserving or an infinite number of members of G are order reversing, and we may

Received October 31, 1955. The results contained in this paper were obtained during a period when the author was partially supported by National Science Foundation grant NSF G 1353.

assume without loss of generality that an infinite number of members of G are order preserving. We define S to be the set of all subarcs of A which are the images of B under order preserving members of G. Let a be one of the end points of A. For each $s \in S$, we define s^* to be the end point of s which is between a and the other end point of s. There exists an arc $\sigma \in S$ such that σ^* is a limit point of the set of points s^* for $s \in S$.

Suppose that σ is not an arc of a circle or a segment of a straight line. Then, there exist four points Q_1, Q_2, Q_3, Q_4 on σ which do not all lie on any one circle or line. There exists $\varepsilon > 0$ such that if q_1, q_2, q_3 , q_4 are points on σ and the distance from q_i to Q_i is less than 2ε for i=1, 2, 3, 4 then the points q_1, q_2, q_3, q_4 do not all lie on any one circle or line.

We now choose $\tau \in S$ such that the subarc of A from σ^* to τ^* is nondegenerate and has diameter less than ε . It is easy to see that $\sigma \cap \tau$ must be a nondegenerate arc and either $\tau^* \in \sigma$ or $\sigma^* \in \tau$. We may assume without loss of generality that $\tau^* \in \sigma$.

Next, we let f be an isometry of R_2 onto itself that maps σ onto τ with $f(\sigma^*)=\tau^*$. There exists a maximal finite sequence p_1, p_2, \dots, p_n of points on σ such that $p_1=\sigma^*$ and $p_k=f(p_{k-1})$ for $1 < k \leq n$. It is easy to see that the straight line segments $\overline{p_k p_{k+1}}$ in R_2 are all the same length for $k=1, \dots, n-1$, and that the straight line segments $\overline{p_k p_{k+2}}$ are all the same length for $k=1, \dots, n-2$. Thus, the angles formed by the segments $\overline{p_k p_{k+1}}$ and $\overline{p_{k+1} p_{k+2}}$ are all the same for $k=1, \dots, n-2$.

If f is orientation preserving on R_2 , then it follows that the points p_1, p_2, \dots, p_n all lie on some circle in R_2 ; if f is orientation reversing on R_2 , then the points p_k , for odd k, lie on a straight line in R_2 , and the points p_k , for even k, lie on a parallel line. In either case, there exists either a circle or a line which contains all of the points p_k , for odd k.

New, we choose odd integers k(1), k(2), k(3), k(4) such that the distance from $p_{k(i)}$ to Q_i is less than 2ε for i=1, 2, 3, 4. Finally, we obtain a contradiction by letting $q_i = p_{k(i)}$ for i=1, 2, 3, 4. Thus σ , and hence also B, must be either an arc of a circle or a segment of a straight line.

We are now ready for our theorem.

THEOREM. If $J \subset R_2$ is a (not necessarily rectifiable) Jordan curve, and H is an uncountable set of rotations about some one point such that for each $R \in H$ there is a translation T such that $(TRJ) \cap J$ has a nondegenerate component, then J contains an arc of a circle.

Proof. Let E be a countable dense subset of J, and let F be the

set of all subarcs of J whose end points are members of E. It is easily verified that if $R \in H$ and T is a translation for which $(TRJ) \cap J$ has a nondegenerate component, then there exist arcs U and V in F such that $TRU \subset V$. Since H is uncountable and there are only a countable number of pairs U, V of members of F, there exist arcs A, B in F and an uncountable subset H' of H such that for each $R \in H'$ there is a translation T such that $TRB \subset A$. A given subarc of A can be expressed in the form TRB for at most two rotations R in H', and hence there is an infinite number of subarcs of A which are congruent to B. By our lemma, B is either an arc of a circle or a segment of a line. Since A contains subarcs of the form TRB for an infinite number of rotations R, it is easily seen that B cannot be a line segment. It follows that A, and hence also J, contains an arc of a circle.

By making use of the example defined in §2, it is easy to show that it is not possible to replace "uncountable" by "infinite" in our theorem.

Reference

1. Bull. Amer. Math. Soc., 61 (1955), 465, research problem 25.

THE UNIVERSITY OF GEORGIA