
ON GROUPS OF EXPONENT FOUR WITH
GENERATORS OF ORDER TWO

C. R. B. WRIGHT

1. If x, y, are elements of a group G, we define the commutator
(x, y) of x and y by (x9 y) = x~xy~xxy. More generally, we define ex-
tended commutators inductively by (x, , y, z) — ((x, •••,?/), 2)- I n this
paper we shall also be concerned with higher commutators of type
((a19 , αs), (b19 , δ j , , (cx, , cr)) which we denote by (a19 , as;
δi, •••,&«; •; c lf , c,.). If we let Gt be the subgroup of G which is
generated by all extended commutators of length ί, (i.e., with i entries),
then Gi is a characteristic subgroup of G, and the series G = G1 D G2 ID
is called the lower central series of G.1

Let G(n) (n — 1, 2, •) be the freest group of exponent 4 on w
generators of order 2. That is, G(n) is a group in which the fourth
power of every element is the identity, 1, G(n) is generated by n ele-
ments of order 2, and if H is any other group with these properties,
then H is a homomorphic image of G(n).

We prove G(n)n+2 = 1. For this purpose it may be assumed, since
G(n) is finite2 and hence nilpotent, that G(n)n+3 = 1. Moreover, it will
be enough to show (xlf , xn+2) — 1 for all choices of x19 , xn+2 from
among the generators of G(n).

2. LEMMA 2.1. If x,y, * ,z are elements of order 2 in a group
of exponent 4, then (x, yf = 1, (x, y, , zf — 1, and (xf y, x) = 1.

Proof. Since (x9 y) = XT/O T/ = (x^/)2, (x, ?/)2 = 1. By induction, (x, yf ,

^)2 = 1, while (y9 x) = 3/052/05 = »(», 2/)a; = (x9 y)(x9 y, x)9 so that (x, yf x) =

(1/, ^)2 = 1.
The relation (x9y9 , ^)2 = 1 will be the justification for future sub-

stitutions and will be used without specific mention.

THEOREM 2.1. G(2)3 = 1.

Proof By Lemma 2.1, if the generators of G(2) are α and 6, then
(α, δ, α) = (δ, α, α) = (α, δ, δ) — (δ, α, δ) = 1.

3. LEMMA 3.1. If a,b and c are elements of order 2 in a group
G of exponent 4, then
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1 For properties of commutators and the lower central series see Hall, fl], Ch. 10.
2 See Sanov, [2], or Hall, [1], pp. 324-325.
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( 1 ) (α, δ, c) =Ξ (δ, c, α)(c, α, 6) mod G5

(2 ) (α, δ; c, α) = (α, c; δ, α) = (α, c, δ, α) mod G5

( 3 ) (α, 6, c, α) = (δ, c, α, δ)(c, α, δ, c) mod G5 .

Proof. We may assume that α, 6 and c generate G. Now

abcabc = aba (α, c)δ(δ, c) = (α, δ)(α, c)(α, c, δ)(δ, c) .

Thus, modulo G5, (αδc)2 = (a, b)(a, c)(b, c)(a, c, b). Hence

1 = [(α, 6)(α, c)(b, c)]2 mod G5, so that, modulo G5,

1 = (α, 6)(α, c)(δ, c)(a, 6)(α, c)(δ, c) = (α, δ)(α, c)(α, δ)(α, δ; b,c)(a,c)(a,c;b,c),

( 4 ) 1 ^ (α, δ; α, c)(α, δ; δ, c)(a, c; δ, c) mod G5 .

But also

αδc = cα(α, c)δ(δ, c)

= bc{cy δ)α(α, δ)(α, c)(α, c, δ)(δ, c)

= αδ(δ, α)c(c, a)(c, δ)(c, δ, α)(α, δ)(α, c)(α, c, δ)(δ, c) ,

so that 1 = (δ, α)(δ, α, c)(c, α)(c, δ)(c, δ, α)(α, δ)(α, c)(α, c, δ)(δ, c), and hence,
modulo G5,

1 = (δ, α)(c, a)(c, δ)(α, δ)(α, c)(δ, c)(δ, α, c)(c, δ, α)(α, c, δ)

= [(α, δ)(α, c)(δ, c)]2(a, δ, c)(δ, c, α)(c, α, δ) .

Thus (1) is proved. Replacing δ by (α, δ) in (1) gives (α, δ, c, α)(c, α; α, δ) Ξ
1 modG5 or (2). And (2) and (4) together give (3).

LEMMA 3.2. If x19 , xk and a are elements of order 2 in a group
G of exponent 4, then (x19 , xk,a) = X mod Gfc+2, where X is a pro-
duct of commutators of form (a,yly , yk) with ylf , yk from among
xlf , xk.

COROLLARY. // x19 , xk, zlf , zs and a are elements of order 2
in a group G of exponent 4, then

(x19 ---,xk,a,zly •••,«,) = XmoάGk+8+2

where X is a product of commutators of form (α, y19 , yk, z19 , zs)
with ylf , yk from among x19 , xk.

Proof of Lemma 3.2. Certainly the lemma and corollary are true
if k = 1. Assume for induction that both are true for k = n — 1 > 1.
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Now by (1), modulo Gn+2, (x19 , xn_19 xnJ a) = (x19 , xn_19 a, xn){xu ,
xn-x

m, α, xn). But by the inductive assumption (x19 , xn-u α, xn) is a pro-
duct of terms (a,yu •• ,yn-i,xn)> a n ( i (χi> •* , %n-i', a, xn) is a product
of terms (a9xn9y19 •• 9yn-1). The lemma and its immediate corollary
follow by induction.

THEOREM 3.1. G(3)6 = 1.

Proof. Let α, & and c be the generators of G(3). Consider any com-
mutator C = (x19 x29 xd9 x4f x6) in arguments α, b and c. We show C — 1.
There is no loss of generality in taking #5 = α. If a does not appear
again in C, then by Theorem 2.1, C = (1, a?β) = 1. If a appears again,
then by Lemma 3.2 and the assumption that G(3)6 = 1, we may suppose
C = (a, x2, xZ9 xi9 α). By Lemma 2.1, if a appears a third time, then
C = 1. Thus we may take C = (α, 6, c, 6, α). Now (α, 6, c, 6, a) =
(6, c, α, 6, α)(c, α, 6, 6, α) = (δ, c, α, 6, α) by (1). Replacing c by (6, c) in (3)
gives (α, 6; 6, c,; α) = (6; 6, c; α; 6) = 1, while replacing c by (6, c) in (2)
gives (α, 6; &, c; α) = (6, c, α, 6, α). Hence, C = (α, 6, c, 6, α) = (6, c, α, 6, α) =
(a, b;, b, c; a) — 1, and the theorem is proved.

COROLLARY 1. // α, 6 and c are elements of order 2 in a group of
exponent 4, then

(10 (a, 6, c) = (6, c, a)(c, a, 6)

(20 (a, 6; c, a) = (a, 6, c, a)

(30 (a, 6, c, a) — (6, c, a, &)(c, a, 6, c)

Proof. These follow from Lemma 3.1.

COROLLARY 2. If x19 , α?Λ, 2/lf , ys, z19 , zt (s > 2) are elements
of order 2 in a group G of exponent 4, then

(%i> , XJC) Vu , Vs', tύ *t) = AB mod G f c + s + t + 1

A = (a?lf , α?fc; i/i, , j / , ^ ; j / β ; ^ zt)

B = (a?!, •••,#*, i/β; ^ , , ys^; zλ) •; ̂ ) .

Proof. This follows from (10.
The following corollary lists some relations for future use.

COROLLARY 3. If α, &, c, d and f are elements of order 2 in a group
G of exponent 4, then
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(r5) (α, b, c, d, c) = (α, &, d, c, d) mod G6

( 6 ) (b, c, α; d, /, a) = 1 mod G>

( 7) (α, /; 6, d, c) =* (α, /, c; 6, d)(α, /; 6, d; e)

(8 ) (6, /, d; α, c)(d, /, b; a, c) = (b, d, f; a, c) mod G8 .

Proof. By (3'), with a replaced by (α, 6) and b replaced by d,
(a, 6, cί, c; α, 6) = (cί, c; α, 6; d)(c; α, 6; cί; c) = (α, 6; cί, c; cί)(α, 6, c, d, c), so
that, since (α, 6; cί, c; cί) = (α, 6, cί, c, cί), (5) is true. By (2') and (3') with b
replaced by (6, c) and c replaced by (d, / ) , (6, c, α; d, /, a) = (α; ft, c; d, /; α) —
(b,c;drf;a;b,c)(d,f;b,c;a;d,f), so that (6) is true. Finally, (7) and
(8) are obvious from (Γ).

4 LEMMA 4.1. If a, b, c and d are elements of order 2 in a group
G of exponent 4, then

( 9 ) (α, b; c, d) = (α, c; 6, d)(a, d; 6, c) mod G5 .

Proof. First, working modulo G5 and collecting as we did in the
proof of Lemma 3.1 we obtain (abed)2 = T2TZT± where

T2 = (α, δ)(α, c)(6, c)(α, d)(6, d)(c, d)

T3 = (α, c, 6)(α, d, c)(α, d, b)(b, d, c)

Γ4 - (α, d, &, c) .

Note that modulo G5, Γa, Tz and Γ4 commute, and T\ = T\ = 1. Hence,
modulo G5, 1 = (abed)4 = T\. Collecting the (α, d)'s in T\ we obtain
1 == XABCY mod G5, where

A = (6, c; 6, d)(b, c; c, d)(6, d; c, d)

β = (α, c; a, d)(a, c; c, d)(a, d; c, d)

C = (α, 6; α, d)(α, 6; 6, d)(α, d; 6, d)

3Γ — (α, 6; c, d)(α, c; ί>, d)(α, d; 6, c) .

Now modulo G6, X = 1, while A = 5 = C = 1 by (2') and (3'). Hence,
1 = (a, b; c, d)(a, c; 6, d)(a, d; 6, c) mod Gδ, which is (9).

COROLLARY 1. If%if 9xk and a are elements of order 2 in a group
G of exponent 4, then for i = 2, •••,&,

(&!, α, a?a, α, •••,»*, , a?*) = (^i, &2> , α, O54, α, , a?fc) mod G f c + 3 .

Hence, if two of xlf , #fc, α a r e equal, (xlf a, aja, a, , xk) = 1 mod G f c + 3.
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Proof. Let α, 6, c and d be elements of order 2 in G. Then modulo G6,

(b, a, c,a, d) = (b, a;,c, a; d)

= (6, α, d; c, α)(c, α, d; 6, a)

= (6, α, c; d, α)(c, α, 6; d, a)

= (6, c, α; d, α)

= (6, c, α, d, α) .

The first statement follows. Now the second statement is clearly true
if a appears a third time, since then (xu a, x2, a, , α, , xk) =
(Xj, sc2, , α, a, a, , xk) = 1. If some α̂  appears twice, then modulo

ajc, α, ̂ , , ίcΛ) = (α?!, ̂  x2, xif •••,«, , fl?Λ) (the second step following
from (5)), and we are back to the case of three appearances of a. Thus
the corollary is proved.

COROLLARY 2. // α, 6, c, d and / are elements of order 2 in a group

G of exponent 4, then

(10) 1 = (a, /, 6; c, d)(a, /, c; 6, d)(a, /, d; 6, c) mod G6

(11) (a, c; d, /; 6)(a, d; c, /; 6) = (c, d; a, /; 6) mod G6 ,

Proo/. These follow from (9).

THEOREM 4.1. G(4)6 = 1.

Proof. Let the generators of G(4) be α, 6, c and d and consider any
commutator C = (Xj, aj2, x3, x4, x6, x6) in α, 6, c and d. It will be sufficient
to prove C = 1 under the assumption that G(4)7 = 1. As in the proof
of Theorem 3.1, we may suppose that C — (α, α?2, x5, x4, xδ, a). Moreover,
if x29 x3, x4 or x5 is α, then by Theorem 2.1 or Corollary 1 of Lemma 4.1,
C = 1. It will thus be sufficient to prove (α, 6, c, 6, d, a) = 1, (α, 6, c, d, 6; α) =
1, and (α, c, 6, d, 6, α) = 1. Now by Corollary 1 of Lemma 4.1,
(α, 6, c, by d, a) = (α, c, 6, d, 6, α) = 1, while by (1'), (α, 6, c; 6, d, a) =
(α, c, 6; 6, d; α)(6, c, α; 6, d; α), so that by (6) (α, 6, c; 6, d; α) — 1. Thus
(α, δ, c, d, b, a) = (α, 6, c, 6, d, α)(α, δ, c; 6, d; α) = 1, and the theorem is
proved.

5. The main result, that G(ri)n+2 = 1, has now been proved for
n — 2, 3 and 4. In this section we derive an identity analogous to (1)
and (9) for five generators. This identity enables us to prove, in §6,
that G(n)n+2 — 1 for n > 5.

LEMMA 5.1. // α, 6, c, d and f are elements of order 2 in a group Q
of exponent 4, then
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(12) (α, δ; c, d; f) = (c, 6; /, d; a)(f, δ; α, d; c) mod G6 .

COROLLARY. If (x19 , xfc), (i^, , %), fo, , z j , a and b (k, j, m >

1) are elements of order 2 in a group G of exponent 4, then

(13) (x19 , x k , a; y 1 9 --, y j 9 δ; z19 , z m ) = C,C2modGfc+j+m+3 ,

where

CΊ = (i/x, , Vj] zlf , zm; xu , xkf b; a)

C2 = (a?lf , xk; z1, , zm; y19 , yj9 a; b) .

Proof of Lemma 5.1. First, working modulo Gδ, we collect / ' s in
the expression (abcdf)2 to get (abcdf> = (abcd)a(a, f)b(b, f)c(c, f)d(d, f).
Then collecting 6, c and cί in that order we obtain (abcdf)2 = (abcd)2S2S3S4

where

5 3 - (α, /, d)(α, /, c)(α, /, 6)(δ, /, d)(b9 f, c)(c, f, d)

54 = (α, /, c, d)(α, /, 6, d)(α, /, 6, e)(δ, /, c, d) .

But as in the proof of Lemma 4.1, (abed)2 = T2T^T4 mod G5, where

T2 = (α, δ)(α, c)(α, d)(6, d)(c, d)

Γ3 = (α, c, δ)(α, d, c)(af d, b)(b, d, c)

Γ4 = (α, d, 6, c) .

Thus, modulo G5, (abcdf)2 = T2T,T4S2S3S4. But then, modulo G6,

= T2TzT4T2S2(S2, Γ2)S3(S3, T2)T3Tβ2S3

- (T2T3T4)
2S2(S2f T3)(S2, Γ2)S3(S3, T2)S2S3

- S2(S2, T3)(S2, T2)S3(S3, T2)S2S3

= Sϊ(S a , Γ3)(S2, Γ2)S3(S3, S2)(S3, Γ2)S3

= S2

2(S29 TZ)(S2, T2)Sl(Ss, S2)(Sd9 T2) .

But modulo G6, SI = 1, while S 2 is a product of commutators of weight
4. Thus the last relation may be rewritten as 1 = A mod G6 where A
is a product of commutators in α, δ, c, d and / of weight 4 or 5; hence
the factors of A commute modulo G6. Let A'a be the product of all fac-
tors of A which do not contain a as argument, and let Aa be the product
of the remaining factors of A. Then 1 Ξ= A'aAa mod G6, so that, setting
a — 1,1 = A'a modG6, and hence 1 = Aa modG6. Continuing this argu-
ment we finally arrive at 1 Ξ= Aabcdf mod G6, where Aabcdf is the product
of all factors of A which contain each of α, δ, c, d and /. But what are
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these factors? Clearly Si and (S2, T2) do not contain any such factors;
and since each factor of S2 and S3 contains /, (S3, S2) cannot contain any
such factors. We are left with (S2, Γ3) and (S3, T2). The product of
the desired factors of (S2, Γ3) is clearly

(α, /; δ, d, c)(δ, /; α, d, c)(c, /; α, d, δ)(d, /; α, c, 6) ,

while the product of the desired factors of (S3, T2) is

(α, /, d; 6, c)(α, /, c; δ, d)(α, /, δ; c, d)(δ, /, d; α, c)(δ, /, c; α, d)(c, /, d; α, δ) .

Hence, modulo Gβ9

1 = (α, /; δ, d, c)(δ, /; α, d, c)(c, /; α, d, δ)(d, /; α, c, δ)

• (α, /, d; δ, c)(α, /, c; δ, d)(α, /, δ; c, d)

• (δ, /, d; α, c)(δ, /, c; α, d)(c, /, d; α, δ) .

so that by (10)

1 = (α, /; δ, d, c)(δ, /; α, d, c)(c, /; α, d, 6)(d, /; α, c, δ)

• (δ, /, d; α, c)(δ, /, c; α, d)(c, /, d; a, δ) .

Using (7) on the first four factors gives, modulo Gβ,

1 = (α, /, c; δ, d)(α, /; δ, d; c)(δ, /, c; α, d)(&, /; α, d; c)

• (c, /, δ; α, d)(c, /; α, d; δ)(d, /, δ; α, c)(d, /; α, c; b)

• (δ, /, d; α, c)(&, /, c; α, d)(c, /, d; α, δ)

= (α, /, c; δ, d)(α, /; δ, d; c)(δ, /; α, d; c)(c, /, δ; α, d)(c, /; α, d; δ)

• (d, /, δ; α, c)(d, /; α, c; δ)(δ, /, d; α, c)(c, /, d; α, δ)

= (α, /, c; δ, d)(α, /; δ, d; c)(δ, /; α, d; c)(c, /, δ; α, d)

• (c, /; α, d; 6)(d, /; α, c; δ)(δ, d, /; α, c)(c, /, d; α, δ) ,

where the last step follows from (8). Now applying (11) twice gives

1 - (α, /, c; δ, d)(a, δ; d, /; c)(c, f, δ; α, ώ)(α, /; c, d; δ)

• (δ, d,/; a,c)(c,f, d; α, δ) ,

so that by (10)

1 = (α, /, c; δ, d)(α, δ; d, /; c)(a, f; c, d; δ)(δ, d, /; α, c)(c, /, a; δ, d)

and hence by (8)

1 = (α, δ; d, /; c)(α, /; c, d; δ)(δ, d, /; α, c)(α, c, /; δ, d) .

Thus, by (7)

1 ΞΞ (α, δ; d, /; c)(ix, /; c, d; δ)(α, c; δ, d; /) mod G6 ,
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so that interchanging a with b and c with / we get

1 ΞΞ (α, b; c, d; f)(c, b; /, d; α)(/, 6; α, d; c) mod G6

which is (12). Thus the lemma is proved.
The corollary follows immediately.

6* Having proved the crucial relation (12), we are now in a posi-
tion to prove the main theorem.

THEOREM 6.1. Let G(n), (n = 1, 2, •••) be the freest group of ex-
ponent 4t generated by n elements of order 2. Then G(n)n+2 = 1.

Proof. The proof is by induction on n. We have the result for
n = 1, 2, 3 and 4. Assuming the result true for n we now prove it for
n + 1. As before, we may assume G(n + l ) n + 4 = 1. Consider a com-
mutator C = (ylf y2y , yn+3) in the generators x19 , a?n, α and b of
G(tι + 1). As before, we may restrict attention to the case C = (α, y2y ,
yn+2, α). There are two possibilities to consider—Case 1: a appears again;
Case 2: b appears twice. In either case we may assume that every xt

appears once, since otherwise, by the inductive assumption, C = 1.

Case 1. The proof in this case is by induction on the position of

the middle α. Clearly (a,y2,a, , a) = 1. Assume that for some i > 3,

(α, 2/2, , 2/i-i, α, , α) = 1. Then

(α, 1/2, , # o α, Vi+i, , 2/71+2, α)

= (a> 2/2, , Vi-ΰ Vn α; I/4+1; Vn+2, a>)

= (α, 2/2, , 2/4-1; I/*, α; α, yn+2, , i/<+1) ,

where the last step follows from G(n)n+2 = 1. But by (13),

(α, y2, , 2/ι-iί 2/i, <̂ ; α, 2/n+2, , Vt+i) = CiC 2

where

Cx - (α, y2, , 1/4-2,1/,; α, ?/w+2, , j / i + 1 , α; 7/^0

C2 = (α, i/2, , yt-2; a, yn+2, , j / < + 1 ; yt_u a; yt) .

Since yi and ^ - i appear only once, by the assumption t h a t G(n)n±2 = 1
we have Cλ — C2 = 1. Hence, by induction, C = 1 if a appears three
times.

Case 2. In this case also the proof is by induction, this time on
the distance between the δ's. Let

C = (α, z19 , 24, 6, zι+19 ••, z)9b, zJ{.19 , ̂ w_!, α) ,

where 0<i<j<n — 1 (that is, there might be no entries between
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the α's and the b's). If j — i = 1, then clearly C = 1. Assume that
C = 1 for j" — i = A; > 1. Then as in Case 1,

= (of-, #!, , ^ , 6, ^i+i, , zi+]c'y zi+k+11 6; a, zn-lf ,

where

O 2 ^ ( & , , 0 , , ί2?4 + Λ;—1> Ct'j ^ w - i y * * *> ^i+fc+2» ^i+fc> ^ ί ^ i + f c + i ) = = -*-

Thus C = 1 for j — i — k + 1, so that by induction C = 1 if b appears
twice.

Since C = 1 in both cases, we conclude that G(n + l ) n + 3 = 1, so
that by induction G(n)n+2 = 1 for % = 1, 2, .

7. The author conjectures that the class of Gin) is precisely n + 1
for w > 2. As supporting evidence, he has constructed G(n)IG(n)" and
shown that its class is exactly n. Moreover, for n = 3 and w = 4,
G(n)" is fairly large, and G(n)n+1 Φ 1.
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