TWO REMARKS ON FIBER HOMOTOPY TYPE

JOHN MILNOR AND EDWIN SPANIER

Section 1 of this note considers the normal sphere bundle of a compact, connected, orientable manifold M^n (without boundary) differentiably imbedded in euclidean space R^{n+k} . (These hypotheses on M^n will be assumed throughout § 1.) It is shown that if k is sufficiently large then the normal sphere bundle has the fiber homotopy type of a product bundle if and only if there exists an S-map from S^n to M^n of degree one (i.e. for some p there exists a continuous map of degree one from S^{n+p} to the p-fold suspension of M^n). The proof is based on the fact that the Thom space of the normal bundle is dual in the sense of Spanier-Whitehead [8] to the disjoint union of M^n and a point.

Section 2 studies the tangent sphere bundle of a homotopy n-sphere. This has the fiber homotopy type of a product bundle if and only if n equals 1, 3 or 7. The proof is based on Adams' work [1].

If X is a space, $S^k X$ will denote the k-fold suspension of X as in [8, 9]. If X has a base point x_0 , then $S_0^k X$ will denote the k-fold reduced suspension and is the identification space $S^k X/S^k x_0$ obtained from $S^k X$ by collapsing $S^k x_0$ to a point (to be used as base point for $S_0^k X$). There is a canonical homeomorphism $S_0^k X \approx S^k \times X/S^k \vee X$.

Two fiber bundles with the same fiber and with projections $p_1: E_1 \rightarrow B$, $p_2: E_2 \rightarrow B$ have the same fiber homotopy type [3, 4, 10] if there exist fiber preserving maps $f_i: E_i \rightarrow E_{3-i}$ and fiber preserving¹ homotopies $h_i: E_i \times I \rightarrow E_i$ such that $h_i(x, 0) = f_{3-i}f_i(x)$, $h_i(x, 1) = x$.

Let ξ denote an oriented (k-1)-sphere bundle. The total space of ξ will be denoted by \dot{E} and the total space of the associated k-disk bundle will be denoted by E. The *Thom space* $T(\xi)$ is the identification space E/\dot{E} obtained from \dot{E} by collapsing \dot{E} to a single point (to be used as base point for $T(\xi)$). The following are easily verified:

(A) If ξ_1 , ξ_2 are (k-1)-sphere bundles of the same fiber homotopy type, then $T(\xi_1)$, $T(\xi_2)$ have the same homotopy type.

(B) If ξ is a product bundle, then $T(\xi)$ is homeomorphic to $S_0^*(B \cup p_0)$ (where $B \cup p_0$ is the disjoint union of B and a point, p_0 , which is taken as the base point of $B \cup p_0$).

1. The normal bundle. If X and Y are spaces we let [X, Y] denote the set of homotopy classes of maps of X into Y and we let

Received May 19, 1959. The authors were supported by the Sloan Foundation and by the United States Air Force (Contract No. AF 49(638)-393 monitored by the Air Force Office of Scientific Research), respectively, during the period when this paper was in preparation.

¹ The phrase "fiber-preserving" means that $p_{3-i}f_i(x) = p_i(x)$ and $p_ih_i(x, t) = p_i(x)$.

 $\{X, Y\}$ denote the set of S-maps of X into Y as in [8]. Thus, $\{X, Y\}$ is defined to be the direct limit of the sequence

$$[X, Y] \xrightarrow{S} [SX, SY] \xrightarrow{S} \cdots \xrightarrow{S} [S^{p}X, S^{p}Y] \xrightarrow{S} \cdots$$

There is a natural map

 $\phi: \ [X, \ Y] \longrightarrow \{X, \ Y\}$

which assigns to every homotopy class $[f] \in [X, Y]$ the S-map $\{f\}$ represented by any map of [f]. The following gives a sufficient condition for ϕ to be onto $\{X, Y\}$.

LEMMA 1. Let Y be a k-connected CW-complex $(k \ge 1)$ and let X be a finite CW-complex with² $H^{q}(X) = 0$ for q > 2k+1. Then $\phi([X, Y]) = \{X, Y\}$.

Proof. It suffices to prove that under the hypotheses of the lemma the map $S: [X, Y] \rightarrow [SX, SY]$ is onto [SX, SY] because then, for each $p \ge 0$, the map $S: [S^{p}X, S^{p}Y] \rightarrow [S^{p+1}X, S^{p+1}Y]$ is onto $[S^{p+1}X, S^{p+1}Y]$ (because $S^{p}Y$ is (p + k)-connected and $H^{q}(S^{p}X) = 0$ for q > 2k + p + 1and $2(k + p) + 1 \ge 2k + p + 1$).

Choose base points $x_0 \in X$, $y_0 \in Y$ and let [X, Y]' denote the set of homotopy classes of maps $(X, x_0) \to (Y, y_0)$. Since Y is simply-connected the natural map $[X, Y]' \to [X, Y]$ is a 1-1 correspondence. Since X, Y are CW-complexes the collapsing maps $SX \to S_0X$ and $SY \to S_0Y$ are homotopy equivalences (Theorem 12 of [11]) so there are 1-1 correspondences

$$[S_0X, S_0Y] \approx [S_0X, SY] \approx [SX, SY].$$

Since S_0Y is simply connected, we also have a 1-1 correspondence $[S_0X, S_0Y]' \approx [S_0X, S_0Y]$. Hence, it suffices to show that $S_0([X, Y]') = [S_0X, S_0Y]'$.

Let $\Omega S_0 Y$ denote the space of closed paths in $S_0 Y$ based at y_0 . There is a canonical 1-1 correspondence $[S_0X, S_0Y]' \approx [X, \Omega S_0Y]'$ and a natural imbedding $Y \subset \Omega S_0 Y$ such that the map $S_0: [X, Y]' \rightarrow [S_0X, S_0Y]'$ corresponds to the injection (see § 9 of [7])

$$[X, Y]' \longrightarrow [X, \Omega S_0 Y]'.$$

Hence, it suffices to show this injection is onto or, equivalently, that the natural injection (without base point condition) $[X, Y] \rightarrow [X, \Omega S_0 Y]$ is onto.

² When no coefficient group appears explicitly in the notation for a homology or cohomology group it is to be understood that the coefficient group is the group of integers. In dimension 0 the groups will be taken reduced.

Since Y is k-connected it follows from the suspension theorem (see 7 of [9]) that

$$S_0: \pi_i(Y) \longrightarrow \pi_{i+1}(S_0Y)$$

is 1-1 if $i \leq 2k$ and is onto if $i \leq 2k + 1$. Since S_0 corresponds to the injection map $\pi_i(Y) \to \pi_i(\Omega S_0 Y)$, this is equivalent to the statement that

$$\pi_i(arOmega {
m S}_{\scriptscriptstyle 0} Y, \ Y)=0 \ {
m for} \ i\leq 2k+1 \ .$$

Since Y is simply-connected the groups $\pi_i(\Omega S_0 Y, Y)$ form a simple system for every *i*. Now the groups $H^i(X; \pi_i(\Omega S_0 Y, Y))$ vanish for every *i* because for $i \leq 2k + 1$ the coefficient group vanishes while for i > 2k + 1the groups vanish because of the assumption on the cohomology of X. By Theorem 4.4.2 of [2] it follows that any map $X \to \Omega S_0 Y$ is homotopic to a map $X \to Y$, completing the proof.

REMARK. If in Lemma 1 we assume that $H^q(X) = 0$ for q > 2k, then a similar argument shows that ϕ is 1-1, however we shall not need this result.

Let $M^n \subset R^{n+k}$ be as in the introduction (i.e. M^n is a differentiably imbedded manifold which is compact, connected, orientable, and without boundary). The following result relates the normal bundle of M^n to M^n itself by means of duality.

LEMMA 2. Let ξ be the normal (k-1)-sphere bundle of M^n in \mathbb{R}^{n+k} . Then the Thom space $T(\xi)$ is weakly (n+k+1)-dual to the disjoint union $M^n \cup p_0$.

Proof. Regard S^{n+k} as the one point compactification of R^{n+k} . Let E be a closed tubular neighborhood of M^n and assume E is contained in a large disk D^{n+k} . Then $(D^{n+k}$ -interior E) is a deformation retract of $R^{n+k} - M^n = S^{n+k} - (M^n \cup (\text{point at infinity}))$. Using standard homotopy extension properties and the contractibility of D^{n+k} it follows that if \dot{E} denotes the boundary of E then

$$T(\xi) = E/E = D^{n+k}/(D^{n+k} - \text{interior } E)$$

has the homotopy type of the suspension $S(D^{n+k} - \text{interior } E)$. Since $(D^{n+k} - \text{interior } E)$ is an (n + k)-dual of $M^n \cup (\text{point at infinity})$, and the suspension of an (n + k)-dual is an (n + k + 1)-dual, this completes the proof.

REMARK. Lemma 2 shows that the S-type of $T(\xi)$ depends only on that of M^n . If k is sufficiently large this implies that the homotopy type of $T(\xi)$ depends only on that of M^n . This suggests the conjecture that the fiber homotopy type of the normal bundle of any manifold $M^n \subset R^{n+k}$, k large, is completely determined by the homotopy type of M^n . A similar conjecture can be made for the tangent bundle.

THEOREM 1. Let $M^n \subset R^{n+k}$ be as before and assume that $H_q(M^n) = 0$ for q < r and that $k \ge \min(n - r + 2, 3)$. The following statements are equivalent:

(1) There is an S-map $\alpha \in \{S^n, M^n\}$ such that

$$\alpha_*$$
: $H_n(S^n) \approx H_n(M_n)$.

(2) The normal sphere bundle of $M^n \subset R^{n+k}$ has the fiber homotopy type of a product bundle.

(3) The disjoint union $M^n \cup p_0$ is weakly (n + k + 1)-dual to $S_0^k(M^n \cup p_0)$.

Proof. (1) \Rightarrow (2). Let N denote the complement in S^{n+k} of an open tubular neighborhood of M^n . Then N is (n + k)-dual to M^n . The S-map α is (n+k)-dual to an S-map $\beta \in \{N, S^{k-1}\}$ such that $\beta^*: H^{k-1}(S^{k-1}) \approx H^{k-1}(N)$. Since $H^p(N) \approx H_{n+k-p-1}(M^n)$, we see that $H^p(N) = 0$ if p > n+k-r-1. Since S^{k-1} is (k-2)-connected, $k-2 \ge 1$, and $k \ge n-r+2$ (so 2(k-2)+ $1 \ge n+k-r-1$), it follows from Lemma 1 that there is a map $f: N \rightarrow S^{k-1}$ representing β . Then f^* : $H^{k-1}(S^{k-1}) \approx H^{k-1}(N)$. Let E be the boundary of N (so E is the normal (k-1)-sphere bundle of M^n), and let F be a fiber of E. Then the inclusion map $F \subset N$ induces an isomorphism $H^{k-1}(N) \approx H^{k-1}(F)$ (because by Corollaries III. 15 and I.5 of [10] or by Theorems 14 and 21 of [5] we have $H^{k-1}(E) \approx H^{k-1}(M^n) + Z$ and the injection $H^{k-1}(N) \rightarrow H^{k-1}(E)$ maps isomorphically onto the second summand while the injection $H^{k-1}(E) \to H^{k-1}(F)$ maps the second summand isomorphically.) Therefore, the map $f \mid \dot{E}: \dot{E} \rightarrow S^{k-1}$ has the property that its restriction to a fiber F induces an isomorphism of the cohomology of S^{k-1} onto that of F so is a homotopy equivalence of F with S^{k-1} . This implies (by Corollary 2 on p. 121 of [3]) that E has the same fiber homotopy type as a product bundle.

(2) \Rightarrow (3). By Lemma 2, $T(\xi)$ is weakly (n + k + 1)-dual to $M^n \cup p_0$. If ξ is of the same fiber homotopy type as a product bundle, it follows from (A), (B) that $T(\xi)$ is of the same homotopy type as $S_0^k(M^n \cup p_0)$. Combining these two statements gives the result.

 $(3) \Rightarrow (1)$ assume $M^n \cup p_0$ is weakly (n + k + 1)-dual to $S_0^k(M^n \cup p_0)$. The map $M^n \cup p_0 \to S^0$ collapsing each component of $M^n \cup p_0$ to a single point represents an S-map $\beta \colon S_0^k(M^n \cup p_0) \to S_0^k(S^0) = S^k$ such that $\beta^* \colon H^k(S^k) \approx H^k(S_0^k(M^n \cup p_0))$. By duality there is an S-map $\alpha \in \{S^n, M^n \cup p_0\}$ such that $\alpha_* \colon H_n(S^n) \approx H_n(M^n \cup p_0) \approx H_n(M^n)$. Since.

588

 $\{S^n, \ M^n \cup p_0\} pprox \{S^n, \ M^n\} + \{S^n, \ S^0\}$,

the result is proved.

As a corollary we obtain the following result proved by Massey [4].

COROLLARY. Let M^n be a homology sphere. Then the normal bundle of M^n in \mathbb{R}^{n+k} has the same fiber homotopy type as a product bundle.

Proof. Since r = n, the case $k \ge 3$ follows from the theorem. For the cases k = 1, 2 it is well known that the normal bundle is, in fact, trivial.

REMARK. Puppe [6] calls a manifold "sphere-like" if the unstable group $\pi_{n+1}(SM^n)$ contains an element of degree one. (The group $\pi_n(M^n)$ can contain an element of degree one if and only if M^n is a homotopy sphere.) Theorem 1 shows that the normal sphere bundle of a spherelike manifold $M^n \subset R^{n+k}$ has the fiber homotopy type of a product bundle provided k is sufficiently large. An example of a manifold with trivial normal bundle which is not sphere-like is provided by the real projective 3-space.

2. The tangent bundle. Let M^n be as above (i.e. compact, connected, orientable, and without boundary), but let E denote a closed tubular neighborhood of the diagonal in $M^n \times M^n$. If the tangent bundle has the fiber homotopy type of a product bundle, then there exists a map $\dot{E} \to S^{n-1}$ (where \dot{E} is the boundary of E) having degree one on each fiber. This gives rise to a map $(E, \dot{E}) \to (D^n, S^{n-1}) \to (S^n, \text{ point})$ of degree one and, hence, to a map

 $M^n \times M^n \longrightarrow M^n \times M^n / (M^n \times M^n \text{-interior } E) = E / \dot{E} \longrightarrow S^n$

which has degree (1, 1) (the degree is (1, 1) because a generator of $H^n(S^n)$ maps, under the homomorphism induced by the above composite, into a cohomology class of $M^n \times M^n$ dual under Poincaré duality to the diagonal class of $H_n(M^n \times M^n)$).

THEOREM 2. Suppose that M^n has the homotopy type of an n-sphere. Then the tangent bundle has the fiber homotopy type of a product bundle if and only if n equals 1, 3 or 7 (and in this case the tangent bundle is a product bundle).

Proof. If a map $S^n \times S^n \to S^n$ of degree (1, 1) exists, then according to Adams *n* must be equal to 1, 3 or 7 (see Theorem la of [1]). Conversely, if *n* equals 1, 3 or 7 then $\pi_{n-1}(SO(n)) = 0$. Using

obstruction theory it follows that any homotopy n-sphere is parallelizable. This completes the proof.

References

1. F. Adams, On the nonexistence of elements of Hopf invariant one, Bull. Amer, Math. Soc., **64** (1958), 279-282.

2. A. L. Blakers and W. S. Massey, *The homotopy groups of a triad* I, Ann. of Math., **53** (1951), 161-205.

3. A. Dold, Über fasernweise Homotopieäquivalenz von Faserräumen, Math. Zeits., 62 (1955), 111-136.

4. W. S. Massey, On the normal bundle of a sphere imbedded in Euclidean space (to appear).

J. Milnor, Lectures on characteristic classes (mimeographed), Princeton University, 1958.
 D. Puppe, Homotopiemengen und ihre induzierten Abbildungen II, Math. Zeits., 69

(1958), 395-417.
7. E. Spanier, Infinite symmetric products, function spaces, and duality, Ann. of Math., 69 (1959), 142-198.

8. E. Spanier and J. H. C. Whitehead, *Duality in homotopy theory*, Mathematika, **2** (1955), 56-80.

9. E. Spanier and J. H. C. Whitehead, *The theory of carriers and S-theory*, in Algebraic Geometry and Topology (a symposium in honor of S. Lefschetz), Princeton University Press, 1957, pp. 330-360.

10. R. Thom, Espaces fibrés en sphères et carrés de Steenrod, Ann. Ecole Norm. Sup., **69** (1952), 109-182.

11. J. H. C. Whitehead, Combinatorial Homotopy I, Bull, Amer. Math. Soc., 55 (1949), 213-245.

PRINCETON UNIVERSITY UNIVERSITY OF CHICAGO AND THE INSTITUTE FOR ADVANCED STUDY