ON GROUPS OF EXPONENT FOUR WITH
GENERATORS OF ORDER TWO

C. R. B. WRIGHT

1. If x,y, --- are elements of a group G, we define the commutator
(x,y) of x and y by (z,y) =2 'y 'xy. More generally, we define ex-

tended commutators inductively by (x, -+-,¥,2) = ((x, -+, ¥), 2). In this
paper we shall also be concerned with higher commutators of type
((a’h ct as)r (bly ttty bt), crcy (Cly tt ety cr)) which we denote by (aly sy, Qg

by, ++e, b, vee5c, +00,c). If we let G, be the subgroup of G which is
generated by all extended commutators of length 14, (i.e., with 7 entries),
then G, is a characteristic subgroup of G, and the seriesG =G, > G, D---
is called the lower central series of G.!

Let G(n) (n =1,2,+--) be the freest group of exponent 4 on =
generators of order 2. That is, G(n) is a group in which the fourth
power of every element is the identity, 1, G(n) is generated by = ele-
ments of order 2, and if H is any other group with these properties,
then H is a homomorphic image of G(n).

We prove G(n),., = 1. For this purpose it may be assumed, since
G(n) is finite’ and hence nilpotent, that G(n),,, = 1. Moreover, it will
be enough to show (x,, ---, x,,,) = 1 for all choices of «,, -+, %,,, from
among the generators of G(n).

2. LemmA 2.1. If x,y, ---,2 are elements of order 2 in a group
of exponent 4, then (x,y)* =1, (x,y,--,2) =1, and (z,y,x) =1.

Proof. Since (x, ¥) = xyxy = (xy)?, (x, ¥)* = 1. By induction, (z, y,- -,
2)' = 1, while (¥, ) = yxyx = x(x, y)x = (x, ¥)(x, ¥, x), so that (x, y, x) =
(y, 2" = 1.

The relation (x,y, ---, 2)> = 1 will be the justification for future sub-
stitutions and will be used without specific mention.

THEOREM 2.1. G(2), = 1.

Proof. By Lemma 2.1, if the generators of G(2) are a and b, then
(a,b,a) = (b,a,a) = (a,b,b) = (b,a, b) = 1.

3. LeEmmMmA 3.1. If a,b and c are elements of order 2 in a group
G of exponent 4, then
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1 For properties of commutators and the lower central series see Hall, [1], Ch. 10.

2 See Sanov, [2], or Hall, [1], pp. 324-325.
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(1) (@, b, ¢) = (b, ¢, a)(c, a, b) mod G,
(2) (@, b;¢,a) = (a, ¢; b,a) = (a, ¢, b, a) mod G,
(3) (@, b, ¢, a) = (b, ¢, a, b)(c, a, b, ¢) mod G .

Proof. We may assume that a,b and ¢ generate G. Now
abecabe = aba (a, ¢)b(b, ¢) = (a, b)(a, ¢)(a, ¢, b)(d, ¢) .
Thus, modulo G, (abc)? = (a, b)(a, ¢)(b, ¢)(a, ¢, b). Hence
1 = [(a, b)(a, c)(b, ¢)]’ mod G;, so that, modulo G,
1 = (a, b)(a, c)(d, c)(a, b)(a, c)(b, ¢) = (a, b)(a, c)(a, b)(a, b; b, c)(a,c)(a,c;b,c),
(4) 1 = (a, b; a, ¢)(a, b; b, ¢)(a, ¢; b, ¢) mod G .
But also

abe = ca(a, c)b(b, ¢)
= be(c, ba(a, b)(a, ¢)(a, ¢, b)(D, ¢)
= ab(b, a)c(c, a)(c, b)(c, b, a)(a, b)(a, c)(a, ¢, b)(®, ¢) ,

so that 1 = (b, a)(b, a, c)(c, a)(c, b)(c, b, a)(a, b)(a, ¢)(a, ¢, b)(D, c), and hence,
modulo G,
1 = (b, a)(c, a)(c, b)(a, b)(a, c)(®, c)(b, a, c)(c, b, a)(a, ¢, b)
= [(a, b)(a, c)(b, ¢)]¥(a, b, c)(b, ¢, a)(c, a, b) .

Thus (1) is proved. Replacing b by (a, b) in (1) gives (a, b, ¢, a)(c, a; a, b) =
1 mod G; or (2). And (2) and (4) together give (3).

Lemma 8.2, If x, ---, %, and a are elements of order 2 in a group
G of exponent 4, then (x,, --+, 2, @) = X mod G,,,, where X is a pro-
duct of commutators of form (a,y,, «++, Y,) With Y, +++, Y, from among
Lyy o0y Ty

COROLLARY. If %y, +++, %y, 2y, +++, 2, and a are elements of order 2
m a group G of exponent 4, then

(xly ey Ly Wy Ryy o0y, zs) = X mod Glc+s+2

where X is a product of commutators of form (a, Yy, =y Y, %1y ***y 2s)
With Y, <=+, Y from among &, «--, xy.

Proof of Lemma 3.2. Certainly the lemma and corollary are true
if k= 1. Assume for induction that both are true for k=n—12>1.
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Now by (1), modulo Gz (%1, « ¢, Tpyy Ty @) = (B, * 0+, Tyoyy @, T) (@5 o0,
Zy1; @, T,). But by the inductive assumption (x,, -- -, x,_,, @, x,) is a pro-
duct of terms (a" Yis ** s Yu—1y xn)’ and (wu te0y Xy @, xn) is a prOduCt

of terms (a,®,, ¥, ***, Yn—1). The lemma and its immediate corollary
follow by induction.

THEOREM 3.1. G(3); = 1.

Proof. Let a,b and ¢ be the generators of G(3). Consider any com-
mutator C = (x,, @, 5, £, T;) in arguments a, b and ¢. We show C = 1.
There is no loss of generality in taking 2, = a. If a does not appear
again in C, then by Theorem 2.1, C = (1,x;) = 1. If a appears again,
then by Lemma 3.2 and the assumption that G(3), = 1, we may suppose
C = (a, x,, %, ©, @). By Lemma 2.1, if a appears a third time, then
C=1. Thus we may take C = (a,b,¢,b,a). Now (a,b,c, b, a)=
(,c,a,b,a)e,a,b,b,a)=(b,c,a,b,a) by (1). Replacing ¢ by (b, ¢) in (3)
gives (a, b; b, ¢,; a) = (b; b, ¢; a; b) = 1, while replacing ¢ by (b,¢) in (2)
gives (a, b; b,¢; a) = (b, ¢,a,b,a). Hence, C = (a,b,c,b,a) = (b,c,a,b,a)=
(a, b;, b, ¢; @) = 1, and the theorem is proved.

COROLLARY 1. If a,b and ¢ are elements of order 2 in a group of
exponent 4, then

1) (@, b, ¢) = (b, c, a)(c, a, b)
2" (a, b;¢,a) = (a, b, c, a)
3) (a,b,¢,a) = (b, ¢, a, b)c, a, b, ¢)

Proof. These follow from Lemma 3.1.

COROLLARY 2. If @, v, &y, Y1, ==, Ysy 21, ** 5 % (8 = 2) are elements
of order 2 in a group G of exponent 4, then

@y ooy Ty Yy 2o, Y3 2y *+*32) = AB mod Gk+s+t+1

where

A= (xu ey Wi Yy 200y Ys—15 Yss 245 "';zt)
B = (xlv 0y Ty Yss Y1y 200y Ys—15 %1y "';zt) .

Proof. This follows from (1’).
The following corollary lists some relations for future use.

COROLLARY 3. If a,b,c,d and f are elements of order 2 in a group
G of exponent 4, then
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(5) (a,b,¢,d,¢)=(a,b,d,c, d)modG,

(6) (b,c,a;d, f,a) =1mod G,

(7) (@, f;b,d,¢)=(a, f, ¢; b, d)(a, f; b, d; c)
(8) o, f,d; a,c)d, f,b;a,c¢) = (b, d, f; @, ¢) mod Gy .

Proof. By (8'), with a replaced by (a,b) and b replaced by d,
(a,b,d,c;a,b) =(d,c;a,b;d)(ca,bd;d;c) = (a,b;d,c; d)(a,b,c,d,c), so
that, since (a, b; d, ¢; d) = (a, b, d, ¢, d), (5) is true. By (2’) and (3') with b
replaced by (b, ¢) and ¢ replaced by (d, f), (b, ¢, a; d, f,a)=(a; b, ¢;d, f; a) =
b, ¢ d, f;a;b,0)d, f;b,¢; a; d, f), so that (6) is true. Finally, (7) and
(8) are obvious from (1’).

4. LeEMMA 4.1. If a,b,c and d are elements of order 2 in a group
G of exponent 4, then

(9) (@, b;¢,d) = (a, ¢; b, d)(a, d; b, ¢) mod G .

Proof. First, working modulo G, and collecting as we did in the
proof of Lemma 3.1 we obtain (abcd)* = T,T,T, where

Tz = (a'r b)(a’ C)(b, C)(a/, d)(b’ d)(C, d)

T, = (a, ¢, b)(a, d, c)(a, d, b)(b, d, ¢)

T, = (a,d,b,c).
Note that modulo G,, T,, T, and T, commute, and T% = T? = 1. Hence,
modulo G;, 1 = (abed)* = T:. Collecting the (a,d)’s in T? we obtain
1 = XABCY mod G, where

X = [(Cl,, b)(av C)(b, C)P

A= (b,e;b,d)b,c; ¢, d)b, d;c, d)

B = (a, ¢; a, d)(a, ¢; ¢, d)(a, d; ¢, d)

C = (a, b; a, d)(a, b; b, d)(a, d; b, d)

Y = (a, b; ¢, d)(a, ¢; b, d)(a, d; b, c) .

Now modulo G,, X =1, while A=B=C=1 by (2') and (3). Hence,
1= (a, b; ¢, d)(a, ¢; b, d)(a, d; b, ¢) mod G;, which is (9).

COROLLARY 1. Ifa,, ++-, &, and a are elements of order 2 in a group
G of exponent 4, then for i =2, .-+, k,

(@1 By Tgy @y 2oy Ty ooy ) = (B, Top 202, @y Tyy @y + o, ) MOd Gy

Hence, 1f two of x,, +++, Ty, @ are equal, (&,, &, Ty @, +++, ;) = 1 mod Gy .
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Proof. Let a, b, c and d be elements of order 2 in G. Then modulo G,

b, a,c,a,d) =(,a;c, a;d)
= (b,a,d;c,a)e, a,d;b,a)
= (b, a,c d,a)c,a,b;d,a)
=(b,c,a;d,a)
=(b,c,a,d,a).

The first statement follows. Now the second statement is clearly true
if a appears a third time, since then (x,a,%,a, <+, a, «++,2;) =
(2, x4, +++,a,a,a, --+,2;) = 1. If some x, appears twice, then modulo
Glc-%S(xla Ay Lyy Ay =00y Tyy * 0, xlc) = (xly ey Ay Xy Ay o0y xk) = (xlv Loy =2y
Tyy Uy Lgy w0 vy L) = (B4, Ty Tyy Xy, *++, @, =+, ) (the second step following
from (5)), and we are back to the case of three appearances of a. Thus
the corollary is proved.

COROLLARY 2. If a,b,c,d and f are elements of order 2 in a group
G of exponent 4, then

(10) 1= (a, f, b; ¢, d)a, f, ¢; b, d)a, f, d; b, ¢) mod G,
(11) (@, ¢ d, f; b)(a, d; ¢, f; b) = (¢, d; a, f; b) mod G, .

Proof. These follow from (9).
THEOREM 4.1. G(4); = 1.

Proof. Let the generators of G(4) be a,b, ¢ and d and consider any
commutator C = (x,, &,, X;, &4, ;, ;) in a, b, ¢ and d. It will be sufficient
to prove C =1 under the assumption that G(4), = 1. As in the proof
of Theorem 3.1, we may suppose that C = (a, ®,, xs, &,, ®;, a). Moreover,
if x,, ,, €, or x, is a, then by Theorem 2.1 or Corollary 1 of Lemma 4.1,
C =1. It will thus be sufficient to prove (a,b,¢,b,d,a) =1, (a,b,¢,d, b;a) =
1, and (@, ¢, b,d, b, a)=1. Now by Corollary 1 of Lemma 4.1,
(a,b,¢,b,d,a) =(a,¢c,b,d,b,a) =1, while by (1), (a,b,¢;b,d,a)=
(a, ¢, b;0,d; )b, ¢, a;b,d; a), so that by (6) (a,b,¢;b,d;a) =1. Thus
(a,b,¢,d,b,0¢) = (a,b,¢,b,d,a)a, b, c;b,d;a) =1, and the theorem is
proved.

5. The main result, that G(n),., =1, has now been proved for
n = 2,3 and 4. In this section we derive an identity analogous to (1)
and (9) for five generators. This identity enables us to prove, in §86,
that G(n),., = 1 for n > 5.

LemmA 5.1. If a,b,c,d and f are elements of order 2 in a group G
of exponent 4, then
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(12) (@, b;¢,d; f) = (c, b; f, d; a)(f, b; @, d; ¢) mod G .

COROLLARY' If (xly ctty xk)r (yly cy yj)! (zlr cc ey zm)’ a and b (ky jv m >
1) are elements of order 2 in a group G of exponent 4, then

(13) (xl» ey Xy A5 Yy 000y Yy, by Ryt Zm) = CIC2 mOd Gk+J+m+3 ’
where

Cl = (ylr cy yj’ iy %y By Ly * 00y Ty br a)
C2 = (mlr oy X3 Ry 0y By Y1y 000 Yy, A b) .
Proof of Lemma 5.1. First, working modulo G;, we collect f’s in
the expression (abedf)® to get (abedf): = (abed)a(a, £)b(b, f)e(e, £)dd, f).
Then collecting b, ¢ and d in that order we obtain (abedf)* = (abed)S,S,S,
where

S, = (@, /O, f)e, ), 1)
Sa = (a/9 b d)(a’r fr c)(a, f’ b)(b! N d)(b9 S C)(C, N d)
S4 = (a‘9 f9 ¢, d)(ar N b, d)(aﬂ f! b, C)(b, f, ¢, d) .

But as in the proof of Lemma 4.1, (abed)* = T,T,T, mod G;, where

T, = (a, b)(a, ¢)(a, d)(b, d)(c, d)
T, = (a, ¢, b)(a, d, ¢)(a, d, b)b, d, ¢)
T,=(a,d,b,c).

Thus, modulo G, (abedf)* = T,T,T,S,S,S,. But then, modulo G, -

1 = (abedf) = T,T,T.S,S, T, T;T.S,S,
= T,T,T,T.S(S,, T5)Si(Ss, T5) T, T,S,S,
= (T, TsT.)*S«(S,, To)(S,, T)Si(S;, T:)S,S,
= Sy(S,, T)(S,, T2)S«(Ss, T5)S,S;
= S¥S,, To)(S,, T2)Ss(Ss, So)(Ss, T:)S,
= S¥S,, T5)(S,, To)SUSs, S.)(S;, Ts) .

But modulo G, S? = 1, while S? is a product of commutators of weight
4. Thus the last relation may be rewritten as 1 = 4 modG, where A
is a product of commutators in a, b, ¢, d and f of weight 4 or 5; hence
the factors of A commute modulo G,. Let A. be the product of all fac-
tors of A which do not contain a as argument, and let A, be the product
of the remaining factors of A. Then 1 = A’A, mod G, so that, setting
a=1,1= A, modG, and hence 1 = A, modG,. Continuing this argu-
ment we finally arrive at 1 = A, mod G,, where A,,.., is the product
of all factors of A which contain each of a,b,c,d and f. But what are
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these factors? Clearly S? and (S,, T,) do not contain any such factors;
and since each factor of S, and S; contains £, (S,, S,) cannot contain any
such factors. We are left with (S,, 7)) and (S,, T,). The product of
the desired factors of (S,, T;) is clearly

(@, £, 0, d, )b, f; a, d, ¢)(c, f; a, d, b)(d, f; a,c,b) ,
while the product of the desired factors of (S,, T,) is
(a, £, d; b, ¢)(a, f, ¢; b, d)(a, f, b; ¢, A)D, f, d; a, c)®, f, ¢; a, d)(c, f, d; a, b) .
Hence, modulo G,
1= (a,f;bd,c)b,f;a,d,c)e,f;a,d bd,f a,c,b)

(@, f,d; b, 0)(a, £, ¢; b, d)(a, £, b; ¢, d)
< (b, f, d; a, c)b, £, c; a, d)e, f, d; a, b) .
so that by (10)
1= (a, f;b,d, )b, f;a,d,c)e, f; a, d,b)d, f; a, ¢, b)
* (br f7 d; a, C)(b, fy c; a, d)(c’ f’ d; a, b) .
Using (7) on the first four factors gives, modulo G,
1=(a, f,c;b,d)a, f; b, d; c)®, f, ¢; a, d)(O, f; a, d; c)
- (¢, f, b; a, d)e, f; a, d; D)(d, f, b; a, c)(d, f; a, c; b)
< (b, £, d; a, ), f, ¢; a, d)(c, f, d; a, b)
= (a, f, ¢; b, d)(a, f; b, d; ¢)(b, f; a, d; c)c, f, b; a, d)c, f; a, d; b)
* (d! fr br a, C)(d, fy a, C; b)(b) f: d’ a, (3)(0, fy d’ a, b)
= (a, f, ¢; b, d)(a, f; b, d; ¢)(b, f; @, d; c)(e, f, b; a, d)
- (¢, f; a, d; b)(d, f; a, ¢; b)D, d, f; a, c)c, f, d; a, b) ,

where the last step follows from (8). Now applying (11) twice gives

1= (a, f,¢;b,d)a, b;d, f; e)e, f, b; a, d)a, f; ¢, d; b)

- (b, d, f;a, ¢)e, f, d; a, D) ,
so that by (10)
1= (a, f, ¢;b,d)a, b; d, f; o)a, f; ¢, d; D), d, f; @, 0)(c, £, a; b, d)

and hence by (8)

1=(a,b;d, f;c)a,f c, d;b)b,d, f;a,c)a,c,f;bd).
Thus, by (7)

1=(a,b;d, f; o)a, f; ¢, d; b)(a, ¢; b, d; f) mod Gy ,
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so that interchanging a with b and ¢ with f we get
1= (a, b; ¢, d; f)c, b; f, d; a)(f, b; a, d; ¢) mod G,

which is (12). Thus the lemma is proved.
The corollary follows immediately.

6. Having proved the crucial relation (12), we are now in a posi-
tion to prove the main theorem.

THEOREM 6.1. Let G(n), (n =1, 2, --.) be the freest group of ex-
ponent 4 generated by n elements of order 2. Then Gn),, = 1.

Proof. The proof is by induction on n. We have the result for
n=1,2,3 and 4. Assuming the result true for n we now prove it for
n + 1. As before, we may assume G(n + 1),,, = 1. Consider a com-
mutator C = (Y, ¥s, ***, Ynss) in the generators x, .-+, 2, @ and b of
G(n + 1). As before, we may restrict attention to the case C = (a, ¥, - -,
Yuis @). There are two possibilities to consider—Case 1: a appears again;
Case 2: b appears twice. In either case we may assume that every z,
appears once, since otherwise, by the inductive assumption, C = 1.

Case 1. The proof in this case is by induction on the position of
the middle a. Clearly (a, v,,a, ++-,a) = 1. Assume that for some 7 > 3,
(@ Y2 ***y Yi-1, @, +++,a) = 1. Then

(a7 Yas ** s Yui» @y Ygv1y ***5 Yntoy a)
=0 Yoy * vy Yot Yoo @5 Yuvss =005 Yooy @)
= (a/, Yas s Yi—1s Yiy Q5 Ay Ypigy ¢y yi+1) ’

where the last step follows from G(n),,, = 1. But by (13),
(@) Yoy ** 5 Yies} Yir O3 @y Yy * 5 Ysrr) = C.C,
where

Co=(a, Y ***s Yimos Ys5 & Ynray *** Yir1y @ Yimr)
CZ = (a, Yoy oy Yi—2s Oy Yptay ***y Yyi1; Yi-1, Q; yi) .

Since ¥, and ¥,_, appear only once, by the assumption that G(n),.,=1
we have C, = C,=1. Hence, by induction, C =1 if a appears three
times.

Case 2. In this case also the proof is by induction, this time on
the distance between the b’s. Let

C: (a/yzly v, 2y by Rit1y "%y Ry b; Zir1y %y Ru—1y a) y

where 0 < ¢ < j <n — 1 (that is, there might be no entries between
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the a’s and the b’s). If § — i =1, then clearly C = 1. Assume that
C=1for j—1=k>1. Then as in Case 1,

((l, Ryy 200y %y, b’ Zivry * %y Bitpt1y b! Ritrta * %y Bn—1y a/)
= (ay By vy 2y, b9 Rit1y "%y Ridwy Rivrry b; @y Zp—gy ** zi+lc+2)

= C,C,
where

Cl = (a’ M) bv Cry Rgtk—1 Ritr+ @y Ru—1y * 0%y Bitptar b; zi+k) =1

Cz = (a’r ttty b’ ey k-1 Ay Rp—1y " * %y Zitp+y Ritro b; zi+lc+1) =1

Thus C =1 for j — ¢ =k + 1, so that by induction C =1 if b appears
twice.

Since C =1 in both cases, we conclude that G(n + 1),., =1, so
that by induction G(n),, =1 for n =1,2, ---..

7. The author conjectures that the class of G(n) is precisely » + 1
for n > 2. As supporting evidence, he has constructed G(n)/G(n)"’ and
shown that its class is exactly m. Moreover, for n =8 and n = 4,
G(n)" is fairly large, and G(n),,, #+ 1.

BIBLIOGRAPHY

1. M. Hall, Jr., The Theory of Groups, the Macmillan Co., 1959.
1.

2. N. Sanov, Solution of Burnside’'s problem for exponent 4, Leningrad State Univ.
Ann. 10, (1940), 166-170.

UNIVERSITY OF WISCONSIN
CALIFORNIA INSTITUTE OF TECHNOLOGY








