
A NOTE ON ASSOCIATIVITY

DONALD A. NORTON

1Φ Introduction* In a groupoid with binary operation (•) the cons-
traints that the groupoid be a quasigroupx and that it be associative are
not independent. This note defines three forms of associativity in or-
der of descending strength and shows that in a groupoid they are essen-
tially independent while in a quasigroup (with minor limitations on the
number of elements) the stronger implies the weaker. Let us define:

A groupoid is tri-associatίve if for every triple x, y, z of distinct
elements

(1) x - ( y z) = (x y) z

A groupoid is di-associative2 if in (1) above, exactly two of the
elements are distinct;

A groupoid is mono-associative if (1) is true when all three x, y and
z are equal.

The next section shows that a tri-associative quasigroup Q which
contains sufficient elements (seventeen are adequate) for which Q2 =
{q\ all q e Q} also contains sufficient elements (seventeen are again
adequate) is di-associative. Further, any di-associative quasigroup is
mono-associative. The restrictions on the minimum number of elements
in Q and Q2 are necessitated by the method of proof for which there
does not seem any essential improvement but Theorem II is probably
true for all quasigroups. An examination of all possibilities indicates
its validity if Q contains no more than 5 elements.

The final section illustrates, by examples, the falseness of these
theorems if the assumption that Q is a quasigroup is removed.

2 Associativity conditions. We shall first prove a theorem of
interest in its own right but which contributes little to the main theorems-
Theorems II and III.

THEOREM I. A tri-associative quasigroup Q has a unity element.

Before proving the theorem it is convenient to have

LEMMA. There exists no idempotent tri-associative quasigroup Q
containing at least 2 elements.

Proof of Lemma. We shall use product as our operation in Q with

Received May 21, 1959.
1 For definitions of groupoid and quasigroup see, for instance, [1, pp. 1, 8, 15].
2 This definition differs from the one used by this author [2, p. 59] in which di-

associativity included power-associativity, and thereby mono-associativity. Theorem III
shows that, in a quasigroup, this distinction is vacuous.
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the usual conventions of juxtaposition of u and x to mean the binary
product of u and x and the notation a ux to mean a(ux).

Suppose that q2 = q, all q e Q. For fixed q e Q let u e Q, u Φ q.
Then if x is the solution of q = w&, it is true that α? =£ g, w; for if:

(a) x =z qf q — uq = q2 implies u — q

(b) x =: u, q = u2. But u2 = u implies u = q.

Either is a contradiction.

Now consider q2 = g. Since q ^ ux, substitution yields g wx = ux.
Since u Φ q Φ x Φ u, tri-associativity implies qu x = UOJ, from which
qu = u = u2. So g = w; a contradiction. We are now ready for:

Proof of Theorem I. If Q contains 1, 2, or 3 elements an examina-
tion of possibilities yields the theorem. So suppose that Q contains at
least 4 elements.

Q is not idempotent by preceding lemma so there is an a e Q so
that a2 Φ a. Let ae = a whence e Φ a. Now choose some b φ a, e.
Tri-associativity yields a eb = ae 6 = ab; and since Q is a quasigroup

(1) eb = b for all 6 Φ a, e .

Finally choose c e Q, c Φ b, e. As before cb = c* eb — ce >b and

(2) cβ = e for all c Φ b, e .

Therefore, combining (1) and (2), we see that e is a unity except per-
haps for the products ea, ee, and be. Listing the possible values of the
products from (1):

I (a) ea — a I (b) ea = e

ee — e \ ee = α

and from (2):

II (a) δe = 6 II (b) be - β

ee = β ee = 6 .

Now I(b) and Π(b) are inconsistent since a Φb. Similarly II(a) and I(b)
or I(a) and Π(b) are inconsistent since e Φ α, and e φb respectively.

This leaves I(a) and II(a), or ea = a

ee = e

and e is a unity element.
We can now prove

THEOREM II. Let Q be a trί-associative quasigroup for which both
Q and Q2 = {q2; all q e Q} contain a "sufficient number'9 of elements,
then Q is di-asssociative.
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Proof. There are 3 equalities to show, where a Φ b:

(1) a ab = α2 6

(2) α δα = αδ α

(3) δ α2 = 6α α .

Because of the symmetry of the postulates, it is necessary to prove
Dnly one of (1) and (3). We shall prove (1) and (2).

As the proof will be given, each step of it has restrictions on the
elements which will be listed and considered at the end.

(1) Proof Restrictions on elements

a ab

= xy ab

= x(y-ab)

= x(ya b)

= (x ya)b

= (xy a)b

Let us now consider the restrictions:
(a) Since Q is a quasigroup, given either x, or y the other can

always be found.
(b) If Q contains sufficient elements it is always possible to find

x and y\x Φ ab, y Φ ab.

We next note that if Q2 contains n elements, there will be at least
n or n — 1 pairs, x, y, x Φ y for which xy = α, (the number depending
on whether or not a e Q2).

(c) Conditions y Φ α, b can always be satisfied if Q contains suffici-
ent pairs to satisfy (a) and Q2 enough to also satisfy (b) as well.

(d) The same as (c) may be said about the conditions ya Φ b and
x Φ b. Consider now the condition x Φ ya. Then x2 Φ x ya.

Before proceeding we can also satisfy (e) which is a condition similar
to (c).

Now since x Φ y x, y Φ a .

x2 φ x ya = xy a = α2

Conversely, if

x2 φ a2 = xy a = x ya

then x Φ ya.

So the remaining condition of (d) can be satisfied if Q2 contains an
adequate number of elements.

The proof of (2) is parallel.
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(2) a ba
(a) xy = a

= xy oα
, 7 x (b) 6α =£ x Φ y Φ ba .

= x(y-ba)
, , , (c) y Φ a Φ b Φy .

= x(yb-a)
, Lx (d) a? ^ ?/6 =£ α =£ x ,

= (χ.yb)a
, LX (e) x =£ ?/ =£ 6 =£ ̂  .

= (xy-b)a
= ab a

Condition (a), (c), (e) and a Φ x of (d) have already been met pre-
viously. Condition (b) is a condition similar to (b) of the previous part
and can be similarly met if Q contains adequate elements. The condi-
tion

x φ yb of part (d) yields

x2 Φ x yb

x2 Φ xy b

x2 Φ ab .

Again if Q2 contains a sufficient number of elements, this may be met.
To complete this section we shall prove

THEOREM III. If a quasigroup Q satisfies the constraint x xy = x2y
when x Φ yy then Q is mono-associative.

Proof. We must show that q-q2 = q2 q, all q e Q. Since Q is a
quasigroup, 3 x so that

If x Φ α, from the condition of the theorem

a ax = a2x .

Then a2 = αx since Q is a quasigroup and a = sc, a contradiction.
So it must be that α = #.

COROLLARY. A di-associative quasigroup is mono-assoiciative.

3 Associativity conditions for groupoids*

EXAMPLE I. The groupoid whose multiplication table is
displayed is trivially tri-associative since any triple of dis-
tinct elements must contain c and so the product must be
c. However, it is not di-associative since

ab a = ba = a while a ba = a2 = b

nor is it mono-associative since

α,2 α = ba = α while α α2 = αδ = 6 .
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EXAMPLE II. The groupoid whose multiplication table
is displayed is di-associative as an examination of all possi-
ble triple products containing two distinct elements will
reveal but it is not mono-associative since

aa2 — ab = y while a2a = ba = x .

These examples illustrate that for the groupoid the "stronger" as-
sociativity assumption does not imply the weaker, while examples of
power-associative and Moufang loops illustrate that, even for quasigroups
the "weaker" do not imply the ''stronger".
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