THE METRIZATION OF STATISTICAL METRIC SPACES

B. Schweizer, A. Sklar and E. Thorp

In a previous paper on statistical metric spaces [3] it was shown that a statistical metric induces a natural topology for the space on which it is defined and that with this topology a large class of statistical metric (briefly, SM) spaces are Hausdorff spaces.

In this paper we show that this result (Theorem 7.2 of [3]) can be considerably generalized. In addition, as an immediate corollary of this generalization, we prove that with the given topology a large number of SM spaces are metrizable, i.e., that in numerous instances the existence of a statistical metric implies the existence of an ordinary metric.¹

THEOREM 1.² Let (S, \mathscr{F}) be a statistical metric space, \mathscr{U} the twoparameter collection of subsets of $S \times S$ defined by

$$\mathscr{U}=\{U(arepsilon,\,\lambda);\,arepsilon>0,\,\,\lambda>0\}$$
 ,

where

$$U(\varepsilon, \lambda) = \{(p, q); p, q \text{ in } S \text{ and } F_{pq}(\varepsilon) > 1 - \lambda\},\$$

and T a two-place function from $[0, 1] \times [0, 1]$ to [0, 1] satisfying $T(c, d) \ge T(a, b)$ for $c \ge a$, $d \ge b$ and $\sup_{x < 1} T(x, x) = 1$. Suppose further that for all p, q, r in S and for all real numbers x, y, the Menger triangle inequality.

(1)
$$F_{pr}(x+y) \ge T(F_{pq}(x), F_{qr}(y))$$

is satisfied. Then $\mathscr U$ is the basis for a Hausdorff uniformity on $S \times S$.

Proof. We verify that the $U(\varepsilon, \lambda)$ satisfy the axioms for a basis for a Hausdorff (or separated) uniformity as given in [2; p. 174-180] (or in [1; II, §1, n° 1]).

(a) Let $\Delta = \{(p, p); p \in S\}$ and $U(\varepsilon, \lambda)$ be given. Since for any $p \in S$, $F_{pp}(\varepsilon) = 1$, it follows that $(p, p) \in U(\varepsilon, \lambda)$. Thus $\Delta \subset U(\varepsilon, \lambda)$.

(b) Since $F_{pq} = F_{qp}$, $U(\varepsilon, \lambda)$ is symmetric.

(c) Let $U(\varepsilon, \lambda)$ be given. We have to show that there is a $W \in \mathcal{U}$ such that $W \circ W \subset U$. To this end, choose $\varepsilon' = \varepsilon/2$ and λ' so small that $T(1 - \lambda', 1 - \lambda') > 1 - \lambda$. Suppose now that (p, q) and (q, r) belong to

Received June 12, 1959.

¹ These considerations have led to the study of SM spaces which are not metrizable as well as to other natural topologies for SM spaces, questions which will be investigated in a subsequent paper.

² The terminology and notation are as in [3].

 $W(\varepsilon', \lambda')$ so that $F_{pq}(\varepsilon') > 1 - \lambda'$ and $F_{qr}(\varepsilon') > 1 - \lambda'$. Then, by (1),

$$F_{\mathit{pr}}(arepsilon) \geqq T(F_{\mathit{pq}}(arepsilon'), F_{\mathit{qr}}(arepsilon')) \geqq T(1-\lambda', 1-\lambda') > 1-\lambda \;.$$

Thus $(p, r) \in U(\varepsilon, \lambda)$. But this means that $W \circ W \subset U$.

(d) The intersection of $U(\varepsilon, \lambda)$ and $U(\varepsilon', \lambda')$ contains a member of \mathcal{U} , namely $U(\min(\varepsilon, \varepsilon'), \min(\lambda, \lambda'))$.

Thus \mathscr{U} is the basis for a uniformity on $S \times S$.

(e) If p and q are distinct, there exists an $\varepsilon > 0$ such that $F_{pq}(\varepsilon) \neq 1$ and hence ε_0 , λ_0 such that $F_{pq}(\varepsilon_0) = 1 - \lambda_0$. Consequently (p, q) is not in $U(\varepsilon_0, \lambda_0)$ and the uniformity generated by \mathscr{U} is separated, i.e., Hausdorff.

Note that the theorem is true in particular for all Menger spaces in which $\sup_{x<1} T(x, x) = 1$. However, it is true as well for many SMspaces which are not Menger spaces.

COROLLARY. If (S, \mathscr{F}) is an SM space satisfying the hypotheses of Theorem 1, then the sets of the form $N_p(\varepsilon, \lambda) = \{q; F_{pq}(\varepsilon) > 1 - \lambda\}$ are the neighborhood basis for a Hausdorff topology on S.

Proof. These sets are a neighborhood basis for the uniform topology on S derived from \mathcal{U} .

THEOREM 2. If an SM space satisfies the hypotheses of Theorem 1, then the topology determined by the sets $N_p(\varepsilon, \lambda)$ is metrizable.

Proof. Let $\{(\varepsilon_n, \lambda_n)\}$ be a sequence that converges to (0, 0). Then the collection $\{U(\varepsilon_n, \lambda_n)\}$ is a countable base for \mathcal{U} . The conclusion now follows from [2; p. 186].

Theorem 2 may be restated as follows: Under the hypotheses of Theorem 1, there exist numbers $\delta(p, q)$ which are determined by the distance distribution functions F_{pq} in such a manner that the function δ is an ordinary metric on S. Loosely speaking, if the statistical distances have certain properties, then certain numerical quantities associated with them have the properties of an ordinary distance. In a given particular case such quantities might be the means, medians, modes, etc.. For example, most of the particular spaces studied in [3] satisfy the hypotheses of Theorem 2, hence are metrizable. Indeed, as was shown in [3], in a simple space, the means (when they exist), medians, and modes (if unique) of the statistical distances each form metric spaces; and similarly, in a normal space, the means of the F_{pq} form a (generally discrete) metric space. What Theorem 2 now tells us is that in many (though not all!) SM spaces we can expect results of this general nature to hold.

674

References

1. N. Bourbaki, Topologie générale, Actualités Sci. Ind. 858-1142 (second edition).

2. J. L. Kelley, General Topology, Princeton, 1955.

3. B. Schweizer and A. Sklar, Statistical metric spaces, Pacific J. Math., 10 (1960), 313-334.

UNIVERSITY OF CALIFORNIA AT LOS ANGELES ILLINOIS INSTITUTE OF TECHNOLOGY MASSACHUSETTS INSTITUTE OF TECHNOLOGY