AN ELEMENTARY PROOF OF THE PRIME NUMBER
THEOREM WITH REMAINDER TERM

ROBERT BREUSCH

Introduction. In this paper, the prime number theorem in the form
(x) = S me, log p = 2 + o(x-log="**x), for every ¢ > 0, is established
via a proof that in the well-known formula

(1) p(w)zz“’_zn£=10gx+0(1)510gx+ax,
M=
a, = — A, + o(log~"**%x), (A, is Euler’s constant.)

Throughout the paper, p and ¢ stand for prime numbers, k, m, «, ¢,
and others are positive integers, and x,y, and z are positive real
numbers.

Some well-known formulas, used in the proof, are

K, K
(2) xln kil.log"“oc—{—Ak—i—O(loi ©), for k=01,
’ _1_. k — 1 . k+1 O _1_.1 k
(2) 3, “log*(nly) = o log* " (ely) + O-log*ely)

for k=0,1, -.-
(8) X logk(x/n) =O(x), for k=1,2,---
n=x
(4) S log p-logh(x/p™) = O(x) , for k=0,1, ---
pmsz

(5) > pmn)n =O0Q) (u(n) is Moebius’ function.)

Two other formulas, used prominently, are

(6) o@)= X ‘°§f g (2/p") = +-+log's — Alog s + g, (g, = O(1)
pM=z

(7)) @)= 3 l(l%z—p-logz(x/pm) = %-log% — A,-log’x
sz
+ (2:43 + 4-A4) log z + 0O(1) .
With the help of (1), (2), and (4), (6) can be proved easily :

a(x) = >} l_o_gm_p . ( > 1n— A, + O(pm/m)> , or, with k =n-.-p™,

p"<2 n<w/p™

o(x) = Zl- klogp — Ayrlogz + 0(1)
my

ks k »

= 5 8L _ Alog 2+ 0() = L-log*x — Aulog & + 0(1) .

ksz
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Also, again with k =n . p™,

logk x
% A log%-
= Z— JogZ. Slogp= Slogp: 3 1 log< z_)

lcSz k M/k ""'gz n<z/pm ne p n.p

log p.{ l _ log n

p {og( ) n<z/p™ " ns%/:pm 7 }

P82 {log? (s/p") + Ay log (u]p™) ~ —log*(s/p™) — 4.} +0()
mgz

(by (2) and (4))
% 2(®@) + Ago(@) — Ayp(@) + O(1) .

(7) follows now by (1), (2), and (6).

The proof now proceeds in the following steps: in part I, certain
asymptotic formulas for a, (see (1)) and g, (see (6)) are derived ; they
suggest that ‘‘on the average,” a, is —A4, and g, is A2+ 24,. In
part II, formulas for a, and g, are derived which are of the type of
Selberg’s asymptotic formula for +r(x); part III contains the final proof.

PArT 1

First, the following five formulas will be derived; K, K,, ---, are
constants, independent of x.

(8) 2—1—-%:~Aologoc+gz+K2+O<1°§“)

nszr N

(9) El.az,nz—Aologac+K3—|—O(1O§x)

nzxr N

(10) Z 10#-0, w=—AJogx + g, + ‘—;‘ai‘l"K,;“i‘ 0(105{13)

»
pézp

(11) %71{ o = (A2 + 2.A)-log & + O(1)
(12) L= (A +2-4)-Tog & + K, + 0(32%22) .
nsx N X
Proofs.
o(x) = 3 log L(p(n) — p(n — 1) = S p(n)-log 1 + o ‘°§ 2)

ZP(%) +K+O(logx)

n<zx N
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(8) follows now from (6) and (2).

Also
1 1
Dy = —-'( > logmp log x>
nsz N n<z N pM<2/m n
_ 1 - 1 X -
=>-- D logp—> =log= (k=mn-p")
i<z k ™k nsx N n
_ v logk 1 x
= — >, —log = . which proves (9) by (2)
k<z k nsx N n
And
1 1
5y 8D g = 5 LB 5 1080 jogpm))
pPzz D pMsz D d=p™ 4
1 2 2
—(zlery . L 8P oy 5 108D | 5 108D 0
2 M2 p 2 pMzx D p<x D pM<e D D

Thus, by (1), (2) and (6),

3 E’%ﬂ.apm - %(logw +a,)?+ K, + 0(10590) — log x-(log « + a,)

"<z D

+ é-logzw — Aylog 2 + g, , which proves (10).

In the next proof, use is made of the easily established fact that

p(%)-log.z:n;;1 =dmn + 1) — agn) .

w@) = 3 log*(L J(o(m) — p(n — 1)
= 3 o)(log* (£) — og?*(-21)) + 0)

- n+1 x?
= n% o(n) log . - log (———:T) +0Q)

=3 (o(n +1) — o(n))- logm + 0(1)

=S om)-log XL 1 0@) = S em) - 2 + 0Q1)
n—1 ) n

NET

=s g g4 5B a0 v g b o) Gy @)

nsx n nzw n n=T

This proves (11), with the help of (2) and (7).
Finally
L= 18D 10g 2 — Liog'(2) + 4,log L
"gxn Gein ’g"n (pmém " Ogn'p"‘ 2 08 n)+ 0108 n) ’
or, with k =n.pm,
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Z—'g:a/n
nsx N

1 2 1 <1 1
=51 e ®. S logp— L. .o A—-l—
Sl Slogp— oo B oelogi(T) + A5 - log
—vliogZiogk-L. vl log( >+A21 log—
=z k k 2 azzm

(12) now follows by (2).
Formulas (8) through (12) suggest setting

(13) s =0, + A, h,=g,— (A1+24).

In terms of b, and h,, the five formulas read

(8) S L.b,=h, + K, +0(1°g””)
nsz N

1) X 1BP p— A (A b) A2 A+ b+ K,

" VY

+ 5 (— A+ by + 0(182)

. 1 4, log x
=ho+ 2 bm+K8+O< ¢ )
(11') s> Lon, =0 -
nsx N
2
(12)) 5L, =K + 0 2E2).
n<r N X

Next, it will be shown that

(14) SAb =52 b, +00),

and

(15) S bb = 3 8Pt 0Q).
nszx N pmgz p

For a proof of (14), we know, by (10’), that

—1—°bi= Zlogp bym ———h ___Ks_'_o(logn)y
n n pm$n p
and
—_ b:oln = _2_ Z lOgmp . b — ._2_ hr/n —_—— K _|_ O(__ log )
n p™=z/n p n
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Thus, by (3), (11') and (12'),

st -t)=2 nt(3 LR 5 lER gL 4 o)

n=x N nsx N <y p™<zln

—2. 5 182, 5 Lo w L)

M=z pMsnsz W nsz/p™ T

=23 lfmp bym - (log (x/p™) + O(1[p™) — log (z/p™)

p"sz

— 4, — 0@"2)) + O(L)
= 0(1), by (10') and (4). This proves (14).

Also
S Lo bn=nton (5 P8P 108 4 4)
nsz N nsz N P <2/n P n
=stob( 5 22 v Lyoa40(2))
nses N p"sz/n D téx/nt x

=582 5 Ly _sls bl tom, e

sz P ngapm N t=z € n=zft
= 3 18P+ Kilog o — 3 Ty, — K,log + 0(1)
™=z pm ts> t

(by (8), (1) and (4))
-3 k;,g P hym+0(1), by (12).

w3
M5z

From (14) and (15) it follows that

Z%°(bnibz/n)2=2° sLopee xler, tow,

n=w nsz N Pz ™

and therefore

(16) st

nsx N

s logp g 4o .

m
"=z

ParT II

In the following, we shall employ the inversion formula

Gz) =S g(i) for all &> 0= g(@) = 5 p(n) G(%) :

n=x n

as well as

an S 106 ® — 1)

x
nsx N n

For a proof of (17), we make use of the fact that 3,.,x/n =
x.logx + Ax + O(1); thus, by the inversion formula,
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T = Zp(n)-ﬁlogﬁ + A,- Zﬂ(n)-i + O(x) .
n=w n n n=x n

(17) follows now by (5).
If f(x) is defined for x > 0, then

Z{£°log%.f<%>+ﬁ. 5 Ing,f< x )}

nsz \ N N p™<ain pm n.pm

=52l (L) + 5L p(L). Silogp  (k=n-p7)

nss N 6w k/  mp

Thus, if we set

Fx)=2x-logx- Z—l—°f<—x—),

n=zx N

then, by the inversion formula,

z-loga-f@) + o 3 LBL . flalp) = 5 pm) - F(L).
m P nsw n

<]

In particular, if

S(2) - K sofbe).

nsx N X
then

Sin-+(2) - - -2 2) o e (2)) 00,
by (17) and (3), and thus |

(18) f@)-logz + 3 LEL. fGalp) = O,

sz
if Zl'f<%> :K+O<log”x) )

nsz N X

(Selberg’s asymptotic formula for y(x) corresponds to f(x) = y(x)/z — 1.)
By (9') and (12'), f(x) = b, and f(x) = h, both satisfy the condition of
(18), and thus

(19) b,-loga + 3 18P .p 0= 0(1)
sz

(20) h, logz + 3 lﬁp g = O(1) .
p"sz

1 Compare K. Iseki and T. Tatuzawa, ¢ On Selberg’s elementary proof of the prime
number theorem.”” Proc. Jap. Acad. 27, 340-342 (1951).
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From (16) and (20) it follows that

21) ;%-bzzlhzl-logwou).

If we add to (19)

(logz — A)-loge + 3 l‘ff’ - (log (x/p™) — Ay) ,

which by (1) and (6) is equal to 3/2-log’xz — 3+ A, log x + O(1), we obtain
o@)-loga + >, —l%og;n—p-p(x/pm) = —g— log?x — 3+ A,-logx + O(1) .
bméz

If 0<e¢e<11, and ¢-x < y < 2, then it follows from the last equa-
tion that

(@) - logx — p(y) -log y = =~ (log’x — log*y) + O(1)

[l

rofeo oo

log 2. (log @ + log y) + O(1)
Y
log @ - (0(x) — 0(y)) + log % oY) = —2- - log -f; -(log z + log ) 4+ O(1) ,
or, since p(y) = log ¥y + O(1),
log - (@) — p(y) = log L+ (2 -log & + -+ log y) + O(1)
Y 2 2
< 2-10g§--logac +0Q) .

Thus

o(x) — p(y) < 2-log 2 + 0( 1 ) ,
Y log x
and, since po(x) =logx —A, + b,, it follows that b, — b, < logz/y +
O(1/log x). Also obviously b, — b, = — log «/y, because p(x) is non-
decreasing. Thus we obtain

1
og %

(22) Ibz——bylélogﬁ—l—O(l )ifc-x<y<x,0<c<1.
Y

Part III

Let B =1 be an upper bound of |b,].
Since b, — b,-; is either —log [n/(n — 1)], or log p/n — log[n/(n — 1)],
it cannot happen that b, =1b,_, = 0.
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Let the integers 7, 7,, +++, 7, +++ be the indices n for which the
b, change signs. Precisely :

rn=1;n=r, if b,°0,,,<0, and b,,, + 0;
(23) if r,<v=w<7r, then b,-b, > 0; and

|bn| < (log r;)|r, for t > 1.

Let {s,} be a sequence of integers, determined as follows: every

r, is an s,; if log (r,./r) <T7-B, and r, = s;, then 7., = sz, ; if
log (7,4:/7;) = 7- B, enough integers s,., are inserted between », = s, and
Tie1 = Sg+m SUCh that 3B =< 10g (Syups1/Spee) < T+ B, for v=0,1, «--,
m — 1. If there is a last r, =s,, a sequence {s;.,} is formed such

that 8:B = 1og (Sy +o+1/S4+0) < 7+B. Thus the s, form a sequence with
the following properties :

s; =1 log(speifsy) < T-B; for k> 1, either
log(si+1/se) = 3+ B, or |bs | and |bs,, | are both
log s,

(24)
less than

3 byoby, >0 for s, < v = w < Sy -

S
Assume now that a (0 < a < 1/2) is such that
(25) not h, = O(log=*x).

Then |h,|-log*x is unbounded. Let xz be large, and such that
|h,|-log*x = | h,|-log®y for all y < x. Let ¢ and d be positive integers
such that

(26) S <logx <s,, and s; <2 < 844, -

It will be shown that

—;—'(l —a—o(1))-Sx) < |k, | -logz é%-(l + o(1)) - S(x) ,

where
d
27) S@ = 5 1hy, = b _,|-log(sil5,-)
From this it will follow that « = 1/3.
Clearly

da
|hy|-logax =|h,| log°x- {logl"” x — logt*s, + ’Z‘; (log'-* s, — log'® sk_l)}

a
= —é—-kZ (| ks, | - log® s, + [ hs,_ |- log® s;—,) - (log™™* s — log'=*5,-,)
=C+1
1 a " l—a 1-a
== X |hy —hs _|-log®s,_,(log'=*s, — log'~*s;-y) .
2 kice1 K k-1
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If y <z, it is easily shown by the mean value theorem that

-y >l-0-Le-y>(1-a-2"Ye-y.
2 2

With y =logs,.,, z=1logs,, and from the fact that s, > logz,
log (si/sk-1) < 7. B, it follows by (27) that

1 7-B
28 . = (l—a— "2 ).S8%x).
(28) e - log & > — (1-a loglogx> (@)

For the next estimate, we need the following lemma.
LEMMA. Let v and w be positz’ve_ integers such that
(1) log 2 = O0(1);

2) 6,>0 for v=n=w;

(3) b < 1Y

Then

g Zaog. 5 Ly o(loetwln))
" 3 Vv vSnsw N log )

VER=W

Proof. If b, <1/3-logwl/v for every m in [v, w], the lemma is
obviously correct. Otherwise, let #, be such that

by, = Log®, b<l.log® for v=n<n,.
3 v 3 v
If log (n./v) > 1/8log (w[v), let 2 (v <2 < m,) be such that log (n,/z2) =
1/3log (w/v); otherwise, let z=wv. Thus by (22), in every -case,
log (n,/2) = 1/3 log (w/v) + O(1/logv). Clearly b, — 2/3-log w/v < 0 for
v=n=z. Thus
T=s Lop_2.0g%. v 1.3

vn=w N 3 vV vinsw N

S35 IE T TR B A ST

zEn=w N 3 Vv zEnzwn

1 1 w \? 1 ) 1
T< 3 — (bn - log—v-) — =+ log? (w]v) - log (w]2) + o(___og (;U/v)) ,

ZEN=W

By (22),

by — 108 (/1) = b, — b,,| + O 1222

= |log (m/n) | + 0(@) = |log (n,/z) — log (n/2) | + o<_10.;v) ,

and thus
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1 w w 1
w1 ’< ll r_1, | o ,
— 5 rlog | = [log Tlog 2|+ log v)
Thus
T< i-(logﬁ_i logﬂ)z
zsnsw N v
— & -log* (w]o) - log (w/z) + O( &)
9 log v
= L loge mfz) — 2. log®. 5 1 10g + O(log (w/v))
zsnsw N 3 PV z=ns=w N logv
=21 100 — 2 . loe? R N e log (w/v)
3 log® (w/?) 3 log® (w/v) 5 log® (w[z) + O<——logv ) ,

by (2'), and thus 7T < O(log (w/v)/log v). This completes the proof of
the lemma.

COROLLARY 1. If condition (3) is replaced by b, < log wlw, the
conclusion still holds; if b, <0 in v < n < w, the conclusion holds if
b, s replaced by |b,|.

COROLLARY 2. If instead of (3) it is known that b, < log v/v and
b, < log wlw then
Log<l. log 2. 5, TN +o(1°_g.m>,
vSnsw N 3 vsnsw N lOg v

For a proof, we split [v, w] into two intervals by a division point at
(v-w)'? and apply the lemma separately to each subinterval.

COROLLARY 3.

@ 2 Loz logesoy 5 Los+o(lEd)),

Spo1<nsSs, N Sp1<n=S, M log s,

Proof. If log (sy/sy-) < 8B, this follows from (24) and Corollary
2; if log (sy/sy-;) = 3B, it is obvious, since |b,| < B.
By (26), Zinss, 1/n - b; = O(log log ), and 3 <us, 1/m by = OQ1) 5 also

d

> l_og_(sm =< Ed_“ log(lo_g§'c_> < loglogx .
ker1  log s, EZo+1 log s,
It follows from (29) that

St s Sloglse) 5 Le1b,+0ogloga).

n=z N k=c+1 Sk— 1<nSslc n

By (8) X, _j<nss, 1n |, | = | Ry, + O(log si/s;), and thus, by (21)
and (27),

S0y |
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(30) [hy]+loga < % - S(z) + O(log log x) .

It follows from (28) and (30) that

1 1 7-B }
== (1—a—-— "2 )[.58x) = O®og1 ,
[3 2 < “« loglogx> (@) = Olog log )

and since by (25) and (80) S(x) = K -log"*x, this implies that « = 1/3.
Thus h, = o(log='**¢ z), for every ¢ > 0, and therefore, by (8'),

(31) > —-|b,| = o(log™"*** s;) .
sk_1<nsskn
In order to find a bound for |b,|, we consider now a particular
interval I, = (s;-., s,]; let us assume that b, > 0 in I,. Let n,e I, be
such that b,, = b, for every meI,. Let n, (s,-; = n, <m,) be such that

bnl = %‘ ‘ bn2 < b”t“ .

Then
Lo, 3 Lop s Lo, clog mfm) — 0Us,) .
nEEI,C n n=ni+l N 2
But by (22),
1 1 1
1 Jn) =b, —b, —O =>—=:b, — O .
0g (n./n.) 2 ! <Iog s,c) 2 7 <log sk)
Thus
1
= b2 — O
nék n 4 : <log s,c>
It follows from (81) that biz = o(log—**+*m,), and thus
(32) b, = o(log=°+¢ ) .
Finally,

Pl = S+ (o) = pln — 1)) = [z] - p([e]) — 5 p(n)
=x-(logx — A, +b,) — > (logn — Ay, + b,) + O(log x)

nsx

=wx-logx —A,-x+b,cx—2x-loge+ax+ A,-x — 3b, + O(log )

nzx

=2 + o(x - log~"%*¢ x) + 0(2 log‘l/“‘fsn) , by (32).

nsw

The last sum is easily seen to be o(x - log="°**x), and thus

(33) Yr(x) = 2 + o(x - log="*** x) ,








