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Section 1 of this note considers the normal sphere bundle of a
compact, connected, orientable manifold Mn (without boundary) differen-
tiably imbedded in euclidean space Rn+1ύ. (These hypotheses on Mn will
be assumed throughout § 1.) It is shown that if k is sufficiently large
then the normal sphere bundle has the fiber homotopy type of a product
bundle if and only if there exists an S-map from Sn to Mn of degree
one (i.e. for some p there exists a continuous map of degree one from
Sn+P to the p-ΐold suspension of Mn). The proof is based on the fact
that the Thorn space of the normal bundle is dual in the sense of Spanier-
Whitehead [8] to the disjoint union of Mn and a point.

Section 2 studies the tangent sphere bundle of a homotopy ^-sphere.
This has the fiber homotopy type of a product bundle if and only if n
equals 1, 3 or 7. The proof is based on Adams' work [1].

If X is a space, SkX will denote the k-ΐolά suspension of X as in
[8, 9]. If X h a s a base point xQ, then SkX will denote the fc-fold reduced
suspension and is the identification space S^X/S^XQ obtained from SkX by
collapsing Skx0 to a point (to be used as base point for S$X). There is
a canonical homeomorphism SkX^ Sk x X/Sk V X.

Two fiber bundles with the same fiber and with projections px: Ex —*
B, p2: E2-+B have the same fiber homotopy type [3, 4, 10] if there
exist fiber preserving maps/*: Et —> E^t and fiber preserving1 homotopies
ht: Ei x I—>Et such that ht(x, 0) —f3_.f.(χ), h^x, 1) = x.

Let ξ denote an oriented (k — l)-sphere bundle. The total space of
ξ will be denoted by E and the total space of the associated fc-disk
bundle will be denoted by E. The Thorn space T(ξ) is the identification
space E\E obtained from E by collapsing E to a single point (to be used
as base point for T(ξ)). The following are easily verified:

(A) If ξ19 ξ2 are (k — l)-sphere bundles of the same fiber homotopy
type, then Γ(|i), T(ξ2) have the same homotopy type,

(B) If ξ is a product bundle, then T(ξ) is homeomorphic to S$(B U p0)
(where B{Jp0 is the disjoint union of B and a point, p0, which is
taken as the base point of B{jp0).

1. The normal bundle. If X and Y are spaces we let [X, Y]
denote the *set of homotopy classes of maps of X into Y and we let
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1 The phrase "fiber-preserving" means that p3-tfι(x) = pι{x) and pιhι(x, t) = pt(x).
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{X, Y} denote the set of S-maps of X into Y as in [8]. Thus, {X, Y}
is defined to be the direct limit of the sequence

[X, Y] -^-> [SX, SY] — ^> [S*X, S^Γ] — . . .

There is a natural map

φ: [X, Y] > {X, Y}

which assigns to every homotopy class [/] ε [X, Y] the S-map {/}
represented by any map of [/]. The following gives a sufficient condi-
tion for φ to be onto {X, Y}.

LEMMA 1. Let Y be a k-connected CW-complex (k > 1) and let X
be a finite CW-complex with2 Hq(X) = 0 for q>2k+l. Then φ([X, Y]) =
{X, Y}.

Proof, It suffices to prove that under the hypotheses of the lemma
the map S: [X, Y] -> [SX, SY] is onto [SX, SY] because then, for each
V > 0 , the map S: [S*X, SPY] — [S*+1X, Sp+Ύ] is onto [SP+1X, Sp+Ύ]
(because SPY is (p + &)-connected and Hq(SpX) = 0 for q > 2k + p + 1
and 2(k + p) + 1 > 2k + p + 1).

Choose base points xoeX, yoεY and let [X, Y]' denote the set of
homotopy classes of maps (X, xQ) —> (F, y0). Since Y is simply-connected
the natural map [X, Y]f —> [X, Y] is a 1-1 correspondence. Since X, F
are CTT-complexes the collapsing maps SX—+S0X and SY—>S0Y are
homotopy equivalences (Theorem 12 of [11]) so there are 1-1 cor-
respondences

[S0X, S0Y] & [S0X, SY] & [SX, SY] .

Since S0Y is simply connected, we also have a 1-1 correspondence
[S0X, S0Y]r & [S0X, SOΓ1. Hence, it suffices to show that S0([X, Y]') =
[S0X, SOYY.

Let ΩSQY denote the space of closed paths in S 0 F based at yQ.
There is a canonical 1-1 correspondence [S0X, S0YYτ&[X, ΩS0Y]' and a
natural imbedding YaΩS0Y such that the map So: [X, Γ]'->[S0X, S0Y]'
corresponds to the injection (see § 9 of [7])

[X, YY—>[x, ΩSOYY .

Hence, it suffices to show this injection is onto or, equivalently, that
the natural injection (without base point condition) [X, Y] —>[X, ΩS0Y]
is onto.

2 When no coefficient group appears explicitly in the notation for a homology or
cohomology group it is to be understood that the coefficient group is the group of integers.
In dimension 0 the groups will be taken reduced.
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Since Y is A>connected it follows from the suspension theorem (see
§ 7 of [9]) that

So: πi(Y) >πi+1(S0Y)

is 1-1 if i < 2k and is onto if i < 2k + 1. Since SQ corresponds to the
injection map πt(Y) —» πt(ΩSQY), this is equivalent to the statement that

, Y) = 0 for i < 2k + 1 .

Since Y is simply-connected the groups π^ΩSoY, Y) form a simple system
for every i. Now the groups H%X; π^ΩSJΓ, Y)) vanish for every i
because for i < 2k + 1 the coefficient group vanishes while for i > 2k + 1
the groups vanish because of the assumption on the cohomology of X.
By Theorem 4.4.2 of [2] it follows that any map X—> ΩS0Y is homotopic
to a map X—> Y9 completing the proof.

REMARK. If in Lemma 1 we assume that Hq(X) = 0 for q > 2k,
then a similar argument shows that φ is 1-1, however we shall not
need this result.

Let Mn c Rn+k be as in the introduction (i.e. Mn is a differentiably
imbedded manifold which is compact, connected, orientable, and without
boundary). The following result relates the normal bundle of Mn to Mn

itself by means of duality.

LEMMA 2. Let ξ be the normal (k — l)-sphere bundle of Mn in
Rn+Ic. Then the Thorn space T(ξ) is weakly (n + k + l)-dual to the
disjoint union MnUp0.

Proof. Regard Sn+lc as the one point compactification of Rn+1c. Let
E be a closed tubular neighborhood of Mn and assume E is contained
in a large disk Dn+k. Then (Dn+fc-interior E) is a deformation retract of
En+lc — Mn ~ Sn+k ~ (Mn{J (point at infinity)). Using standard homotopy
extension properties and the contractibility of Dn+Ic it follows that if E
denotes the boundary of E then

T(ξ) = E\E = Dn+Jcl(Dn+k - interior E)

has the homotopy type of the suspension S(Dn+IC — interior E). Since
(Dn+k — interior E) is an (n + fe)-dual of Mn{J (point at infinity), and the
suspension of an (n + Λ)-dual is an (n + k + l)-dual, this completes the
proof.

REMARK. Lemma 2 shows that the S-type of T(ξ) depends only on
that of Mn. If k is sufficiently large this implies that the homotopy
type of T{ξ) depends only on that of Mn. This suggests the conjecture
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that the fiber homotopy type of the normal bundle of any manifold
Mn c Rn+k, Jc large, is completely determined by the homotopy type of
Mn. A similar conjecture can be made for the tangent bundle.

THEOREM 1. Let MnaRn+]c be as before and assume that Hq(Mn) = 0
for q < r and that k > min (n — r + 2, 3). The following statements
are equivalent:

( 1 ) There is an S-map aε{Sn, Mn} such that

α*: Hn(Sn) & Hn(Mn) .

( 2) The normal sphere bundle of MndRn+k has the fiber homotopy
type of a product bundle.

( 3 ) The disjoint union Mn U p0 is weakly (n + k + l)-dual to
Sk(Mn{jp0).

Proof. (1)=>(2). Let N denote the complement in Sn+k of an open
tubular neighborhood of Mn. Then N is (n + fc)-dual to Mn. The S-map
a is (n+k)-dua\ to an S-map βe{N, S*"1} such that £*: H^iS^^H^iN).
Since HP(N) & Hn+k^p^(Mn)f we see that HP(N) = 0 iί p>n + k - r - 1.
Since S*-1 is (k - 2)-connected, k - 2 > 1, and k > n - r + 2 (so 2(k-2) +
1 > n+k — r — 1), it follows from Lemma 1 that there is a map/ : N-+S10-1

representing β. Then/* : H10'1^-1) & H^N). Let E be the boundary
of N (so E is the normal (k — l)-sphere bundle of Mn), and let F be a
fiber of E. Then the inclusion map F' c N induces an isomorphism
Hk~\N) & Hk-\F) (because by Corollaries III. 15 and 1.5 of [10] or
by Theorems 14 and 21 of [5] we have Hk~\E) & Hk~\Mn) + Z and
the injection Hk-1(N)—>Hk~1(E) maps isomorphically onto the second sum-
mand while the injection Hk'\E) —• Hk~\F) maps the second summand
isomorphically.) Therefore, the map / | E: E-->Sk-1 has the property that
its restriction to a fiber F induces an isomorphism of the cohomology of
S*-"1 onto that of F so is a homotopy equivalence of F with S*"1. This
implies (by Corollary 2 on p. 121 of [3]) that E has the same fiber
homotopy type as a product bundle.

(2) =φ (3). By Lemma 2, T(ξ) is weakly (n + k + l)-dual to MnUPo
If ξ is of the same fiber homotopy type as a product bundle, it follows
from {A), (B) that T(ξ) is of the same homotopy type as Sk(Mn{Jp0).
Combining these two statements gives the result.

(3) =φ (1) assume Mn (J p0 is weakly (n + k + l)-dual to Sk(Mn \j p0).
The map Mn u p0 —> S° collapsing each component of Mn U Po to a single
point represents an S-map β: Sk(Mn U Po) — Sk

0(S°) = Sfc such that
β*: Hk(Sk)^Hk(Sk(Mn{jp0)). By duality there is an S-map ae{Sn,
Mn U Po} such that a*: Hn(Sn) & Hn(Mn U Po) ̂  ίίw(Λίw). Since.
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{Sn, MnUPo} & {Sn, F } + {Sn, S°} ,

the result is proved.
As a corollary we obtain the following result proved by Massey [4].

COROLLARY. Let Mn be a homology sphere. Then the normal
bundle of Mn in Rn+k has the same fiber homotopy type as a product
bundle.

Proof. Since r = n, the case k > 3 follows from the theorem. For
the cases k = 1, 2 it is well known that the normal bundle is, in fact,
trivial.

REMARK. Puppe [6] calls a manifold "sphere-like" if the unstable
group πn+1(SMn) contains an element of degree one. (The group πn(Mn)
can contain an element of degree one if and only if Mn is a homotopy
sphere.) Theorem 1 shows that the normal sphere bundle of a sphere-
like manifold MnczRn+Jύ has the fiber homotopy type of a product bundle
provided k is sufficiently large. An example of a manifold with trivial
normal bundle which is not sphere-like is provided by the real protective
3-space.

2 The tangent bundle* Let Mn be as above (i.e. compact, con-
nected, orientable, and without boundary), but let E denote a closed
tubular neighborhood of the diagonal in Mn x Mn. If the tangent bundle
has the fiber homotopy type of a product bundle, then there exists a
map E —> S71-1 (where E is the boundary of E) having degree one on
each fiber. This gives rise to a map (E, E) —• (Dn, Sn~1)—^(Sn

1 point) of
degree one and, hence, to a map

Mn x Mn > Mn x Mn/(Mn x Λf "-interior E) = E\E > Sn

which has degree (1, 1) (the degree is (1, 1) because a generator of
Hn(Sn) maps, under the homomorphism induced by the above composite,
into a cohomology class of Mn x Mn dual under Poincare duality to the
diagonal class of Hn(Mn x Mn)).

THEOREM 2. Suppose that Mn has the homotopy type of an n-sphere.
Then the tangent bundle has the fiber homotopy type of a product bundle
if and only if n equals 1, 3 or 7 (and in this case the tangent bundle
is a product bundle).

Proof. If a map Sn x Sn —> Sn of degree (1, 1) exists, then accord-
ing to Adams n must be equal to 1, 3 or 7 (see Theorem la of [1]).

Conversely, if n equals 1, 3 or 7 then πn^(SO(n)) = 0. Using
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obstruction theory it follows that any homotopy ^-sphere is parallelizable.
This completes the proof.
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