
CONSTRUCTION OF A CLASS OF MODULAR

FUNCTIONS AND FORMS

MARVIN ISADORE KNOPP

1. Introduction* Let G(j) be the principal congruence subgroup, of
level j , of the modular group. In this paper we construct functions
which are invariant under G(j), for each integer j 2t 2.

We begin by defining certain functions λv(i; τ) which, although not
in general invariant under G(j), do possess the transformation properties

(1.01) λv(i; Tτ) = λv(i; τ) + constant, for all T in G{j).

This is the content of the main theorem, Theorem (4.02). Once this
result has been established it is a simple matter to construct invariants
for G(j) by forming certain linear combinations of the λv(jr, τ). This is
done in § 5.

These functions X»(j; τ) are defined as Fourier series which generalize
the Fourier series expansion of λ(τ), given by Simons [6]. To derive the
transformation equations (1.01), we proceed directly from the Fourier
series, extending a method introduced by Rademacher [4], and since
generalized by Lehner [2] and the author [1]. Although in [4] only the
invariant J(τ) for the modular group is treated, the method of [4] has
much wider applicability. Thus, in [2] it is used in the case of the
modular group to overcome the usual convergence difficulties encountered
in constructing forms of dimension —2 by means of Poincare series,
while in [1] it is used to construct forms of nonnegative even integral
dimension (in which case we, of course, do not have the method of the
Poincare series) for the modular group and several other closely related
groups.

We will indicate in section 6 how the method of this paper can be
used to construct automorphic forms of all positive even integral dimen-
sions for the groups G(j). In a future publication these same methods
will be applied to construct automorphic functions and forms for certain
other congruence subgroups of the modular group and for congruence
subgroups of several other groups.

I would like to thank the referee of this paper for his helpful
remarks.

2* Several lemmas. In [4] the principal analytic tool is a rather
delicate lemma in which the terms of a certain conditionally convergent
double series are rearranged. Several variations of this lemma can be
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found in [1] and [2]. In this section we derive two generalizations of
the lemma that will be needed in § 4.

LEMMA (2.01). Let a < 0, b < 0, d > c> 0. Let y > 0, r ^ 0, and
v and j be positive integers. Let t = (c — l/26)cZ"1. Then

(2.02) Σ* k1+r(kiy — m)

= liπJ Σ* i.
7 1 + ί . / 7 . r

k1+r(kιy — m)

Σ*+ ^ ^ k1+r(kiy - m) •+r(kiy — m) 1

where the asterisk (*) indicates that the inner sum is taken on those
m such that (m, fc) = 1 and m = 1 (mod ̂ ), ίfeβ sharp (#) indicates that
the outer sum is taken on those k such that k = j (modi2), wnd mf is
is defined by mm' = — 1 (mod&).

LEMMA (2.03). Let y, r, v, and j be as above. Let p be any posi-
tive number. Then

(2.04) Σ q i m Σ * ^ ^
fc=i ̂ -̂ co \m\^N k1+r(kιy — m )

= lim Σ*
\m\£κ k1+r(kiy — m)

REMARK. With care, (2.03) could have been included as a special
case of (2.01). However, it is simpler and somewhat more germane to
our purpose to state them as separate lemmas. It should be noted
that Lemma (2.03) is the same as a lemma in [1], except for the
congruence conditions on m and k.

A geometric interpretation may be helpful. By a "lattice point"'
we will mean a pair of relatively prime integers k, m such that
k = j (modi2) and m = l (modi). Rademacher's lemma [4] shows that
the sum can be taken by first summing over the lattice points of the
half square in the k — m plane defined by 1 ^ k ^ Ky \ m \ ̂  K, and
then letting K—> oo. Lemma (2.03) allows us to first sum over the
lattice points of the rectangle 1 ^ k 5g [pK], \ m \ ̂  K, while Lemma
(2.01) shows that the sum can be taken first over the lattice points
of the trapezoid bounded by the lines k = 0, m = (ak — Kt)/c9 m =
(bk - K)ld, m = (bk + K)/d.

The lemma can actually be proved for other trapezoids, but the
form in which we have stated it will suffice for our application.

Proof of (2.01). We prove the lemma in the case r — 0, the proof
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for r > 0 being virtually the same. We first show the convergence of
the left hand side of (2.02).

— TL-l

k(kiy — m) Q^IKJC n kίy — h — nk

where we have put m = h + nk. Therefore,

s>—2πim'\>ι'JG

_ i

kikiy — m)

s>—2πim'\>ι'JG

1 1 1 1 1 .2-1 Ί / Ί . : ^ 2A V mil ^

= πίk~2 Σ * e-2πίh'"ιlc - 2πik~2 Σ e~2πyp Σ * exp —±ίii-(ι;&' +

Now, the inner sum of the second term is a Kloosterman sum, for
which we have the estimate (see [5])

(2.05) Σ * exp \-^(vh' + ph)\ = O(fc2/3+ε) .

Also, the sum in the first term can be written

Σ * e χ P — πι-(vhf + kh) =

We conclude that

lim Σ * e~2πim'^

and the left hand side of (2.01) converges.
Let Z denote the set of integers. Let zx(K) — [K(dt — c)] and

z2{K) - [K(dt + c)]. We let J*(K, N) = {m e Z\ - N^ m <(bk - K)/d
or (bk + ίΓ)/cϊ < m ̂  ΛΓ} and ̂ ?(K, N) = {me Z\{bk + K)/d <m^N
or -N ^ m < (αfc - ϋΓt)/c}.

We can now state the lemma in the following form

Σ* lim
fc = 1 JV->o k(kiy — m)

Σ* 7 ^ rr

The function defined by

/ x _ Γe"27Γim/v/fc, if (m, fc) = 1 and m = 1 (modi)
gym) — <

ι0 , otherwise

is periodic modulo k. This is easily seen if we recall that k = j (mod j2)
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and therefore j \ k. It follows that

where

Using

(2.07)

In

(2..05) we

the first

Ά•{K, N)

0

see that

g(m) =

Σ* exp

Bι =

double sum of (2.

2-ι

fc

Σ-

Γ

L

O(k

.06)

1 ' , *

2JΓΪ

: - l/ . + S

put

y D

me^{κ,N) k(kiy — m) m e ^ w ) z = 1 k(kiy — m)
^ ' ' ft-l ΛπίlmlJc 1

.m k(kiy — m) me&iK.N) k(kiy — m)

Let Γfc(iΓ) = lim^oo Γfc(iΐΓ, N), zz(K) = [(ϋΓ+ 6fc)/d], and z4(ίQ = [(ίΓ - -
Recalling the definition of j^(K, N) and making use of (2.08), we majr
write

-» 7") K~1 β

LJ -*^l / * ~~

=1 m=z3(κ)+i kiy — m
7c—1 <» 0—2τΐilmlΊc

1=1 m=zά(κ)+i fciy + m

+ J5,fc-1 Σ ί - ^ — + -1

(2.09) fc m=zA(κ)+i\kiy — m fcί^/ + m

zUK) 1

+ -βfcfe Σ
L kiy — m

= S X + S2 + S3 + Si.

To handle Sx, put

TO

77T > Γ ^
j j > .

Therefore,

I Em I g (sin πϊ/A;)-1 g (min {2i/fc, 2(/c - tyk})-1 ύ — (1/i + l/(fe - ί)) -

Now,

Σ
kiy — m m

i2/ — m ^ ? / — m — 1/
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Hence,

Σ
— m

^ A(l/ί + l/(fc - ί)) Σ {W + m2}-1'W + (m +
2 (K)+i

U(k - I)) Γ f̂- = A(i/i
J«3w ^ 2

Now, we are here considering only those k in the range 1 ^ k <Ξ ̂ (
= [ίΓ((Zt - c)]. Since 6 < 0, d > 0, (K + 6fc)/d ^ {# + jfiΓ6(dί - c)}/d =
K/2d. Making use of (2.07), we conclude that

fc-l oo

^ΣBι Σ
ι=ι m{

Therefore,

(2.10) S, = Oik-^K-1 log fc) .

We can estimate S2 in exactly the same way simply by noticing
that (K - bk)/d ^ K/d. We obtain

(2.11) S2 = Oik-v^K-1 log k) .

The estimation of S3 is simpler. We notice that

S.=B fc.fc-1 Σ 7
m=04(sr)+i —

and hence

Therefore,

(2.12) S3 =

We consider S4. Recalling that z^K) + 1 > (K + bk)jd ^ K/2d, we
find that

— m

S 2dK~1{(K — bk)jd — (K + bk)jd) = —

Therefore, using (2.07),
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(2.13) St = B^-k-1 x — - ±
m=z3{κ)+i kiy — m

Collecting our results (2.10), (2.11), and (2.12), we have Tk(K)
-1 log k). Hence,

zΛ (K) o—2τzl\m'\lz zΛ (K)

Σ ί l i Σ* ^ Σ *iy — m)

ίr1 / 3 + ε log i

log K)

In the second double sum of (2.06) put

uΛ(κ, N) = Σ* e~^mΊlc

(2.15) ..^^-,^-%-m)

t2/ — m) »e»( ί , ϊ i A;(A;i2/ — m)

Let U*{K) = l im^» t/,(Z f iV) and «6(ϋΓ) = [(ΛΓί - ak)lc\. Then using
(2.15) and the definition of &?(K, N) we find

fc-1 <» β2πίlmlTc Tc-X oo Λ—2πilrϊilJc

ίΣB Σ 4 ^ 2 5 Σ— m ι=ι m=zfi(2ΓHi/α?/ + m

(2.16) +Bk.k~1 Σ
— m Λî / + m

fc-l Z$(K) o—2πίl7ϊll1c

Σ * Σ ^=1 m=zz(K)+ikiy — m m=z\ϊk)+ι kiy — m

Since (Kt — ak)/c > Kt/c, we can estimate Sδ and S6 in the same
way as Slt and >S7 in the same way as S3 We obtain

(2.17) Sδ + S6 + S7 = O(k-1IΛ+'K-L log k) .

To handle S8 define ί^ as before. Then

«5 I * ί g^ί

— m
*δ(*:)

= Σ m kιy — m —

Recalling that | Em | ̂  (fc/2){l/ί + l/(fc - I)}, we have
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Z5(K)

J£ -

sfu
kiy-

β + '•

ilk

- m

L/(fc f + m2}"1/2{fcy + (m + 1)2}"1/2

+ {fc2^2 + (iΓ/j - αfe)2/c2})

- (K + bk)/d)) + c/tK}

since —ad — be > 0 and fc is in the range K(dt — c) < z±(K) + 1 ^ k ^
+ c). Therefore,

= k-^BZ Σ 4

(2.18) = offc^Σfc-1'^8-—{1/i + l/(fc - l)}{Kk
\ 11 2Z = l

= 0(&-1/3+ε

Finally, we estimate S9.

5(-S") ^

— m

~2

g Σ (kY+mTll'i^y~1k-1{(Kt-ak)lc-(K-bk)ld}
Ύίb Ίn=z%{K)+l

^ KicdykY'ϋdt - c) - (ab + δc)(cW + c)} .

Therefore,

(2.19) 7 ^

k%y — m

Using (2.17), (2.18), and (2.19), we find that

Uk(K) =Hence,

V» lim Σ* 6

.jv) k(kiy — m)

V / fc=21(JΣ')+l

= OIK'1 log i ί "2^) A;-1/34 s) = Oίiί"1 log .
\ fc=«1(JE')+l /

= Oίiί-1'34-5 log K) .

Now (2.06) follows from (2.14) and (2.20) and the lemma is proved.
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Proof of (2.03). We outline the proof for the case r = 0. The left
hand side of (2.04) is the same as the left hand side of (2.02) and its
convergence has already been demonstrated.

The lemma may be stated as follows

(2.21) lim Σ* Mm Σ * ,°

Let

x,— 2πi\>mrlk

Vk(K, N) =
k(kiy — m)

fc-l

Σ*
ι=ι κ<\m\ίn k(kiy — m) ϋ:<imî ^ k(kiy — m)

Then,

Vk(K) = lim yfc(JBΓ, ΛΓ) = fc^g £

fc-l σo p-Ίπilmlk 1 \

^ — )

%y + m/1=1 <m=κ+ikιy + m m=κ+i\kιy — m k%y +

= Si + S; + Ŝ  .

Now Si, and S'2 can be estimated in the same way as Sλ and S3 in
the same way as S3. Once we have these estimates the proof of (2.21)
proceeds exactly as the proof of (2.14) of the previous lemma.

3 The functions λv(j; τ). Let j be an integer ^ 2 and let v be
a positive integer. We define the function

(3.01)

where

a Kloosterman sum, and /x is the modified Bessel function of the first
kind. Recall that the sharp (*) means that we allow only those k such
that k = j (mod j2) and the asterisk (*) indicates that we allow only those
h such that h = 1 (modi) and (h> k) — 1.

We need the following

LEMMA (3.02). (a) If an(v, j) is defined as in (3.01) then

an{v, 3) ~ {vll4n""\2j)-ll2ll6}e~2πi{n-^j exp

= Σ* exp \^ψL(vh* + nh)] ,
L k JΣ
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(b) If I z I < 1, then

Σ z^Σi^nvk-yipl (p + 1)!

is absolutely convergent.

Proof, (a) The first term that occurs in the sum defining an(v, j)
is for k = j . This term is equal to

But

A3Λ{n) = exp [-2πi{n + (j - l)v}IJ] =

Therefore the first term is

It follows that

= I (π/8)

^ C&ln)112 Jt*k-1W*+%('lπ(nv)li*lk) ,

where we have made use of (2.05)

It is a simple consequence of the power series definition of Ix

(3.03) Ip]) = Σ (Vl2)**+1lpl (P + 1)!
0

that Λί^) ^ sinh 57. We also need the fact that sinh η ^ (rj/B) sinh
f or 0 S V ^ B. We find that

I an(v, j) -

^ C&ln)112 Σ^k-ll3+'{{iπ(nv)ll2lk)l(4:π(nvyl2l2j)} sinh (iπ(nv)ll2l2j)

^ C2 exp

Now in ([7], p. 203, formula 2), it is shown that Ix{η) ~ eyil(2πy]Y'\
Therefore,

and the result follows.

(b) Σ (iπ'nvlkψlpl (p + 1)! =
J3-0
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^ {kl2π(nv)112} sinh <

< {kl2π(nvY'2} exp i

The result follows.
Lemma (302a) shows that the series defining λv(i; τ) converges

absolutely for ^{τ) > 0. Therefore, λv(i; τ) is analytic in the upper half
τ-plane.

In order to derive the transformation properties of λv(i; τ) we trans-
form (3.01) into a certain double series. The computations involved are
a repetition of those found in [4, pp. 244-5] and in [1] and [2] and we
omit them. Briefly, the series definition of an(v,j) is inserted into the
series for λv(i; τ), Ix is replaced by the power series (3.03), Lemma (3.02)
is used to justify several interchanges of summation, and use is made
of the Lipschitz formula [3]

ΣΛp{exp[ari(τ/i-λ/fc)]}»

(pll(2π)p+1) Σ (-iτtf + ih\k + li)-*'1 , for p > 0

N

-1/2 + (1/2TΓ) lim Σ (-iτti + ih/k + li)'1 , for p = 0 .

We obtain the double series

(3.04) λvO' Γ) = constant + — Σ # Σ
1 6 Jlθύh

Σ Σ*
1 6 Jc=l

lim Σ {expΓ,, ,y; J - l } .
zΓ-oo ιsjy I Lk(kτ 3—h—klu i-k(k

4. Transformation properties of the λv(i; τ)Φ In (3.04) put m =
h + kl. Since i|fc it follows that m = h (modi). Hence m=sl (modi)
is a consequence of h = 1 (modi). Also (fe, fe) = 1 implies (m, fc) = 1.
It is easy to see that as I runs through all the integers and h through
a residue class modulo k with the restrictions (h, k) = 1 and h = 1 (modi),
then h + kl takes on, exactly once, each integer value m such that
(m, &) = 1 and m = 1 (modi). Then (3.04) becomes

(4.01) Ur, r) = Λ + JLg Hm £ ^ [ J ^ ] - l} .^ Σ lim Σ e { e x p Γ ^ ?
16 *=i ̂ — iw!^^ I L fc(/cτ/,7 — m)

Let α, b, c, d be integers such t h a t ad — be = l,a = d = 1 (modi) ,
and b = c = 0 (modi) . Denote by jΓ«iδ)CiΛ the element of G(j) defined by

•^α.&.c.aw —j"

cr + α

We wish to prove
THEOREM (4.02)1. The function λv(i; r) satisfies the transformation

1 See correction at end of paper.
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equations

(4.03) λ v(i; Γβi6fβid(r)) = xJj; a τ + M - λ v(i; τ) + ω v(j; c, d) ,
V cr + d /

/or αZZ ΓαδiCi(Z m G(i) αweZ ^ ( τ ) > 0. Here ωv(j; c, d) does not depend
on τ, α, or b.

Proof. Let us suppose we have already shown that

; ̂ 4
cτ + d

where α> does not depend on τ. Under this assumption we prove that
ω is independent of a and b.

Let Ta,)b,>Cιd be in G(i). Then, since α — α' = δ — 6' = 0 (modi) and
ad — be — a'd — brc = 1, we have that α' = α + q'j, b' — b + r'j, with
g', r' integers and q'd = rfc. Since (c, cί) = 1 it follows that qr = gc,
r ' = gcZ with q an integer, and therefore a' — a + gcj, 6' = 6 + qdj.
Hence 27

α/,6,iCfίI=27

1,β:f,o,1 !Γα,&ιCiΛ, and clearly

Therefore, ω does not depend on α or δ.
It suffices to prove (4.03) subject to the restrictions d > jc > 0, a < 0,

b < 0. First we may assume c > 0, changing the signs of a,b,c,d if
necessary. It is then simple to compute that TaίbtCtd=TlιSjιOιl TΛ>β>y>8' Tlt-rjtQΛ,
with a — a — sjc, β = rj(a — sjc) + b — sjd, 7 — c, 8 = d + rjc, and we
can choose integers r and $ so large that a < 0, /9 < 0, 8 > ic. But
λ v(i; τ) is clearly invariant under TlιSj,Oιl and TΊ.-^.o.i since these are
translations by sj and —rj respectively. Hence, if Xv(j; TΛ>β>y>h{τ)) =
XX j ; τ) + ω, then λ v(i; Γα,6>β,d(τ)) = λ v (i; τ) + <o.

Now, in order to apply Lemmas (2.01) and (2.03) we assume that
τ is a pure imaginary number. Expanding the expression in the braces
in (4.01) into a power series, we get

λv( j ; τ) = A + A- Σ* Mm Σ* β-M«'/* Σ Λ
16 *=i N->°° \m\zN P=ipl \k(kτlj — m)

(4.04) = A -J- ̂ - V # lίrvi V * Λ-2χlvmΊ* ^K^V

1 6 fc=i jv-»oo imi^jv k{kτjj — m)

16 *=i ̂ -*~ imî ivr j?=2p! \k(kτjj — m )

The separation into two sums is justified since the first is convergent
by Lemma (2.01) and the second is an absolutely convergent triple sum.
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It follows that the second sum can be rearranged in any fashion. Making
use of this fact and noting that the restrictions a < 0, b < 0, d > jc > 0
make it possible to apply Lemma (2.01), with r = 0 and α, 6, c, d replaced
by α, blj, jc, d to the first sum, we obtain

1 (iK(dt-jC)l

λv(i; τ) = A + -A. lim Σ* Σ*
16 κ-*°° I *=i \m-bkijd\£

lim Σ Σ r ^ r

IKW+jc)] s,-2πίvm'llc

Σf Σ*
k=iκ(dt-jc)l+l (aJc-

Σ* TTΓ-F r'2πiv\

+
16

+ Σ* Σ* ^ ' ^ Σ Λ L , ? J [
fc = [.KΓ(d!ί-^c)]+l (ak-Kt)lJc^mSbklJd+K!d p=2 p\ \/c(fCT/j — Ύίl) / J

Therefore,

(4.05)

) = A + ̂ - l im Σ*
1 6 2Γ-»oo t * = i

Σ*
k\5d\

+ Σ* Σ* ^ " ' " " P L , ? ,

Now, let

S*(τ)= Σ1 Σ* e-^v^eχp y w

+ Σ* Σ* β-"^*exp ffw I.

A^little computing shows that

S*(r)= Σ $ Σ * exp 2τrw fe m τ / J

i δ Λ / j d ] ^ £ : / d L kτ/j — m J

Σ* exp
(ak-Kt)IJc^m£bklJd+Kld

Γ
2πiv

L

where —kf = (mm' + l)/fc. We see that kk' + mm' + 1 = 0, so kk' =
—1 (mod m). Now given the relatively prime pair k, m, the pair k', m'
is not uniquely determined. In fact, m' can be replaced by m' + qk,
where q is any integer. Then k must be replaced by k' — qm. The
corresponding term in ̂ ( τ ) is replaced by

e x p \ 2 π i v k + Qm(m + qk)τin = e χ p \ 2 π i J k ' - m ' τ l J _ VI
L kτjj — m J L V kτ/j — m /J

— m
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so that Sκ(τ) is unaffected by the ambiguity in the choice of kf and m'.
Recall that in Sκ(τ) we are summing over the lattice points of the

trapezoid bounded by the lines k — 0, m = bkjjd — K/d, m = bk/jd + K/d,
m = (ak — Kt)ljc. Now, if the pair k, m is replaced by — k, —m, the
pair kf, m' is replaced by — k', —m', and the corresponding term in Sκ(τ)
is unchanged. Therefore, if we extend our region of summation in Sκ{τ)
by reflecting the trapezoid through the origin, Sκ(τ) is multiplied by 2.
The new region of summation is the parallelogram, ^{K)f bounded by
the four lines m = bk/jd ± K/d, m — {ak ± Kt)ljc. Therefore,

(4.06) SE(τ) = i - Σ 1 Σ * exp hπiv ~ k > ~ m>τ'j 1 .
2 to.m)e&{κ) L kτ/j — m Jkτ/j

It follows from this that

7i) - {τlj){jckf + am'
= Σ Σ e χ p 2 : Γ ΐ ϊ

cτ + d / 2 (fc,m)ê (in L (τ/j)(ak — jcm) — (mώ —
J "

If the transformation I — ak — jcm, n = — 2>&/i + md is performed, the
parallelogram &(K) in the k — m plane is mapped onto the rectangle
defined by 11 \ ̂  ί i ί, | n | ^ ίΓ in the I — w plane. Furthermore, since
a = d = 1 (mod j ) , i ) = c = O (modi), and ad — bc — \, there is a one-to-one
correspondence set up between the set of all lattice points (fc, m) in ^{K)
and the set of all lattice points (I, n) of the rectangle 111 ^ ίiΓ, | w | ^ iΓ.
Also, a little computing shows that (ak — jcm)(dkr + bm'/j) +
(md — bklj)(jckf + am1) + 1 = kk' + mm' + 1 = 0. Therefore we can put
Z' == dkr + δm'/i, w' = ί'cfc' + am', and we finally obtain

sJ°*±ϊ) = I Σ Σ*
V T + α / 2
v CT + d 1 2 \ι\£tκ \n\^κ L lτlj — n

(4.07)
= Σ* Σ * exp 2τrw / ~ w Γ / J .

ιsχ L ίr/7 — n J

Therefore, it follows from (4.05) that

. ατ + b
CT + d

= A + — lim \ SJ a + ° ) - Σ # Σ * e-a*4v»'/ι

1 6 -̂>°o I \ CT ' '

v1*
(4.08) - ; •"

= A + ^r lim fΣ1 Σ* exp Ϊ2πiv-I^—^]
L lτ h — n J

— * — i ^ _ j ^ j ^ — j r • 7 . .

l b K^OO Lz=i iwi^^ L 6τ/j

- ' Σ*""3 Σ *
jc=i
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( a k — ) IJ

n'lk\ ^

We now return to (4.01) and apply Lemma (2.03) with r = 0, p = t.
Proceeding in the same way as in the proof of (4.05), we find that

(4.09) \(j;τ)

= A + ± limCΣ* Σ*β—'^expΓ 2 ^ 1 __ Λ
16 κ->cojc=i \m\£κ \ Lk(kτιj — m)Λ /

- A + - L Km j Σ* Σ* exp \2πiv~~k' ~ m'τIΠ - Σ# Σ* e"1'4^'*
16 s:-~ U=i imî jΓ L fcr/^ — m J *=i imi^^

Upon comparing (4.08) and (4.09), we conclude that

1 ([tKl IKiβtMl

(4.10) = — l i m ^ Σ ' Σ * β - * r t v " ' / * - Σ* Σ * e-2ίΓίvm''*
16 fc-^ l * l \ K \bTUd\£Kjd

Σ*

We have proved the required transformation properties when τ is
a pure imaginary number. But \(j; τ) is regular for J?(τ) > 0, and
therefore, by analytic continuation, (4.10) holds for ^(τ) > 0, and the
proof of the theorem is complete.

There are other transformation properties of the \(j; τ) for special
values of v. These can be summarized in the following.

THEOREM (4.11). (a) If v is a multiple of j, then for J^{τ) > 0r

(4.12) λ v ( i ;- l/r) = λ v ( i ;τ) .

(b) If j is even and v is an odd multiple of j/2, then for <J^(τ) > 0,

(4.13) λv(i; -1/r) - σv(i) - \(j; τ) ,

where σv(j) does not depend on τ.

Proof. We again begin by assuming that τ is a pure imaginary
number. Returning to (4.01), applying Lemma (2.03) with r = 0, p = jr

and proceeding as in the proof of (4.05), we obtain

(4.14) λv(i; r) = A + A- lim Σ* Σ* β-«"''*(exp Γ y ^ 1 - l) .
1 6 ^->oofc=i imi^^Γ V Lk(kτlj — m)Λ /

This time, put

S ^ ) Σ* Σ * ^ - ' / f c exp
— m)
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(4.15) = £*Σ* expexp\teiv
=i L kτjj — m

kτ/j + m

where we have separated the terms for m < 0 and m > 0.
It follows that

exp
(4.16) - - - - L -*/'•-"«•

Put I = ft/i and w = ,/m; it follows from (ft, m) — 1, ft Ξ= i (modi2), and
m = 1 (modi) that (ϊ, W) = 1 , J Ξ 1 (modi), and w = i (modi2). Also, we
may put V=jk'—m, n' = (klj + m')lj. For w m ' ^ - l (mod ft), m = l (modi),
and i|ft together imply that m ' = — l ( m o d i ) . Using the fact that
ft/i = l(modi), we find that ft/i + mf = 0 (modi) and n\ as defined above,
is an integer. Furthermore, IV + nnf + 1 = ftft' + mm' + 1 = 0. With
the above definition of V and nr, we have ft' = (V + w/i)/i and m' = jn' — i..
Now, (4.16) becomes

jK K

S ( — llτ) — Y#YΣ Σ expΓariv
=i 2=1 L — £ —

+ Σ'Σ* exp Γariv-^ + nWi-OV-Q/i l
^11=1 L -l + nτlj J

+ Σ Σ exp ariv
(4.17) ^11=1 L -l + nτlj

Σ'Σ* exp J l/i

We see from (4.14) and the definition of Sκ(τ) that

λv(i; T) = A + -A- lim lsκ(r) Σ
l b -K:-^00 I fc=i

Now, if v is a multiple of j , a comparison of (4.15) and (4.17) shows
that Sκ( — llτ) = S^(τ) and therefore (4.12) follows. This is part (a) of
the theorem. In part (b), Sκ( — llτ) = —Sκ(τ), and therefore,

1 JK

Mr, - l/r) + λv(i; r) = 2A - -±- lim Σ s Σ * e-^m'<K = σv(j) .
8 ^-+°° fc=i ITOI^U:

This is part (b) of the theorem. Here again the theorem has been proved
for τ a pure imaginary number, but as before we extend our results
by analytic continuation to all τ such that ^(τ) > 0.
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5 Construction of functions for G(j). In order to construct func-
tions which are invariant under the group G(j), we make use of Theorem
(4.02) and the fact that G(j) is finitely generated. Let Tl9 I = 1, , q(j),
be a set of generators for G(j). Then by Theorem (4.02), we have

(5.01) λv(i; T%(τ)) - λv(i; τ) = clt,{j) , I = 1, , q(j) ,

for any integer v ̂  1.
Let 1 ̂  vλ < v2 < < vm be integers and consider the function

defined by

(5.02) F{τ) = b^ij; τ) + . . . + bm\m(j; τ) .

Then F(τ) satisfies the functional equations

(5.03) F{Tτ(τ)) - F(τ) = b^j) + . . . + bmc^Jj) , I = 1, . . . , q(j) .

Let m ̂  g(i) + 1 and consider the homogeneous linear system in the m
unknowns bl9 , bm

(5.04) biCi.φl + + bmcltym(ί) = 0 , Z = 1, . . . , g ( j ) .

This has m — q(j) linearly independent solutions (b19 ,bm). With
bi, * ,bm chosen to satisfy (5.04), put

(5.05) Sf{i\ blf , bm; vlf , vm; τ) - 6X Xφ'; τ) + . . + 6 m λ v j i ; τ) .

It follows from (5.03) and (5.04) that j£f (i; 6X, , bm; v19 , vOT; Γ,(τ)) =
-S^(i; &i, " , δm; v19 , vTO; τ) for I = 1, , g(i) and therefore, since the
Tτ generate G(j), we have

(5.06) jgf ( i δx, , δm; vlf , vm; T(τ)) = j£f ( j ; 6X, , 6m; vx, . . . , vm; τ) ,

for all Γ in G(j).
In order to show that the function ^f defined by (5.05) cannot

reduce to a constant we prove

LEMMA (5.07). Let dn be the wth Fourier coefficient of the function
-SΓ Then

(5.08) dn ~ {bjl&)v^n-^{2j)-^e-^n-^j exp [^(wvj^/i] .

Proof. We see immediately from (5.05) that dn = ΣΓ=iMw(̂ > i),
with αn(v<9 i) defined as in (3.01). The lemma now is direct consequence
of Lemma (3.02a)

In particular, (5.08) implies that ^f is not a constant.

6. Construction of forms for G(j). Let r be any positive even
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integer. We define the function

an{v,j, r) = {(-iy

where A^n) is defined as in (3.01) and Ir+1 is again a Bessel function
of the first kind. It should be noted that if we put r = 0 in (6.01) we
obtain the function \(j; τ) defined by (3.01).

The computations of § § 3 and 4, using Lemmas (2.01) and (2.03),
•with r > 0, yield the following two theorems.

THEOREM (6.02)2. The function λv(i; τ, r) satisfies the transforma-
tion equations

(CT + dyx^j; Γβi6,Ctd(r), r) s (cτ + dyxJj; α τ + ^ , r)
•(6.03) V c r + d J

= λv(i; r, r) + pv(i; τ, r; c, d) ,

./or αii Γα,6,c,d ^ G(j) and ^"(τ) > 0, where py(j; τ, r; c, d) is a poly-
nomial in τ of degree at most r.

THEOREM (6.04). (a) If v is a multiple of j, then for ^(τ) > 0,

<6.05) τ^λv(i; -1/τ, r) = \(j; τ, r) + py>1{j; τ, r) ,

where pv>1(j; τ, r) is a polynomial in τ of degree at most r.
(b) // j is even and v is an odd multiple of j/2, then for ^(τ) > 0,

(6.06) τ^λv(i; -1/τ, r) = pVι2(j; r, r) - λv(i; τ, r) ,

where pVi2{j) T, r) is a polynomial in τ of degree at most r.
Now, in order to construct forms of dimension r for G(j), we make

use of Theorem (6.02) and proceed as in § 5. We take a linear combi-
nation of the λv(i; τ, r) in such a way that the resulting linear com-
bination of polynominals occurring in the transformation equation connected
with Tlf I = 1, , q(j), vanishes identically. In this case m, the number
of λv(j; r, r) in the linear combination, must be such that m ^
(r + l)-q(j) + 1.

A simple generalization of Lemma (5.07), to cover the present case,
shows that the forms constructed in this way are not identically zero.

7 Conclusion* Other functions of the type dealt with in this
paper can be constructed by generalizing the congruence conditions on
k and h in (3.01) and (6.01). Let nλ and n2 be any integers. If, in

2 See correction at end of paper.
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(3.01), we impose the new congruence conditions k = n, j (modi2), ^ Ξ

w2(modi), we obtain new functions which satisfy (4.03), and which,
therefore, can be used to construct functions which are invariant under

If (n29 i) > 1, the sum defining Ak^(n) is empty and so each Fourier
coefficient is zero. Also the case nx = 0 (modi), n2 = 1 (modi) is unique
and will receive separate treatment in another publication. The distinc-
tive feature here is the fact that, in order to construct functions
satisfying (4.03), we must introduce a pole term at i oo. This situation
occurs, for example, in the Fourier expansion of μ(τ), the reciprocal of
λ(r) (see [6]).

Making the additional assumptions nλ — n2, n\ = l (modi) in (3.01),,
we obtain functions for which we can prove Theorem (4.11).

Correspondingly, if we impose the conditions k = nlf j (modi2),
h ΞΞ n2 (modi) in (6.01), we obtain functions satisfying (6.03), and making
the further assumptions, nλ = n2, n\ = 1 (modi), we obtain functions for
which Theorem (6.04) holds.

It should be noted that all of our functions vanish at the parabolic
cusp at infinity. As the referee has pointed out, it is of interest to
consider the behavior of these functions at the other parabolic cusps of
G(j). This question will be treated at a later time.

Correction to "Construction of a Class of Modular Functions and
Forms". As it stands the proof of Theorem (4.02) is incorrect. The
difficulty arises in the paragraph immediately preceding (4.06), where
we extend the region of summation in Sκ(τ). In the original expression,
for Sκ(τ) we are summing over the points (fc, m) of a certain trapezoid
subject to the additional restrictions (m, k)=l,k = j (modi2), m = l (modi).
In order to extend the region of summation to the parallelogram ^(K)f

we reflect this trapezoid through the origin. That is, when (fc, m) appears
in the summation, we also include the point (—k, — m). The trouble is,
that when j i> 3, (—fc, — m) does not satisfy the proper congruence condi-
tions, but rather the new conditions —k = — j (modi2), —m = — 1 (modi),
or equivalently, — k^f — j (modi2), —m = j — 1 (modi). Hence the ex-
pression (4.06) for Sκ(τ) is incorrect, when j ^ 3. For j = 2, of course,,
this difficulty does not arise.

The situation can be readily rectified if we go back to (3.01) and
modify the definition of the function λv(i; τ). Put bi(v, j) = an(v, j)r

with an(v9j) as in (3.01) and define bή(v,j) to be the same as an(y,j)>
except that the congruence condition on k is changed to k = i2 — j (mod i2}
and the congruence condition on h is changed to h = j — 1 (modi). We
now define λv(i; τ) by

) = Σ bn(v, 3Yπinτl3 ,
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where

K(v, 3) = i[δί(v, 3) + bn(», 3)]

when j = 2, 6+(v, j) = b~(v, j) = 6n(i;, i) = αn(y, j), and no change has been
made.

With this new definition of Xv(j; τ) (4.06) becomes

Sx(τ) = i Σ Σ exp \2πw-k'-m'τlj] ,

where the summation is over all points of ̂ (K) such that (m, fc) = 1.
and either k^j (mod j2), m = l (modi) or k?=j2—j (modi2), m = i—1 (modi)
The remainder of the proof now carries through.

The same remark is necessary in connection with Theorem (6.02).
That is, Theorem (6.02) is incorrect as it stands, but if we modify the
function λv(i; τ, r) in the same way as we modified λv(i; τ), the proof
goes through.

We should point out that Theorems (4.11) and (6.04) are correct as
they are, but in addition Theorem (4.11) is true for the modified λv(i; τ)
and Theorem (6.04) is true for the modified λv(i; τ, r).

Similar modifications have to be made in the definition of the func-
tions mentioned in § 7.
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