
ON THE PRINCIPAL FREQUENCY OF A MEMBRANE

ZEEV NEHARI

1. Let D denote a simply-connected region in the ^-plane whose
boundary consists of a finite number of piece wise smooth arcs. If λ is
the principal frequency of a homogeneous membrane which covers D
and is kept fixed at its boundary C, then, according to a well-known
theorem of Rayleigh [3], λ is not smaller than the principal frequency
of a circular membrane of equal area and density. This may also be
expressed by saying that the homogeneous circular membrane has the
lowest principal frequency among all homogeneous membranes of the
same mass.

In this paper we shall be concerned with the possible generalizations
of Rayleigh's theorem to the case of non-homogeneous membranes. It
is clear that no general result of this type is to be expected unless
certain restrictions are imposed on the density distribution of the
membrane. Indeed, it is easily shown that the principal frequency of
a membrane of given mass can be made arbitrarily small if enough of
the mass is concentrated in a small area interior to D. It is therefore
necessary to add conditions which prevent the excessive accumulation
of mass at interior points of the membrane. As the following theorem
shows, a sufficient condition of this type is the requirement that the
density distribution p(x, y) be such that \ogp(x, y) is subharmonic, i.e.,
that the mean value of \ogp(x, y) on any circular circumference inside
D is not smaller than the value of log p(x, y) at the center.

THEOREM I. Ifλ is the principal frequency of a membrane of given
mass whose density distribution p(x, y) is such that logp(x, y) is subhar-
monic, then

(1) λ ^ λQ ,

where λ0 is the principal frequency of a homogeneous circular membrane
of the same mass.

The conclusion of Theorem I will in general not hold if the
restriction on p(x, y) is replaced by the somewhat weaker condition
that p(x, y) be subharmonic. The following theorem shows, moreover,
that — at least in the case of a circular membrane — inequality (1) is
reversed if p{x, y) is assumed to be super harmonic.

THEOREM II. If λ is the principal frequency of a circular membrane
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of given mass whose density distribution p(x, y) is super harmonic, then

where λ0 is the principal frequency of a homogeneous circular membrane
of the same mass.

Theorems I and II will be proved in §§2 and 3, respectively.
In § 4, Theorem I will be applied to the proof of the following result
on homogeneous membranes.

THEOREM III. Let a be an analytic subarc of C which is concave
with respect to D. If A denotes the principal frequency of a homogeneous
membrane whose boundary is free along a and fixed along C—oc, then

where AQ is the principal frequency of a homogeneous semi-circular
membrane of equal mass whose boundary is free along the diameter and
fixed along the semi-circle.

2. The principal frequency of the membrane with the continuous
density distribution p(x, y) is the lowest eigenvalue λ of the differential
equation

( 3 ) uxx + uw + λp(x, y)u = 0

with the boundary condition u — Q.λ may also be defined as t h e minimum
of t h e Rayleigh quot ient

( {Ul+Ul)dxdy
( 4 ) J(U U»

l\ pU'dxdy

if U(xf y) ranges over the class of functions which vanish on C and
for which U, Ux, Uv are continuous in D+C. To prove Theorem I, we
have to show that, under the assumptions concerning p(x, y) the integral

Λ\\ pdxdy attains its minimum in case D is a circular disk and p(x, y)

is constant, i.e., we have to demonstrate the inequality

( 5 ) λ I \ p(χf V) d% dy ^ πf0 ,

where j0 is the smallest zero of the Bessel function J0(r).
We denote by u the first eigenfunction of (3). The function u is

not zero in D, and may be normalized in such a way that O ^ ^ l in
D. We use the symbol Cp for the level curve, or curves, n—p and we
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set (̂ẑ ) = \ \ pdxdy, where Dp is the subset of D at which u^p. If

Cp consists of n closed Jordan curves (sections of which may coincide),
these will be denoted by CPtl, Cp>2, , Cp>n. The proof of (5) will use
a symmetrization procedure [3] in which the curve, or curves, Cp is
replaced by a circle about the origin of radius r, where πr*=A(p). If
v is the function which takes the value p at all points of this circle,

and R is defined by πR2=A(0)=\ 1 pdxdy, we shall show that

( 6 ) \\ pu2 dxdy — \ \ v2r drdθ
JJD JO JO

and

( 7 ) if {ul+ul) dx dy ^ P \*(vl+vl) rdrdθ .
JJz> Jo Jo

If J(u) and J(v) denote the Rayleigh quotients (3) of u and v for their
respective domains of definition, it will follow from (6) and (7) that

λ [ [p dx dy = πR2J(u) ^ πR*J(v) .

Since v(R, θ) = 0, J(v) is not smaller than the principal frequency f0R~2

of a homogeneous circular membrane of radius R and density 1. Theorem I
will therefore be proved if (6) and (7) are established.

We denote by C* the level curve u—p—dp, where dp = ε>0 and e
is small. If dn is the length of the piece of the normal to C between
Cp and C*, the area between Cp and C* will be, except for a correction
term of order e2,

( 8 ) dA = 1 p dn ds = Σ \ pdnds .
JCp v-1 J ( 7 p v

where s is the length parameter on Cp. Since A(p)=πr2, we thus have

( 9 ) 2π r dr = I p dn ds .
J C P

By the Schwarz inequality, we have

(dpf( \ V p ds J = M -P-V p dn ds) ^ \ p dn ds l (-)dnds.

It follows therefore that

γi /P N 2 ί* C /J \ 2

(dp)2 Σ f 1 l/ pds) ^ I p c?τz ds\ \-^)dnds.
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Since, up to an ε'2-correction, \ ( ^Λdnds is the contribution Dξ(u) of

the area between Cp and C* to the Dirichlet integral on the left-hand
side of (7), we thus have, in view of (9).

(dp)2 Σ ([ V~pds\ ^ 2πr Ddp(u) .
v-i \JCP;V /

On the other hand, the contridution Ddr(v) of the circular ring between
r and r+dr to the dirichlet integral D(v) is (again with an ε'2-correction)

2πr(~^)dr. Hence,

Ddr(v) Σ (( l/ P ώY ^ 4τr2 r2

J
dr(v) Σ ((

v-i \Jcpv

Since 7rr2=\l pdxdy, this may also be written
J JX>P

(10) Zλ*rO>)Σ(( ^ /7^Y^4τrZ), p(^)(f pdxdy.

We shall prove presently that, under our assumptions regarding
the function p(x,. y), the inequality

(11) 4τrfί pdxdy ^ ([VpdsJ

holds for any rectifiable Jordan curve Γ and the region G bounded by
it. If the simply-connected region enclosed by CP;V is denoted by DPtVί

(11) implies that

4τr(( pdxdy £
JJDp

Combining this with (10), we obtain

Ddr(v) ^ Ddp(u)

and this entails (7). (6) follows from the fact that, by (9),

(f p u2dx dy = p2[ pdnds + O(ε2) = 2π r v2dr + O(ε2) .
JJD*-D JCp

To complete the proof of Theorem I, we have to show that (11)
holds for a function p(x, y) which is positive and continuons in a simply-
connected region G and on its boundary Γ, and which is such that
log p(x, y) is subharmonic. Because of the latter property, we have
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\ogp(x, y)^σ{x, y) in G if σ(x, y) is the harmonic function in G whose
boundary values on Γ coincide with those of \ogp{x, y). Hence, (11)
will be proved if we can show that

4τr( [ e2σ dx dy ̂  ([ eσ dsj ,

where σ(x, y) is any harmonic function in G which is continuous in
G+Γ. Now eσ=\g(z)\, where g(z) is a regular analytic function in G
which is continuous and does not vanish in G+Γ. If ŵ e set g{z) — f\z),
we thus have to show that

(12) 4τr f f \f\z) I2 dx dy rg (f \f'{z) \ dsj ,
J JG VjΓ /

where f(z) is regular in G, and f\z) is continuous and does not vanish
in G+Γ.

If f(z) is univalent in G, (12) reduces to the isoperimetric inequality

47r\ I dξdη^lχ \dw\] (w^ξ+iw)
JJG* VjΓ* /

for the region G* (bounded by Γ*) onto which G is mapped by the
transformation w—f(z). In the general case we have, by Green's
formula,

( ί \f'(z) I2 dx dy = 1 \ f f'dz =λ\ (ξdη-η dξ) ,
JJG 2% Jr 2 Jr*

and (12) is seen to be equivalent to the general isoperimetric inequality

proved by Hurwitz [1, p. 97] for arbitrary piecewise smooth closed
curves Γ* which may be self-intersecting. This completes the proof of
Theorem I.

3. We now turn to the proof of Theorem II. Since p(x, y) is
superharmonic in the circle x2+y2^R2, it follows from a well-known
result [2] that

(13) 52τε

p(x, y)dθ (x+iy=reίθ)

o

is a non-increasing function of r in the interval [0, R\. The same is
evidently true of its mean value
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If we set τ(r)=\ tq(t)dt, we may therefore conclude that
Jo

(14) τ(r) ̂  gτ

If λ denotes the lowest eigenvalue of the problem Av + λpv — Q with
the boundary condition v=0 on the circumference r—R, we bave

pu2 r dr dθ
0 J 0

λ [*[E(ul+ul)rdrdθ
Jo Jo

where u is any function which satisfies the boundary and admissibility
conditions. In particular, we may take for u the lowest eigenfunction
of the problem

(15) [r u'{r)~\ + λ0 r u(r) = 0, u(R) = u'(0) = 0 .

This yields

S R

r q(r) u2dr

2π\ rntιdr
Jo

In view of the definition of τ(r), we have

(16) I r q(r)u2dr ==• \ τ'{r)v?dr = — 2\ τ(r)nn'dr .
Jo Jo Jo

Since u(r)^0 in [0, E], it follows from (15) that ru\r) is a non-increas-
ing function of r. Because of ^(0)^0, we must therefore have u\r) rg 0
throughout the interval. We thus conclude from (14) and (16) that

^ Γ r uudr = 2 ̂  [*\*rq(r) u2 dr ^ - 2 ^ Γ r 2 uu'dr = 2 ̂  [*r u2 dr .

Hence,

S R

_ _ o r U * d r

 = τ(R) = τ{β)
λ " πR" \Rru'2dr πR2λ« «fi '

Jo

where jQ is the first zero of the Bessel function JQ(x). Since



ON THE PRINCIPAL FREQUENCY OF A MEMBRANE 291

J R ΓZitfR

r q(r)dr = \ \ prdrdθ ,
o Jo Jo

we finally obtain

λ\\ pdxdy ^ πjl ,

and this is equivalent to the assertion of Theorem II.

4. In Theorem III, we are concerned with a boundary value
problem of different type. If a is an analytic subarc of C, we are
considering the problem

(17) Δu + Au = 0, M = 0on C - a, — = 0 on a .

We shall show that, under the assumption that a is concave with
respect to the interior of the membrane, the smallest eigenvalue A of (17)
takes its smallest possible value in the case of a semicircular membrane
of the same area, where a coincides with the diameter bounding the
membrane. It may be noted that for non-concave arcs a the assertion
of Theorem III will in general not be true as suitable examples show,
A may in this case be made arbitrarily small.

We introduce the analytic function f(z) which maps the semicircle
\z\<R, ${z}>0 conformally onto the region D covered by the
membrane, and transforms the segment —R<z<R into the open arc α.
The value of R may be chosen in such a war that the semicircle has
the same area as D. Since a is analytic, f(z) will be regular and the
mapping will be conformal on the segment —R<z<R. Accordingly,
the function v(z) defined by v(z)—u[f(z)\ will satisfy the boundary
condition dvldn — Q on this linear segment, and (17) is transformed into
the problem

(18) Δv + Λ|/'(z)|2 v = 0, v = 0 for z = Reiφ, 0 ^ φ ^ π,

^ - 0 for -R < z < R .
dn

We now define a function p(z) by φ) = \f'(z)\2 for \z\^R, 3{z}^0,
and p(z) = \f/(z)\I for \z\<*R, ${z}<0. This function is continuous in
\z\tStR, and we may consider the eigenvalue problem

(19) Δw + A*pw = 0, w = 0 for \z\ = R .

It is easy to see that

(20) Λ* ^ A ,
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where A and J* are the lowest eigenvalues of (18) and (19), respectively.
Indeed, we have

(21) A* ^ _JJ£

11 prf dx dy
JJDR

where DR denotes the disk \z\<R and η satisfies the boundary and
admissibility conditions. If η is identified with v(z) in the upper half
of DR1 and with v(z) in the lower half, these conditions are satisfied
and the right-hand side of (21) reduces to A.

The next step is to show that log $(2) is a subharmonic function
in \z\<R. This is certainly true in both the upper and the lower open
halves of \z\<R indeed, in both these regions logp(z) is even harmonic.
To show that \ogp{z) is subharmonic throughout \z\<R it is therefore
only necessary to derive the inequality

(22) log p(x) ^ — P*log p(x+εeiθ)dθ ,
2π Jo

where x is any value such that —R<x<R and e is a sufficiently small
positive number. Since p{z) is symmetric with respect to the horizontal
axis, this is equivalent to

log p(x) ^ — ί* log p(x+εeίθ)dθ ,
π Jo

or, in view of the definition of p(z) in the upper half of the disk

\z\<R,

(23) log \f\x)\ S — Γ l o £ If'
7Γ JO

Since f(z) is regular for —R<z<R, we have

Γ log \f\x+eeίθ)\dθ - SRJ— (* log f\x+eeiθ)dθ
I Joπ Jo

= 3ft j ! f [ log f\x) + ε eiθ - g M + O(eη~\
ί π Jo L f'(x) J

g + O(eη\dθ

= log \f\x)\ - -9ί 1 4 g ^
π ( % f\x)

A comparison with (23) shows therefore that (22) will be satisfied for
sufficiently small ε if, and only if, 3{f"(x)IΓ(x)} <0. If φ(x) is the
angle between the tangent to the curve w=f(x) and the positive
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^-direction, this is equivalent to φ'(x)<0. This condition will therefore
be satisfied if, and only if, the curve w=f(x) —that is the arc a— is
concave with respect to the interior of D. We add that the points at
wτhich ${/"//'}—0 are either isolated, or else this expression vanishes
identically for —R<x<R and a is a linear segment. Evidently, the
subharmonicity of p(z) in not destroyed by isolated points of this nature.
If a is a linear segment, the assertion of Theorem III follows from
Rayleigh's theorem and an elementary symmetry argument.

In accordance with the hypotheses of Theorem III, log p(z) will
thus be subharmonic in \z\<R and we may apply Theorem I, i.e.,
inequality (5). In view of the definition of p(z), we have

\f'(z)\*dxdy - A*\\ p(z)dxdy ^ πj; .

Taking account of (20) and the fact that II \f\z)\λ dxdy is the area A

of D, we obtain

and this is equivalent to the assertion of Theorem III since jlR~2 is
the principal frequency of the membrane of density 1 which covers DR

and has the indicated boundary conditions.
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