
MANIFOLDS WITH POSITIVE CURVATURE
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0 Introduction and a conjecture* In 1936 J. L. Synge [10] proved
that an even dimensional orientable compact manifold Mn with positive
sectional curvature is simply connected. His proof was an application
of a formula for the second variation of arc length derived by him in
an earlier article.1 In the present paper we continue the study of posi-
tively curved manifolds again using the ideas of Synge and applying
them to an only slightly different situation, namely to the ' 'position'' of
certain submanifolds of M.

Theorem 1 states that two compact totally geodesic (see § 2 for
definitions) submanifolds Vr and Ws of Mn must necessarily intersect if
their dimension sum is at least that of M, i.e. if r + s ^ n. As remarked
above the proof is a straightforward continuation of Synge's method.
Unfortunately totally geodesic submanifolds are not a too common
occurrence.

If Mn is a Kahler manifold2 the situation is much more satisfactory.
There, instead of requiring V and W to be totally geodesic, we need
only ask that they be complex analytic submanifolds (Theorem 2).

Examples of compact Riemannian manifolds of positive sectional
•curvature are the spheres, the real, complex and quaternionic protective
spaces and the Cayley plane. Rauch [8] has shown that if the sectional
curvatures do not differ too much from that of the sphere and if the
space is simply connected, then it is itself topologically a sphere (see
also the recent improvements by W. Klingenberg, Uber kompakte Rie-
mannsche Mannigfaltigkeiten, Math. Ann., 137 (1959), pp. 351-61). Berger
[2] has shown that if Mn is an even dimensional, simply connected
manifold and if the sectional curvature K satisfies 1/4 <̂  K ^ 1, then
the manifold is one of the spaces listed above.

In the list the only Kahler manifolds are the complex projective n-
spaces Pn{C) with the usual Fubini metric. If (elt e2) is a pair of ortho-
normal tangent vectors to Pn(C), then the sectional curvature K(e19 ej
.satisfies 1/4 ^ K(elf e2) ̂  1 with K = 1 if and only if the plane e1 A e%

is a "complex direction." It may very well be that

CONJECTURE. The positively curved Kahler manifolds of complex
dimension n are analytically homeomorphic to Pn(C). The Gauss Bonnet

Received January 11, I960. Work supported in part by the National Science Foundation.
1 For completeness we include in § 1 a derivation of the second variation formula.
2 Since the Ricci curvature of a positively curved manifold is positive, the Kahler

manifold is a "Hodge manifold" and Kodaira's theorem [6] states that the manifold is
algebraic.
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theorem shows that this is true for n = 1. Using Theorem 2, A. And-
reotti has shown that the conjecture is true for n = 2 and his proof is
presented in Theorem 3. It relies heavily on the known classification
of algebraic surfaces.2

Difficulties in attempting to construct counter examples stem from
the fact that the product of two positively curved manifolds has only
nonnegative curvature (in the product metric). If eλ Λ e2 is a product
plane (e.g., if et is "horizontal" and β2 is "vertical"), then K(eu e2) — 0
and this is the only time 0 curvature can occur. Our results in general
do not apply to such spaces.

The last section is devoted to proving the existence of fixed points
for certain maps, thus showing further similarities with Pn(C).

I should like to thank A. Andreotti, E. Calabi and N. Hawley for
discussions of the results.

l Second variation of arc length* Our notation is as follows. Mn

is a complete n dimensional Riemannian manifold and Vr and Ws are
submanifolds of dimension r and s respectively, ^(t) is a geodesic
going from ίf(0) = P e V to ^(l) — Q e W striking Vand W orthogon-
ally; t represents arc length along <̂ \ Xt is a unit vector field that
is displaced parallel along <£* and is tangent to V and W at P and Q
respectively; Xt (if it exists) is thus orthogonal to ^ for all t. Finally
Tt is the unit tangent vector to <g=\

We construct a "variation" of the geodesic ^ as follows. We pass
a small "ribbon" of surface through c^ that is tangent to Xt at c^{t)
for all t such that 0 ^ t <̂  I. This ribbon cuts V and W in two curves.
We now pass curve segments on the ribbon tangent to Xt at ^{t), the
curves varying smoothly from V to W. The ribbon is chosen so "thin"
that no two segments intersect. On each segment we use the directed
arc length a from c^ as parameter and we may suppose that — ε ̂  a ^ +ε.
Each point on the ribbon carries two coordinates {t, a) and we have two-
systems of coordinate curves t = constant and a = constant (the original
geodesic is of course a = 0). We have two coordinate vector fields T —
d\dί and X = d\da defined on the ribbon with T = Tt at (ί, 0) and X = Xt

at this same point. The problem is to investigate the lengths of the
curves a — constant.

We recall some facts and notation of Riemannian geometry (our
notation follows [7]). We let g(Y, Z) denote the Riemannian scalar
product of two vectors Y and Z; if (xlf •••,&») are local coordinates for
M, then g( Yf Z) = Σ« ffu Y'Z3. If Y is a vector at a point and if / is
a function, then the covariant derivative of / with respect to Y, written
Vr(/), is the directional derivative of / in the direction Y. If Z is a
vector field, the covariant derivative of Z with respect to Y is again a
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vector, written VYZ. If Y is also a vector field, the Lie or commutator
bracket of Y and Z is given by [Y, Z] = YZ - ZY =VYZ - VZY. In
particular, if Y and Z are coordinate vectors VrZ — VZY = [Y, Z] — 0.
Hence in the case of our particular vectors we have

(1) VXT = VTX.

Next we have the Ricci operator identity

VΓVZ - VzVr - R(Y, Z) + V[r,z]

where R(Y, Z) is, for each pair (Y, Z), a linear transformation on tangent
vectors. R(Y, Z) is constructed from the Riemann curvature tensor and
in terms of coordinates the transformation of vectors U—>R(Y,Z)U is
given by

V 77* - > Vι V — 7?* VkZιTτA
« to* « V̂ ΛΪ / dxι

R(Y, Z) is skew symmetric; R{Y, Z) = —R(Z, Y). In our case the Ricci
identity becomes

(2) VXVΓ - VTVX - Λ(X, Γ) .

The Riemannian sectional curvature corresponding to the 2-plane
T Λ X is given by

(3) K(T, X) - flf(i2(JΓ, Γ)Γ, X) - -g(R(X, T)X, T) .

Finally we recall that the scalar product is "covariant constant/' i.e.

η^g(Y, Z) = Vxg(Y, Z) = g(VxY, Z) + g(Y, VKZ) .

The length of the curve a — constant is given by

L(a) = [lg(T, Ty'*dt .
Jo

LEMMA ([9]). The first and second variations of arc length are

= 0da

d?L
v da*

Proof.

= g(VxX, T)Q - g(VxX, T)P - \lK(T, X)dt .
Jo

L'(a) = [4-9(T, Ty<*dt = \'vxg(T, Tf'Ht ,
Jo0α Jo
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thus

But g(T, T) = 1 along a = 0 (Γ is unit tangent to <if (t)) and so from
(1) we get

L'(0) - \lg(VzT, T)dt = [g(VτX, T)dt = 0
Jo Jo

since VTX = 0 for a parallel displaced X
For the second variation we continue from (4)

L»(a) = J
X\ g(T, T)112

which expands to

L"(0) = \lVzg(VrX, T)dt - (V(VΓX, Tfdt .
Jo J

But X is displaced parallel along ^ VrX = 0 and so the second integral
vanishes. Thus

L"(0) - [g(VxVτX, T)dt + \lg(VτX, VxT)dt
Jo Jo

but again the second integral vanishes. Using (2) the first term becomes

L"(0) - [g(VτVxX, T)dt + \lg(R(X, T)X, T)dt .
Jo Jo

The first integral transforms by means of

g{VτVxX, T) = Vτg(VxX, T) - g(VxX, VTT) = |rflr(VxX, T)
Ob

and using (3) we get the desired second variation.
The end terms in the second variation are interpreted as follows.

BT(X)P ΞΞ g(VxXy T) is the second fundamental form for V at P corre-
sponding to the normal vector T, evaluated at the tangent vector X.

2 Real manifolds with positive curvature. A submanifold V of a
Riemannian Mn is totally geodesic if any geodesic of M that is tangent
to F a t a point lies wholly in V. This implies that every geodesic of
V (in the naturally induced metric from M) is at the same time a
geodesic of M.
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THEOREM 1. Let Mn be a complete* connected manifold with positive
Eiemannian sectional curvature and let Vr and Ws be compact totally
geodesic submanifolds. Ifr + s^n then Vr and Ws have a non-empty
intersection.

Proof. At first we assume that Vr and Ws are any compact sub-
manifolds. We suppose they do not intersect. Then there is a shortest
geodesic ^{t), say of length I > 0, from V to W and let P and Q be
the points ^(0) and ̂ (l) respectively. Since ^ is the shortest geodesic
from V to W it strikes V and W orthogonally. We will arrive at a
contradiction by exhibiting a variation X for which L'χ(ϋ) < 0, thus
showing that W cannot be minimizing.

Let % be the tangent space to Vr at P. By parallel translation
along ^ we get a subspace % of ^ # , the tangent space to Mn at Q.
Since 5*jf is orthogonal to c^ at P, 5f is also orthogonal to <g* at Q.
Let <W be the tangent space to Ws at Q. Then 3*jf and ^ ~ are two
subspaces of the linear space ^//\ moreover, both % and "W are orthog-
onal to & at Q. Thus the dimension of their intersection is

(5) dim ( %

and thus 5*f and ^ ~ have at least a one dimensional subspace in common.
But this simply means that there is a unit vector Xo tangent to V at
P whose parallel translate is tangent to PFat Q. Let Xt be the parallel

S I

K(T, X)dt of the second varia-
0

tion formula is strictly negative by the curvature assumption.
So far V and W were arbitrary. To evaluate the end terms in the

.second variation we use the fact that V and W are totally geodesic.
The variation vector Xt is given. For the construction of the ' 'ribbon''
we can choose geodesies of M through each Xt; since XQ is tangent to
V at P and since V is totally geodesic, the geodesic through Xo will lie

•entirely in V. Likewise the geodesic through Xz will lie entirely in W.
Thus the curves a — constant will have their endpoints on V and W as
required for the variation. But since Xo and Xz are tangent vectors to
geodesies of M we have VXX = 0 at P and Q. Hence the end terms
of the second variation formula vanish and we have

Li'(0) = - \lK(T, X)dt < 0 Q.E.D.
Jo

as desired.
We note that g(yxX, T)P = g(yxX, T)Q = 0 is merely the statement

that all second fundamental forms for a totally geodesic submanifold
vanish identically.

3 If the curvature is bounded away from 0, K ^ ε > 0, the classical result of Bonnet-
Myers states that Mn is necessarily compact.
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There is at least one situation when totally geodesic submanifolds
arise "naturally." If f:Mn—> Mn is an isometric map of a Riemannian
manifold into itself, then the set of fixed points F = {P e M\f(P) = P}
has as components totally geodesic submanifolds (see [4]). Hence

COROLLARY. If f: Mn —* Mn is an isometry of a compact connected
Riemannian manifold with positive curvature, then no two fixed set
components can have dimension sum Ξ> n.

3 Kahler manifolds with positive curvature. A Kahler manifold M
is a special type of Riemannian manifold whose underlying space is a
complex manifold. There is a linear transformation J on each tangent
space that sends any vector Y into a vector JY orthogonal to Y (J
represents multiplication by ( —1)1/2). J has the properties J 2 = —/and
g(JY, JZ) = g(Y, Z) for all vectors Y and Z (this last property states
that g is a "Hermitian" metric). From J we construct the Kahler
exterior 2-form ω, defined by

ω(Y, Z) = g(JY, Z) .

ω is exterior because ω(Y, Z) = —ω(Z, Y). All that%has been said so
far holds for any Hermitian manifold. The further condition defining a
Kahler manifold can be stated as requiring that o) be covariant constant,
Vπω = 0 for all vectors U; i.e., for any vector fields Y and Z we have

VMY, Z) = ω{VπY, Z) + ω(Y, VπZ) .

Since g is also covariant constant we conclude that J is also, i.e., we
have the operator equation

(6) VπoJ = JoVπ

for any vector U.
A linear subspace ψ" of the tangent space to a complex manifold

at a point is said to be complex if it is invariant under J, J: 3^ —> ψ\
A submanifold is complex analytic if its tangent space at each point is
complex.

When dealing with complex manifolds dimension subscripts will
denote complex dimension.

The following result is easily true for Pn(C) since it holds for the
linear subspaces.

THEOREM 2. Let Mn be a complete, connected Kahler manifold with
positive sectional curvature and let Vr and Ws be compact complex
analytic submanifolds. If r + s ^ n, then Vr and Ws we have a non-
empty intersection.
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Proof. The proof is again by contradiction, starting exactly as in
Theorem 1. We again arrive at a variation vector Xt, parallel displaced
along W and tangent to V and W at P and Q respectively. Now, how-
ever, we have additional information. Since V and W are complex
analytic the vector field J{Xt) is tangent to V and W at P and Q re-
spectively. Further, from (6) we have VτJ(Xt) — JVτXt = 0 since Xt is
parallel displaced. Thus J(Xt) is also parallel displaced and gives us the
same type of variation vector as Xt. We claim

(the second variation corresponding to at least one of

(the fields Xt or JXt is strictly negative

again giving a contradiction.
To prove our claim we suppose

(7) L'i(0) = g(VxX, T)Q - g(VxX, T)P - \κ(T, X)dt ^ 0 .
Jo

By the hypothesis of positive curvature we conclude that

g(VxX, T)Q - g(VxX, T)P > 0 .

We will be finished if we can show g(VJXJX, T)Q - g(VJXJX, T)P < 0.
But this is actually the case as follows from the fact that every second
fundamental form of a complex analytic submanifold of a Kahler mani-
fold is skew-hermitian,4 i.e.

( 8 ) , T)P = -g(VxX, T)P for V

\g(VJXJX, T)Q - -g{VxX, T)Q for W .

The proof of this is simple and we include it here for completeness.
Let & be a complex analytic curve (real dimension 2) on V tangent

to Xo and JX0 at P. Then XQ can be extended to a tangent vector field
X on & and of course JX is an extension of JXQ. Since X and JX
are tangent vector fields to & the commutator bracket [ JX, X] is again
a vector field tangent to ^ , and thus orthogonal to T at P. Using
{JX, X] = VJXX - VXJX and (6) and J 2 = -I we get at P

g(VJXJX, T) = g(JVJXX, T) - g(J[JX, X] + JVXJX, T)

- g(J[JX, XI T) - g(VxX, T) .

Since [JX, X] is tangent to ^p, so is J[JX, X] and so the first term
vanishes and the result follows. Q.E.D.

4 This is a reflection of the fact that Kahler submanifolds of a Kahler manifold are
minimal submanifolds in the sense of the calculus of variations. Thus their mean curvatures
vanish for all normal directions.
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4 K'ahler surfaces with positive curvature. We now consider the
case of Kahler surfaces M2 (real dimension 4). We noticed previously2

that by Kodaira's theorem such a surface is necessarily algebraic.
We recall that an exceptional curve (of the first kind) arises in the

following fashion. There is a surface N2 and a point P e N2 such that
M2 is a quadratic transform [3] of N2 and the exceptional curve is the
quadratic transform of p. Thus exceptional curves result from blowing
up a point p of a surface by means of the Hopf σ-process; i.e., the
point p is replaced by the complex protective line PX{C) of complex
directions at p. Since there clearly are curves that do not intersect the
exceptional curve (hyperplane section of iV2 for example) we conclude
from Theorem 2 that a positively curved compact Kahler surface has no
exceptional curves (of the first kind).

THEOREM 3. A compact Kahler surface M2 with positive sectional
curvature is complex analytically homeomorphic to P2(C).

Proof (Andreotti). As mentioned before2 the Ricci curvature of a
positively curved Kahler Mn is positive. The negative of the exterior
Ricci form represents the characteristic class of the canonical bundle K
over M. By Kodaira's ' 'vanishing theorem'' [5] we conclude Hp(Mn; Ω^K1)) =
0, p φ n, where Kι is the line bundle K ® ® K, i factors and where
Ω0(Kι) is the sheaf of germs of holomorphic sections of K\ Thus the
plurigenera P% = dim H°(Mn; Ω

Q{K1)) all vanish and since M2 is simply
connected the arithmetic genus pa = Pλ — h1>0 = 0 also. We now apply
results in the classification theory of surfaces, i.e., n — 2. By a theorem
of Castelnuovo-Enriques (for references see, for example, Zariski's book,
Introduction to the problem of minimal models in the theory of algebraic
surfaces, Math. Soc. of Japan, 1958, p. 84) we conclude that M2 is
rational. As we have just seen M2 can have no exceptional curves (of
the first kind). By a result of Andreotti [1] M2 is either birationally
equivalent, without exceptions, to P2(C) or else it is a ruled surface.
Since the rulings would be compact curves that do not intersect, Theorem
2 eliminates this last possibility. Q.E.D.

5 Correspondences* A (holomorphic) correspondence of a complex
manifold Nn with itself is a complex analytic n dimensional submanifold
of Nn x Nn.

A holomorphic map /: Nn —» Nn gives rise to a correspondence, the
graph G(f) of /; G(f) = {(pyfp) \p e Nn}. G(f) is of course a special
type of correspondence since / is single valued. Let Δ — {(pf p)\p e Nn}
be the diagonal of Nn x Nn. It is clear that a map / will have a fixed
point whenever G(f) intersects the diagonal Δ. A correspondence will
be said to have a fixed point if it intersects the diagonal.
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THEOREM 4. Every (holomorphic) correspondence of a connected
compact Kdhler manifold Nn with positive curvature has a fixed point.

Proof. Again this is a simple known property of Pn(C).
The correspondence is a complex analytic submanifold Vn of Nn x Nn~

The same is true for the diagonal Δ. We need only show that Vn and
Δ intersect, and this almost follows from Theorem 2. However, as
pointed out in the introduction, Nn x Nn has only nonnegative curvature;
product planes give 0 sectional curvature. This, however, is easily
mended as follows.

In our previous notation Vn = V, Δ = W and Nn x Nn — M. In the
proof of Theorem 2 positive curvature occurs only in the statement

\κ(T, X)dt > 0. Now we can only say.
Jo

L»(0) = (VXX, T)Q - (VXX, T)P - \lK(T, X)dt
Jo

\κ(T, X)dt ^ 0

Again we suppose Lχ(0) ^ 0.

Case 1. (VXX, T)q - (VXX, T)P > 0. Then from (8) we L'JX(O) < 0
and we are finished.

Case 2. (VXX, T)Q = (VXX, T)P and ΓiΓ(T, X)dt = 0. We will then

be finished if we can show [lK(T,JX)dt°> 0. Now [κ(T, X)dt = 0'
Jo Jo

means T A X is a product plane along <g=% in particular at Q e W = Δ.
Choose a real basis for the tangent space to Nn x Nn at Q consisting of
the 2% "horizontal" orthonormal vectors elf Jeu '• ,en,Jen and the 2n
"verticaΓ' orthonormal vectors fifJf19 9fnfJfn' Since T Λ X is a.
product plane the basis can be so chosen that

X - (cos θ)ex + (sin 6>)Λ

Γ = -(sin θ)e1 + (cos θ)fλ .

Thus

J X = (cos θ)Jeλ + (sin ί) Jfλ .

This means that the only possibilities for T A JX to be a product plane
are either cos θ = 0 or sin θ = 0, i.e., either Γ = ± e x or Γ = ± / l β But
βx and Λ being respectively horizontal and vertical cannot be orthogonal
to the diagonal W — Δ while the geodesic tangent T must be. We thus
conclude that if T A X is a product plane then T A JX cannot be. Hence

, JX)dt > 0. Q.E.D.
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The isometries (rotations) of the 3-sphere without fixed points show
that there is no real analogue of Theorem 4.
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