
CHARACTERISTIC SUBGROUPS OF MONOMIAL GROUPS
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1. Introduction* Let U be a set, o(U) — B = λ'w, u ;> 0, where o(U)
means the number of elements of U. Let H be a fixed group. A monomial
substitution y is a transformation that maps every x of U in a one-to-one
fashion into an x of £7 multiplied on the left by an element hx of H.
Multiplication of substitutions means successive applications. The set of
all monomial substitutions forms the monomial group Σ. Ore [5] has studied
this group for finite U, and some of his results have been generalized
to general U in [2], [3], and [4].

This paper determines the structure of the characteristic subgroups
for the case when U is infinite in the cases where normal subgroups and
automorphisms are known. The method used makes clear how corre-
sponding theorems for the case where U is finite might be proved but
does not list these results.

2, Definitions and preliminaries• Let d be the cardinal of the integers.
Let B be an infinite cardinal; B+, the successor of B; U, a set such that
o(U) = B; and C such that d £ C <£ B*. Let H be a fixed group and e
the identity of H. Denote by Σ = Σ(H; B,d, C) the monomial group of
U over H whose elements are of the form

( l ) y

where only a finite number of the hs are not e and the number of x not
mapped into themselves is less than C. Any element of Σ may be writ-
ten in the form

or y = vs where v sends every x into itself and every h of s is e. Elements
of the form of

are multiplications and all such elements form a normal subgroup, ί&e
δcms groups V(By d) = F of I7. The ftε of /̂ are called the factors of /̂.
Elements of the form of s are permutations and all such elements form
a subgroup, the permutation group, S(B, C)~S of ^(JH"; 5, d, C). Cycles
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of s will also be written as (x19 , xn) and ( , x_19 x0, x19 •)- Baer
[1] has shown that the normal subgroups of S(B, C) are the alternating
group, A=A(B, d), and S(B, D) where d <> D <: C. Let E be the identity
of Σ, I the identity of S.

3. Characteristic subgroups of Σ(H; B, d, C), d ^ C < B+. The nor-
mal subgroups of Σ(H; B, d, C) are known [2], [3]. They are classified
first as to whether or not they are contained in the basis group V.

If JV is normal in Σ and JVc 7 its elements are multiplications
with only a finite number of non-identity factors which are contained in
a normal subgroup G of H. The set of all possible products of factors
of all elements of JV form a normal subgroup Gx of H. The group G/Gi
is Abelian and GjG1 is in the center of H/G^

If M is normal in Σ and M ς£ V then Mf)S = PφEi&a normal
subgroup of S. The group JV = M Π V is as above except that G = H.
It becomes necessary to consider the cases where P = S(B, D) with
^ f l ^ C a n d P = A(B, d). When P = S(B, D) then M = JV U P.

If M is normal in Σ, M <£ V, P = A(B, d), Jlf Π F=JV, MIN = A(B, d)
then M - JV U A(B, d).

If M is normal in Σ, M £ V, P - A (B, d), M n F = JV, M/JV ^ A(B, d)
then M = JV U A(B, c?) U L where L is the cyclic group generated by
[β, α](1, 2) with α 2 eG l y aφG λ .

The converses of these theorems are true. That is, if one starts with
the proper subgroups of H and constructs JV or M as above the resulting
group is normal in Σ.

The automorphisms of Σ(H; B, d, C) are known [4]. A mapping θ is
an automorphism of Σ(H; B, d, C) if and only if θ = T+I(s+)I(υ+) where
Γ+, 7(s+), /(„+) are automorphisms of Σ defined as follows. Let T be any
automorphism of H. Then

Let s+ e S(B, B+). Then J ( β + ) is defined by yI(s+) = s+^s*)- 1. Let v+ 6
, B+) if C = cί, v* e V(B, d) if d < C then J ( ϋ + ) is defined by j//(t,+)=

THEOREM 1. If N is a subgroup of Σ(H; B, d, C) contained in the basis
group then JV is characteristic in Σ if and only if JV is normal in Σ,
(hence is as described above) and G, Gλ are characteristic in H.

Proof. Assume JV is characteristic in Σ. Then JV is normal in Σ
and its structure is known. Choose θ = T+ with T arbitrary in the
automorphism group of H and v arbitrary in JV. Then
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vθ = [e, -- , e , e, fftl,e, ---,e,gin,e, *-]T+

= [e, ---,g\,e, - ,e,gΐn,e, •••] .

The elements #ζ must be in G. This shows G is characteristic in H.
Furthermore glgΐ9 ••^ξ>=(flftι • Λn)Γ m ^ s t be in Gx and since #4 •••£• is
arbitrary in G2, Gx is characteristic in ϋ .

Conversely, iί Na V(B, d), N is normal in J , G, Gx are characteristic
in H then JV is characteristic in Σ. To see this let v1 be arbitrary in
JV. Then v1θ~v1TI{s^)I{Ό+) = vJ^+J^+y The non-identity factors of t;2 are
in G and their product in Gx by G, Gx characteristic in iJ. Now vJ(s+} I(υ+) —
(^+)(s+)^2(s+)-1(^+)-1. The effect of I(8+} on ^2 is to permute the non-
identity factors so (^+)(^3)(/y+)~1 is now to be considered with vz in N.
Since G is normal in H in G/Gx is in the center of HjGu ( ^ ^ ( V ) " 1

will be in JV.

THEOREM 2. Let M = ΛΓ U P δe α normal subgroup of Σ(H; B, d, C),
d ^ C < B+, where N is as described above, P = S(j?, D). ΓΛβ^ Λf is
characteristic in Σ if and only if G1 is characteristic in H.

Proof. By an argument similar to that used in Theorem 1, Gx is
characteristic in H.

Conversely, if y = VA is arbitrary in M then

Since Gj is characteristic in £Γ, ι;a belongs to ΛΓ. Now consider

The multiplication f3 is in N since the factors are still in H, and the
product of the factors is still in Gλ since H1G1 is Abelian. The permu-
tation s2 is in P since P is normal in S(B, B+). It is now convenient to
consider two cases. If C—d the permutation s2 is finite and (v+)^3s2(t;+)~1=
(v+)v3v4s2 where the factors of v4 differ from the inverse of those in(#+)
in only a finite number of places. Therefore {v*)vzvA will have a finite
number of factors of the form kjιzkΐ\ If ks Φ kh then A?lβλίgftα, kisΦkai

will be a factor of (v)vzv4. Since ίΓ/Gj is Abelian the product of the factors
is in Gj. Therefore, (v+)v^v4s2 = ι;5s2 belongs to M. lί C > d then (t>+),
^4 have only a finite number of non-identity factors and the same argu-
ment holds. Therefore (v+)v3v4s2 belongs to M.

THEOREM 3. Let M~N[j A{B, d) be a normal subgroup of Σ(H;B,drC),
d <J C < B+. Then M is characteristic in Σ if and only if Gx is charac-
teristic in H.
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Proof. The argument used in the proof of Theorem 1 may be used
to show that Gx is characteristic in H if M is characteristic in Σ.

Conversely, if y = vxsλ is arbitrary in M then

Now v2eN bγ Gλ characteristic in H and v3 will be in ΛΓ by H/G1 Abe-
lian. Since A(B, d) is normal in S(B, B+), s2 belongs to A(B, d). The
factors of v± differ from the inverse of those in v in only a finite num-
ber of places since s2 moves only a finite number of x. Therefore,
{v+)v3v4 eN, s2e A(B, d) and M is characteristic in Σ.

THEOREM 4. Let M1 = N[jA[jLbea normal subgroup of Σ(H;
By d, C), d ^ C < B+. Let L be generated by y — [e, a] (1, 2) mέfe a2 e Glf

a 0 Gλ. Then M1 is characteristic in Σ if and only if Gx is character-
istic in H, and aτ belongs to the coset aGx for all automorphisms T
of H.

Proof. By considering v e JVand θ = T+ we see that G± is character-
istic in H. By considering 7/ = [β, α] (1, 2) of Mλ and Θ — T+ we see that
[e, αΓ](l, 2) must belong to Mλ. This means aτ belongs to aG.

Conversely, if v1s1eM1 then

vlSlθ - v1s1T
+I(s+)I(υ+) = v2s1l(s+)l(υ^) = (v+X

Now âSi is in M1 by Gx characteristic if the product of the factors of vλ

is in Gλ and by aτ in aGx if the product of the factors is in aGλ. The
multiplication v3 has only a finite number of non-identity factors because
v2 has only a finite number of non-identity factors. Since s2 is finite, s2

is a finite permutation and is even or odd as sx is even or odd. There-
fore, v4 has only a finite number of factors different from the inverse of
the factors of (v+). The factors of (v+)v3v4 have their product in Gλ

or aGi according as v3 has its product in Gλ or aGλ. Therefore, if sx was
even s2 is even, vx had the product of its factors in Gλ and so does
(v+)v3v4. If sx was odd so is s2 and vλ had the product of its factors in
aG± and so does (v+)vsv4. That is, M1 is characteristic.

4 Characteristic subgroups of ΣA(H; B, d, d). The normal subgroups
of ΣA(H; By d, d) are precisely those of Σ(H; B, d, d) that are contained
in ΣA(H; Bydyd) [2, p. 210]. The automorphism of ΣA(H; Bf d, d) are
those of Σ(H; Bf d, d) restricted to Σ(H; B, d, d)[4, p. 84].
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THEOREM 5. Let Nbe a subgroup of ΣA(H; B, d, d) contained in the
basis group. Then N is characteristic in ΣA if and only if N is nor-
mal in ΣA and G, Gx are characteristic in H.

THEOREM 6. Let M be a subgroup of ΣA(H; B,d,d), M <£ V(B, d).
Then M is characteristic in ΣA if and only if M is normal, i.e. M =
N \J A, and Gx is characteristic in H.
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