THE FRATTINI SUBGROUP OF A p-GROUP

CHARLES HOBBY

The Frattini subgroup $\Phi(G)$ of a group G is defined as the intersection of all maximal subgroups of G. It is well known that some groups cannot be the Frattini subgroup of any group. Gaschütz [3, Satz 11] has given a necessary condition for a group H to be the Frattini subgroup of a group G in terms of the automorphism group of G. We shall show that two theorems of Burnside [2] limiting the groups which can be the derived group of a G-group have analogues that limit the groups which can be Frattini subgroups of G-groups.

We first state the two theorems of Burnside.

THEOREM A. A non-abelian group whose center is cyclic cannot be the derived group of a p-group.

THEOREM B. A non-abelian group, the index of whose derived group is p^2 , cannot be the derived group of a p-group.

We shall prove the following analogues of the theorems of Burnside.

- THEOREM 1. If H is a non-abelian group whose center is cyclic, then H cannot be the Frattini subgroup $\Phi(G)$ of any p-group G.
- THEOREM 2. A non-abelian group H, the index of whose derived group is p^2 , cannot be the Frattini subgroup $\Phi(G)$ of any p-group G.

We shall require four lemmas, the first two of which are due to Blackburn and Gaschütz, respectively.

- LEMMA 1. [1, Lemma 1] If N is a normal subgroup of the p-group G such that the order of N is p^2 , then the centralizer of N in G has index at most p in G.
- LEMMA 2. [3, Satz 2] If $H = \Phi(G)$ for a p-group G and N is a subgroup of H that is normal in G, then $\Phi(G/N) = \Phi(G)/N$.
- LEMMA 3. If $N = \{a\} \times \{b\}$ is a subgroup of order p^3 normal in the p-group G such that N is contained in $\Phi(G)$, and if $\{a\}$ is a group of order p^2 in the center of $\Phi(G)$, then N is in the center of $\Phi(G)$.
- *Proof.* N normal in G implies that N contains a group C of order p which is in the center of G. If C is not contained in $\{a\}$ the proof Received March 18, 1959.

is trivial, hence we may assume $C = \{a^p\}$. Since an element of order p in a p-group cannot be conjugate to a power of itself the possible conjugates of b under G are

$$b, ba^p, \cdots, ba^{(p-1)}p$$
.

The index of the centralizer of b in G is equal to the number of conjugates of b under G, hence is at most p. Thus b is in the center of $\Phi(G)$, and the lemma follows.

LEMMA 4. If H is a non-abelian group of order p^3 then there is no p-group G such that $\Phi(G) = H$.

Proof. If $H = \emptyset(G)$ for a p-group G, then H is normal in G and must contain a group N of index p which is also normal in G. Then N is a group of order p^2 , hence (Lemma 1) the centralizer C of N in G has index at most p in G. Therefore C contains H, and N is in the center of H. Since the center of H has order P this is a contradiction, and the lemma follows.

We can now prove Theorems 1 and 2.

Proof of Theorem 1. We proceed by induction on the order of H. The theorem is true if H has order p^s (Lemma 4). Suppose H is group of minimal order for which the theorem is false, and let C of a subgroup of H of order p which is contained in the center of G. Then (Lemma 2)

$$\Phi(G/C) = \Phi(G)/C = H/C$$

Thus the induction hypothesis implies that H/C cannot be a non-abelian group with cyclic center. We consider two cases: H/C is abelian; or, the center of H/C is non-cyclic.

Case 1. Suppose H/C is abelian. Since H is not abelian, and C has order p, we conclude that C is the derived group of H. Thus H/C, which coincides with its center, is not cyclic, and we are in Case 2.

Case 2. Suppose that the center Z of H/C is non-cyclic. The elements of order p in Z form a characteristic subgroup P of Z. Since Z is not cyclic, P is also not cyclic and hence has order at least p^2 . Thus we can find subgroups \overline{M} and \overline{N} of P which are normal in G/C and have orders p and p^2 , respectively, where \overline{M} is contained in \overline{N} . Let M and N be the subgroups of G which map on \overline{M} and \overline{N} . Then M and N are subgroups of H which contain C and are normal in G; M and N have orders p^2 and p^3 , respectively, and M is contained in N.

We see from Lemma 1 that the centralizer of M in G has index at

most p in G, hence M is in the center of H, which is cyclic. Also, N is abelian since N is contained in H and the index of M in N is p. Now \overline{N} is contained in P, hence is not cyclic. Therefore N is a noncyclic group which (Lemma 3) is in the center of H. Since the center of H is cyclic this is a contradiction, and the proof is complete.

Proof of Theorem 2. We denote the derived group of a group K by K'. Suppose G is a p-group such that $\Phi(G) = H$ where $H' \neq \{1\}$ and $(H: H') = p^2$. Let N be a normal subgroup of G which has index p in H'. Then G/N is a p-group such that (Lemma 2)

$$\Phi(G/N) = \Phi(G)/N = H/N$$
.

But $(H/N)' = H'/N \neq \{1\}$, and the order of H/N is

$$(H:N) = (H:H')(H':N) = p^3$$
.

Thus H/N is a non-abelian group of order p^3 which is the Frattini subgroup of the p-group G/N. This is impossible (Lemma 4) and the theorem follows.

REMARK 1. The only properties of the Frattini subgroup used in the proof of Theorems 1 and 2 are the following: $\mathcal{P}(G)$ is a characteristic subgroup of G which is contained in every subgroup of index p in G; and, $\mathcal{P}(G/N) = \mathcal{P}(G)/N$ whenever N is normal in G and contained in $\mathcal{P}(G)$. Thus if we have a rule ψ which assigns a unique subgroup $\psi(G)$ to every p-group G, then Theorems 1 and 2 will hold after replacing "the Frattini subgroup $\mathcal{P}(G)$ " by "the subgroup $\psi(G)$ " if $\psi(G)$ satisfies the following conditions.

- (1) $\psi(G)$ is a characteristic subgroup of G.
- (2) $\psi(G)$ is contained in $\Phi(G)$.
- (3) $\psi(G/N) = \psi(G)/N$ if N is normal in G and N is contained in $\psi(G)$.

In particular, if $\psi(G) = G'$, the derived group of G, we have the theorems of Burnside. The proofs are unchanged.

REMARK 2. Blackburn [1] has used Theorem A to characterize the groups having two generators which are the derived group of a p-group. Using Theorem 1 it is easy to see that Blackburn's proof establishes the following

THEOREM 3. If $H = \Phi(G)$ for a p-group G and if H has at most two generators, then H contains a cyclic normal subgroup N such that H/N is cyclic.

REFERENCES

- 1. N. Blackburn, On prime-power groups, Proc. Camb. Phil. Soc. 53 (1957), 19-27.
- 2. W. Burnside, On some properties of groups whose orders are powers of primes Proc. Lond. Math. Soc. (2) 11 (1912), 225-45.
- 3. W. Gaschütz, Über die **O**-Untergruppe endlicher Gruppen. Math. Z. **58** (1953) 160–170.

CALIFORNIA INSTITUTE OF TECHNOLOGY