REMARKS ON THE MAXIMUM PRINCIPLE FOR
PARABOLIC EQUATIONS AND ITS
APPLICATIONS

AVNER FRIEDMAN

Introduction. In [3] Nirenberg has proved maximum principles,
both weak and strong, for parabolic equations. In § 1 of this paper we
give a generalization of his strong maximum principle (Theorem 1).
Hopf [2] and Olainik [4] have proved that if Lu=0 and L is a linear
elliptic operator of the second order, if the coefficient of % in L is non-
positive, and if u (zZconst.) assumes its positive maximum at a point P’
(which necessarily belongs to the boundary) then 8ux/9» <0, where v is the
inwardly directed normal. In §2 we extend this result to parabolic
operators (Theorem 2). A further discussion of the assumptions made
in Theorem 2 is given in §3. Application of Theorem 2 to the Neu-
mann problem is given in §4. In §5 we apply the weak maximum
principle to prove a uniqueness theorem for certain nonlinear parabolic
equations with nonlinear boundary conditions, and thus extend the spe-
cial case considered by Ficken [1]. An even more special case arises in
the theory of diffusion (for references, see [1]).

1. Consider the operator

z, o"u u ou ou
1 Lu= a;(x, t axz, t) -2 +alx, Hu—-""~
(1) mz=1 ol )6wi<’?wj+iz-1 d )axi +ale, 1) ot

with a(x, )<0. Here, (x,t)=(x, « -+, @, t) varies in the closure D of a
given (n+1)-dimensional domain D. Assume that L is parabolic in D,
that is, for every real vector 20 and for every (z,t) ¢ D we have

> @, £)2,4,>0 .

All the coefficients of L are assumed to be continuous in D and w is as-

sumed to be continuous in D and to have a continuous ¢-derivative and
continuous second z-derivatives in D. From [3; Th. 5] it follows that,
under the above assumptions, off Lu=0 and if u assumes its positive
maximum ot an interior point P°, then u=const. in S(P°). Here, S(P°)
denotes the set of all points @ in D which can be connected to P° by
a simple continuous curve in D along which the coordinate ¢ is non-de-
creasing from Q@ to P°. In the following theorem we consider the case
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in which P° is a boundary point of D. We may assume that P° is the
origin. Let t=¢(x) be the equation of the boundary of D near P°.
Assume that ¢=0 is the tangent hyperplane to the boundary of D at P°.
Therefore 0¢/0x;|» =0. Let D be on the side t<¢(x).

THEOREM 1. If Lu=0 in D, if uw assumes its positive maximum M
at P°, if

(2) lim 2%P) _0, 1= lim 3 a,(P)2UE) <0 PeD
PP 0T PPy 0x;02;
and if
(3) 1+ 4,7 | >0 peC”
0x0x; | P

then u=M in S(P°).

REMARK 1. Without making any use of (3) one can deduce the
following :

Put p=lim sup @g)—) (Pe D), then p=0 since #<0 will contradict
P—Pl

u(P)=u(P). Letting P— P° in Lu(P)=0 and using (2), we obtain 1+
W(P)M—p=0, from which it follows that 1=0. Since, by (2), 10, we
conclude that 1=0. Hence a(P’)M—p=0, from which it follows that
#=0 and, therefore, (since #=0) x=0. We also get a(P’)=0.

REMARK 2. The assumptions (2) and (3) can be verified if we assume
that ¢(x)=o(]2>) and that % belongs to C” in the closure of the domain
Vn {t<0}, where V is some neighborhood of P°. Indeed, by making an
appropriate orthogonal transformation we can assume that a;;(P%)=4,;.
By the mean value theorem we have

(@, ) —u(0, 0= 3 2,0 w(@, D+t lu@, 7).
0x; ot

Taking (x,t)e DNV {¢<0} such that |#|=0(|z]) and noting that u(w, t)<
u(0, 0), one can show that ou(P°)/0x;=0. Noting that ¢(z)=o(|z]) and
expanding [u(x, £)—u(0, 0)] in terms of the first and second derivatives
of u, one can show that #*u(P°)/0x, <0, and (2) is thereby proved. The
proof of (3) is immediate.

PROOF OF THEOREM 1. For simplicity we shall prove the theorem

only in case n=1; the proof of the general case is analogous. Lu takes
the form

(4) Lu—:—A%?;+a%%+cz¢—%% ¢<0, A>0 .
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From the strong maximum principle [3; Th. 5] it follows that all we
need to prove is that u(P)=M if Pe V'nS(P°) where V' is some neigh-
borhood of P°.

There are two possibilities: Either there exists a sequence {P*}
such that P*e S(P°), P* — P° u(P*)=M, or there exists a neighborhood
V={x*+#<R} of P° such that u(P)<M for all Pe VNS(P"), P+P".
In the first case we can use [3; Th. 5] to conclude that w(P)=M if
Pe V'n S(P°) where V' is some neighborhood of P° (since w(P)=M for
all Pe S(PY)).

It remains therefore to consider the case in which u(P)<M for all
Pe VnS(PY), P+P°. We shall prove that this case cannot occur by
deriving a contradiction. Writing

¢(x)=Ka'+o(a”) ,

we define a domain D; (6>0) as the intersection of S(P° with the set of
points (x, £) in V for which

1< () =(K—0)a* .

If K<0 then, because of (3), we can choose ¢ sufficiently small such
that

2 o~
(5) 1+A§72¢(x)|x=o>o .

If K=0, we can obviously take ¢ such that K—0<0 and such that (5)
holds.

We now can take R sufficiently small such that ¢(x)<min (0, ¢(x)) for
all (x,t) in D;, x+0. Consequently, u(x, t)<M if t=¢(x), x+0. The
function A(z, t)=—¢+¢(x) vanishes on ¢=¢(x) and is positive in D;.
Therefore, if ¢>0 is sufficiently small, then v=u-¢k is smaller than M
at all points on the boundary of Ds; with the exception of P° where
v(P)=M. Noting that ¢'(0)=0 and using (5), we conclude that

Lh=14A%"(x)+a3' () +ch>0

if R has been chosen sufficiently small. Hence, Iw=Lu-+cLh>0. It
~ follows that v cannot assume its positive maximum at interior points of
D; and, therefore, it assumes its maximum M at P°. We thus obtain
0v/0t=0 at P° and, consequently,

,aﬂ:,av, _5,6]2’ =e>0

ot ot ot

(Here

%% — lim inf 9(0, 0)—9(0, ¢) .

t—0 —t
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On the other hand, letting in (4) P — P° in an appropriate way and
using (2) and the inequality Lu(P)=0, we get

0=tim A(P) 74P 4 i o) 4B (o) pr —tim sup™ P <

—lim supM .
ot
We have thus obtained
lim sup 0u(P)/6t <0< e<0ou/ot.

PP

This is however a contradiction (since

% im 0u(0, ti) < limsup - ou(P)

ot =0 ot Popd 0
for an appropriate sequence {t,}), and the proof is completed.

REMARK (a) Consider the following example: n=1, P°=(0,0) and
D defined by

LR, <, t<rx 71 >0>7,.

The function u(z, t)=(t—7r.x)(r.w—t) satisfies the following proper-
ties: u#<0 in D,u=0 at P°, and

Lu=A~—+ U _ 9 Ay, 40|zl 41t =0,
ox ot

provided R is sufficiently small. Consequently, (3) and the second assump-
tion in (2) are not satisfied and also the assertion of Theorem 1 is false.

REMARK (b). Consider now the case in which the tangent hyper-
plane at P° is not of the form t¢=const.. We shall prove that in this
case Theorem 1 is false. Take »=1 and consider first the case in which
D is defined by

x>0, 7 +<R .

If Lu=0%/02*—0u/0t, then the function w(x, t)=—2a takes its maximum
in D at P°=(0, 0), Lu=0, but #=0 in S(P).
Consider next the case in which D is defined by
x>at, <R
and take Lu=0"/0x"—qou/ox—0u/ot.
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The transformation ¢ =¢, 2’=x—at carries the present case into the
previous one.

Note that if the tangent hyperplane H at P° is not the plane £=0
and the axes are rotated so as to give H the equation =0 (in new 2/,
t’ coordinate), then Lu loses the form (1), for «,, and u,,. will appear
in it.

REMARK (c). If in Theorem 1 the domain D is on the side ¢>¢(2),

then the theorem is false. Indeed, as a counter-example take w=—t,
and D bounded from below by #=0.

2. Consider the linear operator

n 2, m 2 n
Lu= 3 afa, ) 0% 4+ S, t) 0% 4 Saa, 1)
(6) i1 0x0x; =1 ot,0t; =1 0,

(3

1+ by, t) gzg—i—a(x, £y a(z, £)=<0,
i=1 i
where x=(x, +--,,) and t=(¢, ---,t,) vary in the closure of a given

(n-+m)-dimensional domain D. We assume that L’ is elliptic in the
variables = and parabolic in the wvariables ¢, that is, for every real
vector 1+0,

(7) Zaij2i2j>0, wa}iszo .

All the coefficients appearing in (6) are assumed to be continuous in D

and u is assumed to be continuous in ) and to have a continuous t-
derivative and continuous second z-derivatives in D. Under these as-
sumptions, Nirenberg [3; Th. 2] has proved a weak maximum principle
from which it follows that, 4f L'u=0 4n D then w must assume its posi-
tive maximum on the boundary.

Let P°=(a® t°) be a point on the boundary of D such that u(P°)=

M>0 is the maximum of » in D. Assume that there exists a neighbor-
hood V: |[a—a*+ | t—t'|*<R? of P° such that w(x, t)<M in VaD. We
then can prove the following theorem.

THEOREM 2. If there exists a sphere S: |x—x'|*+|t—t' P< R* passing

through P° and contained in D, and if x°+a" then, under the assump-
tions made above (in particular, L'u=0,w(z, t)<M in VND), every non-
tangential derivative ou/or at (2°, t°), understood as the limit inferior
of du'dr along a non-tangential direction t, is negative.

By a non-tangential direction we mean a direction from P° into the
interior of the sphere S,
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REMARK (a). If a(z, £)=0 then the assumption M >0 is superflous.

REMARK (b). In §3 we shall show that the assumption 2’2’ is es-
sential. We shall also discuss the case in which u(z, t) is not smaller
than M at all the points of V' nD.

Proof. For simplicity we give the proof in the case m=n=1, so
that

L'u= R >0, c<
(8) Aaxz+ 6t2+ a +b —l—cu A>0, B=0,¢<0;

the proof of the general case is quite similar. Without loss of genera-
lity we can take (a/, t')=(0, 0) and 2°>0. Furthermore, we may assume
that, with the exception of P° S lies in V' nD, so that u(x, t)<M in
S—P° Denote by C the intersection of S with the plane x>J, where
0<d<a’. The function

h(z, t)= exp (—a(x*+¢t*))—exp (—aR?®)

satisfies the following properties : k=0 on the boundary of S, =0 in
C; if «a is large enough, then

L'h=exp(—a(x*+ )[4’ (Ax’ + Bt*) —20(A+ B+ ax+bt) +c]
—cexp (—aR?)>0.

(Here we used >0>0,¢=0.)

If ¢ is sufficiently small, then the function v=u--¢h is smaller than
M at all points of the boundary of C with the exception of P° where
v(P)=M. Since L'v=Lu+el’h>0, v cannot assume its positive maxi-

mum in C at the interior of C (since, otherwise, at such interior points
L'v would be non-positive). Hence, v assumes its maximum at P° and,
consequently, 8v/0r=lim inf (4v/47)<0. Since along the normal » (i.e.,
along the radius through P° 64/0»>0 and since along the tangential
direction o 0h/00=0, it follows that 64/6->0. TUsing the definition of v,
we conclude that 0u/0r=0v/6r—e0h/0r<0, and the proof is completed.

Added in proof. Theorem 2 was recently and independently proved
also by R. Viborni, On properties of solutions of some boundary volue
problems for equations of parabolic type, Doklody Akad. Nauk SSSR,
117 (1957), 563-565.

3. From now on we shall consider only parabolic operators of the
form (1). Suppose the assumption u<M in ¥V n D, made in Theorem 2,
is replaced by w<M. If there exists a sequence of points {P*} such
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that P*—P°, Pte D, P*=(a*, t*) and t*>t°, u(P*)=M, then, by [3; Th. 5],
u=M in S(P¥). Hence, if the boundary of D near P° is sufficiently
smooth, u=M in some set V’'n D where V' is some neighborhood of P°.
Consequently 6u/0r=0 for every r.

If w(P)<M for all Pe Vn D, if u(P) is not strictly smaller than M
for all Pe Vn D, P+P°, and if the previous situation does not arise, then
one and only one of the following cases must occur :

(i) u<M at all points (z,t) in VnD with ¢=¢. Using [3; Th. 5]
one can easily conclude that there exists a neighborhood V’ of P such
that u<M in V'n D, and Theorem 2 remains true.

(ii) u<M at all points (x,¢) in Vn D with ¢>¢, and u=M at all
points (x,¢) in VnD with ¢>¢. We then consider only those directions
7 along which u<M. We claim that Theorem 2 is not true for the pre-
sent situation. To prove this, consider the following simple counter-
example :

0*u ou

P'=(0,0), M=0, Lu=2%_0% ,t={
0,0) " 0x* ot 1)

- if >0
0 if ¢<0.

u satisfies Lu=0 and assumes its maximum 0 for ¢<0. But, the
derivative ou/or at P°=(0, 0), along any direction z, is zero.

As another counter-example (with Lu=0) one can take a fundamen-
tal solution of the heat equation.

Note that the preceding counter-examples are valid without any
assumptions on the behavior of the boundary of D near P°.

We shall now consider the case x!=x" which was excluded by the
assumptions of Theorem 2. We shall assume that at P°=(0, 0) there
passes a tangent hyperplane ¢=0. If D is above this hyperplane, then
the preceding counter-examples show that Theorem 2 is not true. It
remains to consider the case in which D is ¢ essentially ”’ below =0,
that is, if we denote by t=¢(x) the equation of the boundary of D near
P°, then D is on the side t<¢(x). In this case, however, Theorem 1
tells us that in general we cannot assume both u(P%)=max u(P)>0
(Pe D) and u<u(P° in VnD.

The example in §1 Remark (a) can also serve as a counter-example
to Theorem 2 in case P° is a vertex-point. Indeed, along the ¢-direction

ou

o = ole—ra)ra—]  ~=0.

0,t=0

By a small modification of this counter-example one can get a
counter-example to the analogue of Theorem 2 for elliptic operators [2]
[4] in case P° is a vertex. Indeed, define D by

THYP< R, y<rnax, y>71.2 711.>0>7,,



208 AVNER FRIEDMAN

and take Lu=0%/0x"-+ A0*u[0y*, where A>|r.r,|. The function u(z, y)=
(y—rx)(y—7.x) satisfies: ©<0 in D, u=0 at the origin, Lu =2y,7,+2A4>0.
But along any direction ¢ within D, 0u/ot| ..o, ,-0=0.

4. Let D be a domain bounded by the two hyperplanes ¢=0, t=
T>0 and a surface B between them. Assume that the intersection

{t=T} nD is the closure of an open set on ¢t=T, and denote by A the
boundary of D on ¢=0. The Neumann problem for the parabolic equa-
tion Lu=0 consists in finding a solution to the equation Lu=0 which
satisfies the following initial and boundary conditions :

u=yf on A, falizg on B
oy
(f, g are given functions).

From Theorem 2 and from the strong maximum principle [3 ; Th. 5] we
conclude: If for every point P'=(a, t°) of B (i) there exists a sphere with
center (x',t'), o +#a°, passing through P° and contained in D, and (ii)
S(P°) contains interior points of A, then the Neumann problem has at
most one solution. Clearly, this uniqueness property holds also for the
more general problem where ou/ov is replaced by 6u/dr and = is a non-
tangential direction which varies on B.

As another application to Theorem 2, one can deduce the positivity
of 0G/dy, where G is the Green’s function of Lu=0.

5. Let D be a domain bounded by ¢t=0,t=T (0<T<o) and sur-
faces 'y, 0<k<m, Iy being the outer boundary. Suppose further that
the intersection of each I, with ¢t=¢, (0<¢,<T) is a simple closed curve
7:(t,) which belongs to C® and does not reduce to a single point. Write
uzizau/awz, u,=0u/0t. We shall consider the following problem P:

( 9 ) tz CI/U(.’ZI, t)uma:j"ut:c(xy t, u, Vu)
,J=1 K
(where pu denotes the vector ou/dx;),

(10) Z_“ — ; (@, Oy, +ala, o, =, t, 1) (@, 1)e ['= ,?3 ry
T =1 v =

(11) u(z, 0)=¢(x) on A A=Dn {t=0}
We make the following assumptions :
(a) ay(=,t) is continuous in D; ¢(w, t, u, pu) and it first derivatives

with respect to u, pu are continuous for (z, t) e D and for all values
of u, pu.
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(b) ¢ and 8¢/ou are continuous for all (x,t)e I” and for all u.

(c) ayz,t), a(x, t) are continuous for (x, t)e I"; ¢(x) is continuous in A.

(d) (9) is parabolic in D, that is, there exists a positive constant o
such that

(12) > a; (2, t)Eisj =026

holds for all real & and for all (z, t) e D.

(e) On each surface I', (k=0,1, ---, m) either all the directions r=(«;,
«) are exterior or all are interior, and in the exterior case « =0 and
the directions («;, 0) are exterior while in the interior case a=<0
and the directions («;, 0) are interior.

Denote by 3 the class of functions u(z, ¢) defined and continuous

in D and satisfying the following conditions :
(a) 0Oujot, oulox,;, *u/ox,0x, are continuous in D ;
(8) For every R>0, 6ulox; is bounded in DN {[a|*-+*<R?}.

THEOREM 8. Under the assumptions (a)—(e) the problem P cannot
have two different solutions in the class >..
We shall need the following lemma.

LEMMA. There ewxists a function C(x) defined in A and having the
Sollowing properties: (1) ¢ has continuous first derivatives in A and con-
tinuous second derivatives in the interior of A; (i) 0¢/ov=—1 and 0Z/6p=0
on 7,(0),++ +, 7..(0), where 80y and 8/op denote the derivatives with respect
to the wnterior normal and to any tangential direction, respectively.

ProoF oF THE LEMMA. It will be enough to construct a function
%(*) which is C” in A, which vanishes in a neighborhood of 74(0) (¢=1,
.-+, m) and for which 9y,/0v=—1, 8y,/opx=0 along 7,0); constructing
7(x) in a similar manher, we can then take {(z)=>)x(x). Since r,0)
belongs to C®, the normals issuing from 7,(0) and inwardly directed
cover in a one-to-one manner a small inner neighborhood of 7,(0), call it
A,. To each point x in A, there corresponds a unique point 2’ on the
boundary of 7,(0), such that x lies on the normal through z°. Denote
by o(x) the distance |z—z°|. It is elementary to show that o(x) has
continuous second derivatives in 4,. Denote by A; the domain 0<o=<¢,,
where ¢,>0 is small enough so that 4,cA4,. The function

j L (e —o(@)y if ze A,
3¢,2

Xo(x) =
1 0 if reA—A

belongs to C” in A and satisfies: 0y,/0v=0y,/0c=—1 and 08x,/0v=0 on
7:(0), and y, vanishes near 7,(0), (1<k=m); the proof is completed.
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Proor or THEOREM 3. We first consider the case n>1. We may
suppose that the vectors («;, ) are exterior directions on /7y,--+, I', and
that («,, «) are interior directions on 7", +++, I",,. Suppose now that
u and v are two solutions in >, of the problem P, and define w=v—u.
Writing

1
Clw, t, u, v):S —g—c(x, t, u-+Aw, pu-+Apw)di
00U
0

1
Cix, t, u, v)zg ™ c(x, t, u+w, pu-+pw)di
0

%
Iz, t, u, v)= S:—é%q»(x, t, u+Aiw)da

and using (9), (10) and (11), we obtain for w the following system :

(18) Za“’wzia:j—wt'—‘cw—f—zciwzi

(14) ow _ Saw, +aw, = 0w
or ¢

(15) w(z, 0)=0 .

Substituting w(z, t)=2(x, t) exp(K¢+M¢(x)), where ¢(x) is the function
constructed in the lemma and K, M are constant to be determined later,
we get for z the following system :

(13") DiRen,—2= =M e e 2— M 220, (e Cx 2
- 2M Zawczizxj +Kz+ Cz+ M Zcica-iZ"'— Zcizxi

(14‘ ) Zf_fz aizxi‘l‘azz - —Mzaicziz—aKz%—@z

(15") 2(z, 0)=0 .

If 0sk=q,a=0 and Xa(x, 0){.(x)>0 on 7,0), since the angle between
the vectors («;) and grad ¢ is <=z/2. By continuity we get >a,(x, t){xi(x)g
»>0 on 7,(t), provided 0=t<T" and 7" is sufficiently small. Hence, we
can choose M sufficiently large such that

(16) ~MSal. —aK+0<0

holds on 7,(¢), provided K=>0 and 0<¢<T".

If g+1<k<m, a<0 and Yz, 0)¢. (x)<0, since the angle between
() and —grad ¢ is <#/2. Again, if K>0 and M is sufficiently large,
then

) ~M S e, —aK+0>0
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on 7i(t), 0=¢e<T.

Having fixed M, we now choose K sufficiently large so that the
coefficient of z on the right side of (18’) becomes positive in the domain
D, =Du{0<t<T'}. We claim that 2=0 in D,. Indeed, if this is not
the case then, using (15’) and the weak maximum principle [3; Th. 2]
we conclude that z assumes either its positive maximum or its

negative minimum on the boundary irk(t), 0=<¢<T’, of Dp. It will be
k=0

enough to consider the case in which z assumes its positive maximum
at a point P°® on 74(t). If 0<k=<q, then 6z/0r=0 since ¢ is outwardly
directed. On the other hand, using (14’) and (16) we get 8z/6:<0,
which is a contradiction. If ¢+1=<k=<m, then 92/6r<0 since r is in-
wardly directed. On the other hand, using (14’) and (17) we get
92/0r >0 which is a contradiction. We have thus proved that z=w=0
in D,. We can now apply a classical procedure of continuation and
thus complete the proof of the theorem for the case n>1.

In the case n=1, =1, is composed of two curves [y aud [,
Suppose Iy, intersects ¢=0 at a,, a,<a,. The function

¢(x)= (—a)(z—a,)

2 1

can be used in the preceding proof. Note that it is not necessary to
make any assumptions on the smoothness of the curves I',.
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