SOME PROPERTIES OF DISTRIBUTIONS
ON LIE GROUPS

LEON EHRENPREIS

1. Introduction. Let G be a separable Lie group and let V be a
complete, metrizable, topological vector space. The underlying space of
G is a separable real analytic manifold so that we can define, by the
methods of L. Schwartz (see [7], [12], [13]), the spaces (V) of in-
definitely differentiable maps of G into V, and (V) which consists of
those maps in &' (V) which are of compact carrier. Their duals are
(V), the space of distributions on G with values in V7’ (the dual of
V), and “”(V) which is the space of distributions of compact carrier
with values in V.

By using the group structure in G, we can define the convolution
Sx fe & (C) for any Se Z'(V), fe Z(V), where C is the complex
plane. The main result of this paper is: Let Se &7’(V) have the pro-
perty that S f e <7(C) whenever f e &7 (V); then Se &’(V). Moreover,
the topology of &7(V) is that obtained by considering each Se &'(V)
as defining the continuous linear transformation f— S* f of Z(V)—
(C) and then giving this set of transformations the compact-open
topology (see [6]). This generalizes the result of [6] in case G is a
vector group and V=C.

This result is generalized to double coset spaces L\G/K where L
and K are compact subgroups of G. In this form, the result will be
used by the author and F.I. Mautner to generalize the Paley-Wiener
theorem and the theory of mean-periodic functions of Schwartz (see
[8])-

The author wishes to express his thanks to Professor F.I. Mautner
for helpful discussions.

2. Distributions on G. Instead of using the usual method of de-
fining distributions on G, as for example in de Rham and Kodaira [12],
we shall follow another approach which is more akin to the author’s
thesis [5]. We shall show that the two methods are equivalent.

By ‘“ function ”’ we shall mean ‘‘complex-valued function’’ unless
the contrary is specifically stated. ¢ Linear’’ will mean ‘‘linear over
the complex numbers >’ always. By 1 we denote the identity in G, and
by g we denote the Lie algebra of G. For any Yegq, we denote by
t — exp(tY) the unique one parameter subgroup in G whose direction

- 7ReceivecriﬁSeptember 22, 1955. Work partially supported by National Science Founda-
tion Grant NSF5-G1010.
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at 1is Y. Let V be a complete metrizable locally convex topological
vector space.

The map f of G into V is said to be differentiable in the direction
Yegat veG if K%{)[(exp tY)x]} exists ; if this is the case, we set
0

(1) D@ —{(iexp )l .

If f is a continuous map of G into V, we say that f is in the domain
of D, if, for any z€ G, f is continuously differentiable in the direction
Y at «. D,f is then defined as the (continuous) map z — (Dyf) ().

By &° we denote the space of continuous maps of G into V with
the topology of uniform convergence in V on the compact sets of G.
By the carrier of an fe &° we mean the closure of the set of points
where f=%0. An operator on G is a linear mapping of a subspace of
Z° into &°. The operator D is said to be closed if the conditions: {f,}
in the domain of D, f,—f and Df, — hin &, imply f is in the domain
of D and Df=H.

PROPOSITION 1. For any Y in g, Dy is a closed operator.

Proof. It is clear that D, is an operator.

It remains to show that D, is closed. Let {f;} be a sequence of
functions in the domain of D, such that {f;} and {Dyf;} are Cauchy
sequences in &°; call f=limf,, A=lim D,f,, the limits being taken in
&' LetY, X, X;,+-++, X, be a basis for g and N an open neighbor-
hood of 1 in G in which exp (¢,Y) exp (¢,X,) - - - exp (¢,X,,) form a coordinate
system. It is clearly sufficient to prove that f is in the domain of D, at
1 and that (Dyf)(@)=n(x) for any xe N.

Now, 0: (¢, ¢, <+, t,) > (exp (¢,Y), exp (X)), +++, exp (¢, X,)) maps
a circular neighborhood M of 0 in real Euclidean n-space homeomorphi-
cally onto N. It is immediate from the definitions that a continuous map
p of G into V is differentiable in the direction Y at 1 if and only if 6
has a continuous partial derivative in the direction ¢, at 0, and then

D))= @)

for all 2 in a suitable neighborhood of 1. From this and the known
closure of 9/3t; on Euclidean space, our assertion follows.
Now, let Y3, Y,,---, Y, be a basis for g. We set
D1=DY1’ Dz=DY2y °t Dn=DY

n
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and we call ® the family (D, D,,---, D,) so ® is a family of closed
operators. By means of D we can now define, by the methods of [5],
the complete, locally convex, Hausdorff, topological vector spaces <&
(or &7 (V)) of indefinitely differentiable maps of compact carrier of G
into V, and & (or «(V)) of all indefinitely differentiable maps of G
into V. & is a metrizable space; a sequence {f,} converges to zero
in & if and only if for any operator D*=D;D,, -+-D;,, D; €D, Df
— 0 uniformly in V on every compact set of G. The topology of <&
may be described as follows: For each compact set K, let < be the
subspace of 7 consisting of those maps of <7 which have their car-
riers in K; the topology of <7, is that induced by & . Then of all
possible locally convex topologies which induce on each &7, the topology
of &7, that may be given to the set of functions of <, & is given
the strongest (see [4]).

PROPOSITION 2. The spaces &7 and & are the same as those we
would have obtained by considering G as an indefinitely differentiable
manifold.!

Proof. Let N be a neighborhood of 1 in G in which (expt,Y;
expt,Y, -+ expt,Y,) form a coordinate system. Then it is clearly suf-
ficient to prove the theorem for the restrictions of the functions of &
and &7 to N. The result now follows by the method of the proof of
Proposition 1.

PrOPOSITION 3. 2 and <& are reflexive topological spaces.’

Proof. We prove the theorem first for &. Since & is metriza-
ble, it is sufficient to prove that & is a Montel space, that is, that the
bounded sets of & are relatively compact (of compact closure). Let
then B be a bounded set in <. Let N be a compact neighborhood of
1 in G in which (expt¢,Y,expt,Y, --- expt,Y,) form a coordinate system.
Since G is separable, we can find a sequence of points a; € G such that
G=\U(interior Na,).

It is easily seen that it is sufficient to show that, for any ¢, and
for any integers »y, 7y, «-+, 7y, if we set D*=D,D, ---D, , then the
set {D*f};ep is equicontinuous on a,N. It follows immediately as in
the proof of Proposition 1 that the restrictions of the maps D*f have
the property that (if we identify them with maps on a circular neighbor-
hood of zero in Euclidean n-space) their partial derivatives in all direc-

1 That is, by applying the method of de Rham and Kodaira [12].
2 See [3].
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tions are uniformly bounded for fe B. As is well-known, this implies
the equicontinuity of {D*f},c; on a,N; hence Proposition 3 is establish-
ed as regards the space &.

If L is a bounded set in <7, then all the maps of L have their
carriers in a fixed compact set K of G, that is, L C &,. Since the
topology induced by <& on &, is also the topology induced by & on
D, L is bounded in &. Thus, L is relatively compact in &, hence
in Dk, hence also in <& which concludes the proof of Proposition 3.

A sequence of open, relatively compact (that is, of compact closure)
sets K; C G will be called a scattered resolution of G (see [5]) if UK,
=G and if, given any compact set K C G, only a finite number of the
K; meet K. Given any scattered resolution {K,} of G, there exists a
partition of unity {h,} relative to it; by this is meant that the indefinite-
ly differentiable functions %, have the properties that :

1. For each ¢, carrier h, C K, .
2. For any xe G, X h(x)=1.

(This sum has meaning because all but a finite number of terms are
zero.) To establish the existence of the partition of unity {4}, we
have only to note that the scattered resolution {K;} can be ‘‘refined”’
to a scattered resolution {L;} by coordinate neighborhoods (that is, each
K, is contained in a union of a finite number of L;). The existence of
a partition of unity relative to {L;} is readily verified and, in turn,
implies immediately the existence of a partition of unity relative to
(K.

By &2’ (or &'(V) we denote the dual of & with the topology of
uniform convergence on the bounded (compact) sets of <=7. It can be
shown (see [7]) that, &7’ can also be described as the space of con-
tinuous linear maps of </ (C) — V7, this space of maps being given the
compact-open topology. For this reason, <7’ is usually called the space
of distributions on G with values in V'. In this paper, we shall call
the elements of &7’ distributions.

For any distribution S, and any open set O in G, we say that S
vanishes on O if S-f=0 for any fe < whose carrier is contained in
0. Because of the existence of partitions of unity, we can easily show
that if S vanishes on O, where O, are open sets, then S vanishes also
on \JO,. Thus there is a largest open set on which S vanishes. The
carrier of S is defined as the complement of this set.

&' (or &’(V)) is the dual of &. It can be shown, as in [13], that
&' consists of all distributions of compact carrier.

For any Se &/, by S is meant the distribution f— S-f for fe Z,
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where f(2)=_f(x) for any zeG .

By GxG we denote the direct product of G with itself; GxG is
again a Lie group whose underlying manifold is the Cartesian product
of the underlying manifold of G with itself. By ,<, ,&, .7, ,& we
denote the spaces on GxG corresponding to &, &, &' &’ re-
spectively.

Let & be a continuous map on GxG and xe€G. Then by kx ., we
mean the map on G: y — %(x, y). Suppose that, for all zeG, kx - is
in a space U of mappings on G. Then by % we mean the mapping
& ky . of G—>U. Let L be a map defined on U; then we say that
k is in the domain of L, and we denote by L,k the map

€xr — LkX1=1:

for e G. If the range of L is again a space of mappings on G, then
we say also that % is in the domain of L, and we shall denote by L,k
the mapping on G xG:

(@, y) = Lkx () -

L, is called the lift of L to GxG. We define kx,., ks Lu, L,
similarly.

We can now define, as in [5], two products involving distributions
and functions :

For any Se &, ke,<’, then we have two inner products: Sk and
S,k which are both in <7,

For any S, Ue &’ we define the direct products S, x U, and S, x U,
€, 7" by

S x U, k=S-U,k, S, xU,-k=S-Uk

for any ke, <.

The direct products define continuous bilinear maps which are com-
mutative, while the inner products are only separately continuous bili-
near maps. (If V, W, X are topological vector spaces and t: Vx W—
X is a bilinear map, then ¢ is called separately continuous (see [4], [5])
if, for B, B’ any bounded sets in V, W respectively, the maps

w — (b, w), v —>t(v, b)

are, for be B, V' € B, equicontinuous linear mapsof W — X and V—> X
respectively.)

By {Q} we shall denote an enumeration of the operators D, D, ---
D, with Q,=identity.

For f a continuous map defined on G, f‘ is the map « — f(a?).

We shall denote by » the function on G defined by dxg=7(g)dw,
where da is a left invariant Haar measure, It is known that 7e & (C)
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and, moreover, 7 is a homomorphism on G. By « we denote the func-
tion on G defined by dz'=w(x)dx. Again, we &(C) and v is a
homomorphism on G. It is readily verified that w(y)=7(y~') for any

y€G. For any Se &', we write S-f=S-wf for any fe &

3. Convolution on G. For any continuous map f of G into V
and any x€G we define the translations

R@))=rfl="y)  R@))Y)=f(y)
for any yeG.

PROPOSITION 4. (x, f)— &@)f and (x, f)—> R(x)f are continuous
maps of Gx Z'— <Z and also of Gx & —&.

Proof. We shall establish the theorem for the map (x, f)— %(z)f
of Gx & — &; the other parts of the proposition may be established
by similar methods. By the results of Dieudonné and Schwartz (see
[4], [5]) it is sufficient to prove that this is a continuous map of G x
— <7 for any compact set K of G. Since the map is linear in f and
a homomorphism in z, it is sufficient to prove continuity at f=0 and
x=1. Let K be a given compact set in G and choose K’ a compact set
in G so large that K’ contains the carriers of all ¥(z)f for xe Dk
Let M be a neighborhood of zero in <r,,. Then we can find operators
Q) @, -+, @,, and continuous semi-norms p;. p,, -+, p, on V, and a
positive number a so that M contains the set of e &, which satisfy

max pl@A) W] < a

for j=1, 2, ---, r
For any pe &, any k, and o, z€ G,

(D X(2)p)(x)= {[(%)Q(Z)p :I[(exp tY,) 90]}t=

(G e}

( )[z“‘(exp tY, )zz“lm]}

{
-K > (exp tz—lY,cz)z‘lx]}

Now, write 2-'Y,2=2 ¢,,(2)Y; where (c;;) is the matrix of the adjoint
representation of G on g. Then we have

I
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(D X(2)p)(@)=(D,1r . [)z""T) .
We also have
D,y p=2c¢,(2)Dp .

The functions ¢,; are continuous and even indefinitely differentiable on
G. Hence, we can find an 4 > 0 so that

max |e.,(2)] < A
zEK

for all %, 7.
1t follows immediately from this that we can be assured that, for
g€ Dg, 2€K,

max p[(Det(2)q)(2)]
will be small by making
max p,[(D,q)(=)]
z€G, j, ¢

sufficiently small. Proposition 4 now follows by iteration, since each @,
is of the form D, D, --- D, .

For any continuous map f on G, ¥f is the map on GxG: (x, y)—
flx 'y) ; &*f is the map on GxG: (x, y) — f(wvy). By the method of
proof of Proposition 1, we can establish

PROPOSITION 5. f —2f and f — L*f are continuous linear maps
of &—,&.

We are now in a position to define the convolution product involv-
ing distributions and functions. The definition differs slightly from that
of Schwartz [13]: For any Se &/, fe &, ve(G, we set

(1) (S * a)=S5-L) f

This formula can also be considered valid if Se & and fe &.

PROPOSITION 6. (S, f)— S x f is a separately continuous mop of
@) &'x E->E(0)
(b) &'xT->D(C)
() D'xT->&(C).

which is antilinear in S and linear in f.
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Proof. (a) Let j be fixed and write A=D,. We find from the de-
finitions that, for Se ¢, fe &, S* fe ¢ (C) and, moreover,

(2) [A(S * )I(@)=S" (4,2 )x -a -
From this it follows by iteration that, for any @=,, we have
(3) [Q(S * )1(x)=5+(Q: 2 )x,-. -

Part (a) results immediately from (3) together with Proposition 5.
(b) By a result of Dieudonné and Schwartz (see [4]) it is sufficient
to prove that, for K a compact set in G, (S, f) — S = f is a separately

e

continuous map of &' x T —<. Now, it is obvious that
(4) (carrier S« ) (carrier S)(carrier f).

Our assertion now follows from (a) above and the fact that <, has
the topology induced by .
(¢) This is proven by essentially the same reasoning as that em-

ployed in the proof of (a) above.

4. & as a space of linear transformations. In this section we
shall prove our main result.

THEOREM 1. Let Se ' have the property that S x fe <7 (C) when-
ever fe ; then Se &’.

Proof. Let us suppose that S satisfies the hypotheses of Theorem
1, and let K be a fixed compact set in G. We shall show first that
there exists a compact set K' C G such that S « & C <, . Assume
this is not the case, and let {K;} be a compact exhaustion of G. (That
is, each K, is a compact set which is the closure of a nonempty open
set. Moreover, K, C K., and \UK,=G.) We shall produce a sequence
{g:} with the following properties:

1. Each g,e .

2. Yg, converges in Tg.

8. There is a sequence of positive numbers m, with m,.,—m; >1
for all ¢ such that

carrier (S xg,) C K,
carrier (S * g;41) & Ky, .

4. There is a sequence of points ¢, € G such that a, is a point of
K, —K,, , (where K, is the empty set) for which (S *g,)(a)#0 and

0



DISTRIBUTIONS ON LIE GROUPS 599

(S * grar) (@) < 3l IS * g.)(@)]

for all £>0.
Suppose that the sequences {g;}, {m;}, {@,} can be found. Then
for any ¢ > 1,

I(S = 2 g)(@)|=|2(S = g,)(a)]
=228 * g,)(a)l
=S * g;)a:)| — ]Z>i I(S * g;)(a;)]

>((S * g.)(ay)] [1_ Z,L]

iz 87
S
—"2 |( *gz)(at)l

>0.

Since the set {a,} is clearly not contained in any compact set of G, we
conclude that S x XY g, is not of compact carrier, which contradicts our
hypothesis.

It remains to define the sequences {g.}, {m;}, and {a,}. Let
9.€ 7, be chosen so that S*¢,%40. Let a, be any point in G for
which (S * g,)(a,) 7= 0, and choose m, > 0 so that

carrier (S x g,) C K, -

Assume that ¢, ---, 9x, @, ---, Ay, m, ---, m; have been defined
with the required properties; we shall now define g¢,.,, @x.1y, Mper .
Now, by our assumption, there is an f € <7, such that

carrier (S *f) L Ky s -

Let m;., be chosen so that carrier (S *f) C Kmk+1’ and let a.., be some
point in K,, —K,, such that (S * f)(a,..) 7%= 0. Define

- . f _ _
T max (1, max | f@)13) max (1, max [(Qu@)] (S * 0)(@)[1)

1

The sequences {g¢;}, {m.}, {a;} are thus defined. It is clear that
conditions 1, 3, 4 are satisfied. Further, each ¢,€ &, and, for R any
semi-norm on D, of the kind used to define the topology of that space,
it is clear that

2 R(g) > oo .

Thus Y g, converges in .
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To complete the proof of Theorem 1, let us assume that S is not
of compact carrier, and let K be a given compact symmetric neighbor-
hood of 1 in G. It is clear that we can choose an open set U in G
such that S does not vanish on U and such that U N K’ is empty,

where K’ is a compact symmetric set such that S + &', C D, It
follows easily that we can find a ge G, and an f €D such that carrier
fCKgCU, S-f7#0.

On the other hand, by definition,

S-f=(S L) )g™) -

But, carrier f C Kg implies carrier ¥(g9)f C K because K is symmetric.
Also, g€ K’ because 1€ K and K’ N\ U is empty. Since K’ is symmetric,
also ¢g~'¢ K’. Thus, S'f' =(S = (9)f)9~)=0; this contradiction com-
pletes the proof of Theorem 1.

The set of distributions of &’ forms a vector space of continuous
linear mappings of & — < under convolution; we give this space the
compact-open topology (see [6]) and obtain a topological vector space J.
A fundamental system of neighborhoods of zero in J consists of all
sets N for which we can find a compact set K in & and a neighbor-
hood of zero M in <7 so that N consists of those Se &’ with S* &
e M for all he K. By Proposition 1 of §5 of [6], we would have ob-
tained the same topologies if we had considered the distributions of &’
as defining, under convolution, continuous linear maps of &’ — &’.

THEOREM 2. The natural map u: &’ —J is a topological isomorphism
onto.

Proof. u is clearly one-to-one, linear, and onto. Moreover, .J is
given the weakest topology to make the maps

S Sy« f

of J— <7 equicontinuous for f in any compact set of <7 ; by Proposi-
tion 6 this implies that u is continuous.

Since u~! is linear, we need verify continuity only at zero. Let T
be a neighborhood of zero in &’; there is a bounded set B C & so
that T contains the set of Se &’ which satisfy [S-b| <1 for all of
bep.

Let K be an open symmetric neighborhood of 1 in G whose closure
is compact. Then it is clear that we can find a sequence of points a,
e G such that {a,K} is a scattered resolution of G (see §2). We can
also insure that, if @ is one of the a;,, so is a=*. Let {h} be a parti-
tion of unity relative to this scattered resolution (see §2). It is readi-
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ly verified by the method of proof of Proposition 1 of §3 that, for
each ¢, the set B, of functions (a,;)(k,f) for fef is bounded in &.
For each j there is a double sequence s,=M,,, of positive numbers so
that B, is contained in the bounded (in <) set L; of all ge D whose
carriers are contained in K and which satisfy

Hmlg-g( Pk[(ng)(fU)] < My,

for all ¢. From the denumerable number of double sequences s; we
construct a double sequence s={M,} of positive numbers such that,
for each j, M,,, < M,, for all but a finite number of 4, k. Hence, for
each j, we can find an e, > 0 so that ¢,M,,, < M,, for all ¢, k; we can
clearly make e;=e¢, if a,=a;".

Let A be the set of fe & for which

1. carrier f C K

2. max p[(Q,f)(x)] < M,, for all 1, &,
zEG

so A is bounded in <. Let M be the neighborhood of zero in & con-
sisting of those he & with

max ph(z) < ed;

meajK

for all j, where d; are positive numbers which satisfy 3 d,=1. Call N
the set of SeJ with S* feM for all fe A, so N is a neighborhood
of zero in J; we claim that »~'(N) C 7.

Let us assume this is not the case; then we can find an Se N with
w'Sé¢ T, that is, Se N but

lu=S- f1 >1

for some fefp. Now, u~'S is of compact carrier; thus we can find an
7 such that

2 i) =1
for any x € carrier (u=*S). Hence
(5) S fI < Nu'S by fl+u'Shfl+--+uw'S-h.f].
It is clear from the definitions that, for each <,
e(a)hf)eA .
Thus,
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hzf=*1* ﬂ(at‘l)g

for some ge A, which gives, for ¢=1, 2, «--, »,

lwﬂhf%smﬂ&&w%l

— 1 \@78 « g)ar)
e;

—

< ~ed,,
e

where a,=a;", because g€ A and u~'Se N. Now, since ¢,;=e;, we have
[u'S-h,fl < d;.
Applying this to equation (5) we obtain
'S fl < dv+dy+-0-+d, <1

(where we set a;,=a;'). This contradiction proves the theorem.

5. Extension of the main result. We assumed in §§2, 3, 4 that V
is metrizable. In case V is not metrizable, then the spaces 7 and &
can be defined as before, but E is no longer metrizable, and < is not
an <77 space in the sence of Dieueonné and Schwartz [4]. However,
there is no difficulty in extending the definition and continuity proper-
ties of the convolution product to this case. Theorem 1 can be extend-
ed to this case, but the proof of Theorem 2 does not extend to the
case of V not metrizable. All that can be proven (and the proof is
much simpler than the proof of Theorem 2 above) is that » is con-
tinuous and that u! is sequentially continuous and takes bounded sets
into bounded sets. The continuity of #~! is an open question.

We assume in the following that V is a complete, locally convex,
Hausdorff, topological vector space. By V* we denote the space of
continuous linear maps of V into V with the compact-open topology, so
V* is again a complete, locally convex, Hausdorff, topological vector
space.

Let K and L denote compact subgroups of G. By a representation
of KonV we mean a continuous homomorphism U of K into V*. Let
U and W be representations of V of K and L respectively. By ,».
we denote the space of those f e . (V*) for which

(6) LERC) S =Uk)f W)
for any ke K, le L. We give ;< the topology induced by &, ., &
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is defined similarly.

For any Te 2'(V*), ge G, we define L(g)T and R(g)T as the dis-
tributions

(7) DT f=T-g™Nf, R(OT-f=9)T-R(g™).f

for any fe & (V*). (7 was defined in §2.) Let us denote by <’
the space of all Se &7'(V*) which satisfy

(8) YRYRAD)S- f=S-Uk)f W)

for any fe Z2(V*), keK, leL? We shall write Uk)SW(l")-f for
the right side of (8). We give <7’ the topology induced by &'(V™).
ow &' is defined similarly.

We can easily show

PROPOSITION 7.
f =Py f= SK . URY(R)RQ) S V-2()dkdl

(where dk and dl are the respective Haar wmeasures on K and L so
normalized that S dlc=S dl=1) defines continuous open projections of
K L

T(V*) onto yw T and & (V*) onto g & . Also
S — PUWS=S LIEHRD[U-(k)SV(I)]dkdl
KxL

defines continuous open projections of 2'(V*) onto ,v <2’ and &£'(V*)
onto yw &,

COROLLARY. w2’ s the dual of w0 and yw &' s the dual of
uw

Proof. This is an immediate consequence of Proposition 6 and the
fact that, for Se @', fe <7 (or for Se &', fe &), we have PyS-f
=S:Pyyf.

Suppose that K=L; then we see easily that the convolution defined
in § 3 defines a separately continuous bilinear map of ;7' Xz I —
vz & (C) (where U, W, Z are representations of K on V). The method
of proof of Theorems 1 and 2 can be used to show.

THEOREM 3. 5 &' consists of all S€ 3w’ such that S* f€ 5
for any fewwZ. The topolagy of ,w &' is sequentially the same as
that obtained by considering the elements of ,w &' as defining (by con-
volution) continuous linear maps of ww < — yw and giving this set the

3 Note that since L is compact, the restriction of 7 to L is 1.
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compact-open topology r. Moreover, the bounded sets of w &' are the
same as those of t.

REMARK 1. We do not know whether the topologies r and that of
ow &' are the same. The difficulty is that, for fe, w7, geG, L g)f
is no longer in »w 2.

REMARK 2. In case that K=L, V is finite dimensional, and U, W,
X, Z are irreducible unitary representations of K on V, then it follows
easily from the Schur orthogonality relations that S f=0 for any Se
ow &' €57 if W is not equivalent to X.

REMARK 3. The conclusion of Theorem 8 does not necessarily hold
if the space w2 in the hypothesis of the theorem is replaced by 4, <
where Z is different from W, even if V is finite dimensional and U,
W, Z are irreducible unitary representations of K. An example will be
given in a forthcoming paper of the author and F.I. Mautner. (G can
be taken as the complex unimodular group.)

6. General remarks. We have assumed that G is a separable Lie
group. In the general case, the spaces & and & can be defined as
before, but & will not be metrizable and < will not be an <% space
in the sense of Dieudonné and Schwartz [4] because & will be the
inductive limit of a non-denumerable number of spaces, For this reason,
the topology of <7 is best defined as follows: Let {f;;} =0 be a fami-
ly of continuous functions on G such that

(a) For each 4, only a finite number of j appear.

(b) Only a finite number of f,, are different from zero on any
compact set of G.
Then we define N, as the set of 2€.<7 for which

max ol (@)Q,R)(2)] < 1

for all 7, j, where the Q; are as in §2, and {p,} denotes an enumera-
tion of semi-norms which are sufficient to define the topology of V. The
sets NN, are seen to form a fundamental system of neighborhoods of
zero of a locally convex topological vector space which we shall call
. In case <7 is separable it is easily verified that the two definitions
agree.

The advantage of the above definition is that it implies immediate-
ly the completeness of <7. For, the completion of <2 obviously consists
of indefinitely differentiable maps. Moreover, if % is any map in the
completion of <7, then, for any continuous function f on G, and any
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k, it is easily seen that p,(fh) is a bounded function. This implies
immediately that % is of compact carrier, hence e & .

The properties of convolution can be extended to the nonseparable
case and there is no difficulty in extending part of our main results.
We can, as in § 5, prove only that the topology of &’ is sequentially,
and in regard to bounded sets, the same as the compact-open topology
of the space of linear transformations of <— < (under convolution).

The results of § 5 on double coset spaces K\G/L can also be extend-
ed to functions invariant under a compact group of automorphisms of
G (the group of automorphisms of G is given the compact-open topology).

In addition, the main results of this paper can be extended to
locally compact groups. There & is replaced by the space of con-
tinuous funections, &7 the space of continuous functions of compact car-
rier, <’ the space of measures and &’ the space of measures of com-
pact carrier.
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