SYMMETRY IN GROUP ALGEBRAS OF DISCRETE GROUPS
ROBERT A. Bonic?

1. Introduction. The Banach algebras 2 considered here are over
the field of complex numbers, and have isometric involutions *. The
involution is said to be hermitian if for any x = «* ¢ 2, the spectrum
Spy(x) of x contains only real numbers. The algebra A is said to be
symmetric if for any y e U, Spy(y*y) contains only nonnegative real
numbers.

A familiar example of a Banach algebra with an involution is the
group algebra over the complex numbers of a locally compact group G.
This is obtained by taking the Banach space L'(G) of all complex valued
absolutely integrable functions with respect to the left invariant Haar
measure dx on G. Multiplication is defined as convolution, and the in-
volution by the formula x*(g) = z(g7)0(g), where x € LY(G) and p(-) is
the modular function relating the given measure to the right invariant
measure by dx™' = p(x)dx. This involution will be called the natural
wnvolution of the group algebra, and is the only involution on the group
algebra we will consider.

It is known that when the group G is either compact or commuta-
tive, then its group algebra with respect to the natural involution is
symmetric. On the other hand, in 1948 Neumark [6] showed that the
natural involution in the group algebra of the homogeneous Lorentz group
is not hermitian. (This implies that the algebra is not symmetric. See
Theorem A(az).) Later Gelfand and Neumark [3] extended this example
to include all complex unimodular groups. Their proofs are quite
difficult, entailing a knowledge of the irreducible unitary representations
of the groups and considerable computation. Except for finite and com-
mutative groups, the corresponding problems have not been studied for
discrete groups. These problems will be our concern.

The main results will be summarized now. In §2 several facts
(some of which are well known) are collected to be used later. §3 is
concerned with the construction of group algebras that are symmetric, or
at least have an hermitian involution. It is shown (Corollary 3.4) that
the group algebra of the direct product of a commutative group and a
group whose group algebra is symmetric, is a symmetric algebra.
Theorem 3.7 shows that the natural involution is hermitian in the group
algebra of a semidirect product of a commutative group by a finite
group.
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In §4 examples are given of discrete groups for which the natural
involution in the group algebra is not hermitian. The examples include
free groups on two or more generators, and free groups on three or more
generators of order two (Theorem 4.7). It is worth noting that these
examples settle the following matrix problem negatively: suppose T is
a bounded operator on ' (countable absolutely convergent sequences of
complex numbers), and with respect to the usual basis, suppose that the
matrix (¢;,) of T satisfies t;;, = t,;. Then, is the spectrum of the operator
T a subset of the real axis? In this connection see Remark 4.8.

Finally in § 5 we show that various connections exist between the
above problems and the question of the existence of an invariant mean
on the group. The principal results are Theorem 5.6 and Theorem 5.8.

I wish to express my thanks to Professors C. E. Rickart and S.
Kakutani for the advice, encouragement, and time they have generously
given me.

2. Preliminary theorems.

THEOREM A. Let U be a Banach algebra over the complex numbers
with an isometric involution * and identity e. Then:

@) if WA is symmetric, then the involution is hermitian, and the
converse holds whenever W is commutative;

(b) the imvolution is hermitian whenever ie + x is regular for
any ¢ = x*.

A proof of this theorem can be found in Rickart [7]. It is not known
in general if an algebra with an hermitian involution is symmetric, and
it is worth noting that this is exactly the problem in proving that a B*
algebra is a C* algebra. The essential step in proving this is to show
that the B* algebra (whose involution is hermitian) is symmetric.

Let 2 be a Banach algebra with an identity e of norm one, and
let <z (A) denote the set of all bounded linear operators on 2. For
xe N, the left multiplication operator L, is defined by the formula
L.y = xy.

THEOREM B. (a) The mapping x — L, maps A isometrically and
isomorphically into <z ().

(b) Let < (A) denote the image of A in FN). Then for x e,
Spgi(x) = Spy (L) = Sp(L,), where Sp(L,) = {a: L, — al is a singular
operator on the Banach space}.

Proof. (a) and the first identity in (b) are immediate. If y is
regular in 2/, then L, is a regular operator on 2, since it has as inverse
the operator L _,. This shows that Spy(x) D Sp(L,). Now if L, is
regular on <Z (), there exists an element S e <# (W) such that L,S =
SL, = I. It is then easily computed that S = L, and Se is the inverse
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of y in 2.

THEOREM C. Let € be a Banach algebra with an identity over the
complex numbers and suppose C is a maximal left ideal (hence closed)
in €. Then, with respect to the quotient norm, €/C is a Banach space.
For x € G,y + C e C|C the mapping defined by L&y + C)=ay + C
gives a bounded algebraically irreducible representation of € on €/C.

The above representation & — L% is called the left regular repre-
sentation of € on €/C. A proof of this theorem can also be found in
Rickart [7].

3. Group algebras in which the natural involution is hermitian. It
will be seen shortly that the symmetry problem for the group algebra
of the direct product of two groups is a special case of a more general
problem concerning tensor products of Banach algebras, so the latter
will be taken up first. If U and B are Banach algebras, then the
algebraic tensor product 2 (& B can be normed with the so called greatest
cross norm and then completed to give another Banach algebra called
the projective temsor product %I@SB of 2 and B. The basic results
concerning this can be found in Schatten [9]. We will summarize here
only a few pertinent facts.

Let %A and B be Banach algebras over the complex numbers having
identities of norm one. It will be convenient for us not to distinguish
notationally between the norms or the identities in the two algebras.
Let A KX B denote the usual algebraic tensor product of the vector spaces
A and B. An element e AR B can be represented in many ways
in the form 37, a, ® b, where a, € U, b,€ B, 1 =1,2, -+, n. Whenever
such a representation ocecurs, it will be denoted by u ~ 37, a; @ b;. The
set A X B becomes an algebra by defining, for u,v e AR B, a repre-
sentation of the product uv to be >, >\, a,., Q bd,, where u ~
Sria @b, v~ S c; d,. It becomes a normed algebra by defin-
ing ||u|| =GLBY? |la;l||-]|b;]| where the GLB is extended over all
Se i a;, &b, ~u. With this norm, any u € A QB that satisfies u~a @b
has a norm given by |[u] =|la|l:]|b]l, and the identity e ~e®e
of AR B has norm one. The completion A ®SB of AR VB is hence a
Banach algebra over the complex numbers with an identity of norm
one. Finally we note that if ¥ and B each have isometric involutions
*, the definition of u* ~ 37, af @ bf where u ~ 37, a, b, gives a
well-defined isometric involution on U @ B which can hence be extended
to AR B.

We now restrict ourselves to commutative . Let @(%) denote the
space of maximal ideals of %, which will we be identify with the corre-
sponding homomorphisms. For & e &), define T,: AR B — B by the
formula T, (u) = X%, h(a;)b;. Now, two formal sums represent the same
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element in A ® B if and only if one can be transformed into the other
by successive applications of the distributive law and the commutative
law applied to scalars and . It is then clear that T, is well-defined
and a homomorphism. Also if 2 and B have involutions, and U is sym-
metric, then for u ~ >7 a; ® b;, we have

o) = To(F ar @br) = 3yt = S F@ibe = (5 hadp,)’
= (T.)* ,

so that 7', is a *-homomorphism. Finally since
1Tl =|| £ haobe]| = S el

holds for any > ,a;, ® b, ~ u, we have || T,u]|| < ||«]|| for all u, so that
T, can be extended to A ® B. The extension will also be denoted by T,.

Except for the notation, the following theorem is essentially the
same as that of Bochner and Phillips [1: Theorem 3], which generalizes
the Wiener-Gelfand theorem on the existence of an inverse.

ATHEOREM 3.1. An element u e U ® B has a left (right) tnverse in
NRB if and only if T,u has a left (right) inverse in B for every
h e o).

Proof. Only the case of left inverses will be shown. If u e ?i@%
has a left inverse v, then for any k € @), T,v is a left inverse in B
for T,u, since T, is a homomorphism taking the identity of 521(2\)28 to
the identity of B.

Conversely assume that u, € A ® B = €, that T,u, has a left inverse
in B for every h € @), and that u, does not have a left inverse in €.
Then €u, is a proper left ideal containing u, and can be extended to a
maximal left ideal C. Now consider the left regular representation
u— L% of € on €/C (see Theorem C). Since this representation is
algebraically irreducible, it follows from Theorem C that the set of all
bounded operators on €/C commuting with {L$/°:u ¢ €} consits of just
scalar multiples of the identity operator. Clearly L®J commutes with
all L8 so that LS = h(a)I, and since

(LEZILER.) = LY,

ajasR®e »
it follows that h is an element of @(Y). Hence
L& = (LELEY) = ha) L) = L ws
so that for u ~ >7,a, ® b,, we have

n n
Cio _ 1,810 — Co G/0 Cig — T1.6/0
Lu/ - LZ?=1%®% - igll La,;@% - i; Le®n(ai)b¢Le®zg‘=1n(ai)ai - Le@Thu .
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Moreover, since the representation is continuous we can extend this to
€ so that we have LS = L% , for all v e AR B.
Now by assumption T,u, has a left inverse b, € B. Hence

(LEE)LE N R e + C) = (L)L, u))e @ € + C)
= (L r,u)e®e+C) = (L) e®@e+C)=e@e + C.

On the other hand, since u, € C, we have

(LEENLENe Qe + C) = (LEENLE (e ® e + C))
= (L&), + C) = (L )(C) =

and we have obtained a contradiction.
Since an element is regular if and only if it has a right inverse
and a left inverse we have:

COROLLARY 8.2. An element u € %I@% 18 regular if and only if
T.u is regular in B for every h e O(A). More precisely:

Sps)[&)%(u) = he'??!g[) Spsg(Tnu) .

COROLLARY 3.3. If U is symmetric and B is symmetric (has an
hermitian involution), then A X B is symmetric (has an hermitian in-
volution).

Proof. If B has an hermitian involution, then for u = u* € A & B
it follows that (T,u)* = T,u for all b € @(2). By the preceding corollary,
Spyp(u) is a subset of the real axis. The ‘‘symmetry argument’ is
similar.

The following theorem is a special case of a theorem due to Grothen-
dick [4: Théoréme 2], and gives the connection between tensor products
and group algebras.

THEOREM (Grothendieck). If G and H are locally compact groups,
then after a suitable mormalization LI(G)®L1(H) 18 tsometrically *
isomorphic to LG x H). (G x H denotes the direct product of the
groups G and H).

The proof of this theorem is not easy. However our concern in the
following corollary is with discrete groups, and for this special case the
proof is quite direct. In any event, assuming this theorem, Corollary
3.3 gives:

COROLLARY 3.4. If G is a discrete abelian group and H an arbi-
trary discrete group whose group algebra is symmetric (has an hermitian
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involution), then the group algebra of G x H is symmetric (has an hermi-
tian involution).
The case of semi-direct products will now be taken up.

DEFINITION 3.5. Let K and C be groups and suppose that for each
¢ € C there is an automorphism @, of K such that the mapping ¢ — @,
is a homomorphism of C onto a group of automorphisms of K. The set
of ordered pairs {{¢,k)>:ce C,k e K} with multiplication defined by
ey by Ly by = 610y, k1P, (K;)) then forms a group G called the semi-
direct product of K and C by  and denoted by C X, K.

It is immediately verified that the set {e, k> : k € K} forms a normal
subgroup of G isomorphic to K, and that <e, kD™ = <c¢™, @, (k7).
The generality of semi-direct products is shown by the following theorem.

THEOREM 3.6. If a group G contains subgroups K and C, where
K is normal, KNC =e¢, and G = KC, then G is isomorphic to a semi-
direct product of C and K.

Proof. Since K is normal the mapping ¢ — @,, where @, (k) = cke™,
is a homomorphism of C onto a group of automorphisms of K. Since
G = KC, any g € G can be written in the form g = k,c, where k, € K,
¢, € C, and since K N C = e this decomposition is unique. Then

gh = kacokhcn = kacokhco_lcvch = ka(Pca(ka)cych

so that ¢,, = ¢,6;,, and k,, = kﬂ)cg(kn). It is now obvious that the corre-
spondence g — <¢,, k,»> is an isomorphism between G and the semi-direct
product C X, K.

Before stating the next theorem, it is convenient to establish some
special conventions. The group algebra of a discrete group G will be
denoted by IYG), and elements of I'(G) will be written as sums rather
than functions, i.e. if z € I}G), then x = > ,e; (9)9, Where the x(g) are
complex numbers satisfying >,eq|2(9)| < . Convolution in IG) is
then the usual multiplication of these formal sums, and the involution
is given by * = Y,eq 2(97)9.

Let G =C X,K be a semi-direct product of C and K. We will
abuse notation and consider C and K as subgroups of G. This is justified
by Theorem 3.6. The elements of G can then be uniquely written in the
form g = ke and g9’ = kck'c’ = ko (k')cc’ where k,k' € K and ¢, ¢’ € C.
Finally, for « e I%(G), we have

g=3 S alkc)ke = 3 (z x(kc)k)c — S w(e)e
kKEK ceO ¢c€EO \EkKEK ceq
where #'(c) € I(K). Dropping the primes, we will now write any element
2 € I(GQ) in the form x = 3¢, 2(c)c, 2(c) € I(K).
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THEOREM 3.7. If C is a finite group and K s a discrete abelian
group, then the natural involution is hermitian in the group algebra
of any semi-direct product G = C X, K.

Proof. Let G = C ¥X,K be a semi-direct product of C and K, and
let # = 2* e ING), x = Deq #(c)c. Then

2 = 3 (@00" = T e7@(0)") = 3 e ale) e
= 3001 @0 = 3 0.l

(#, denotes the extension of ¢, to I'(K) defined by @, .cx x(k)k) =
Swex (k) k).) Since x = «* and the decomposition is unique we have
@ ((x(c™)*) = =z(c) for all c e C.

By Theorem A (b) the involution in IY(G) is hermitian if ie 4 « is
regular for all x = z*. We will now construct a right inverse for ie + z.
Indeed e + x will have a right inverse if and only if elements y(c) € I'(K)
can be found for each ¢ € C such that y = 3 e, y(c)c satisfies (ie + x)y = e.
Expressing this condition in terms of the coefficients we have:

e = (’ie +35 x(c)c><d§o y(d)d) =i Syd)d + 3 aOeyd)d
= i Sy + 3 (@0 @)ed = i Sy + 3 (c%_‘,ox(c)¢7c(y(071b))>b

= 2 () + X 2()@o(y(c D -

beC

Hence our problem is to find y(c)’s satisfying the simultaneous set of
equations:

y(®d) + 3, w(0)oy(c b)) = {e ior 2 i e
" or e.

Write the elements for the finite group C as {¢ = ¢, ¢,y +++, ¢,} so that
we have:

e + 200 W) = e,

or
(1) (o) + 220 )P, (W(e)) = By -

Since @,0) =0 and @, e) =e for any ¢ e C the application of @ to
the kth equation gives:

(2) 0 (W(0)) + 3 0o, NP ((e,) = e
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for k=0,1, ---,n. The matrix of coefficients of these equations is:

ie + x(c,) z(crY) .. z(ca")
Al (X)) te + O (x(ee) oo Du((eies)

Do-1(2(cacs ™)) D —1(2(Cqci")) see e+ @p(2(Cacr))

Now the elements of this matrix are elements of the commutative algebra
I(K), and hence the determinant 4 of this matrix is a well defined
element of ['(K). Moreover the usual ‘‘Cramer’s rule’’ formula will
furnish a solution of the set of equations (2) if it can be shown that 4
is a nonsingular element of I'(K). Let a,, denote the element in the ith
row and jth column of the above matrix so that 4 = det («;;). Now 4
is nonsingular if and only if A(4) is non-zero for any h € @(I*(K)). Since
h is a homomorphism h(4) = det (k(a,,)), and h(4) will be non-zero if it
can be shown that A(a;;) = h(ay) for i+ j and h(ay,) =i+ B,; where
By = B;;. Indeed in this case the matrix (h(a;,)) is the matrix corre-
sponding to an operator on a finite dimensional Hilbert space of the form
I + H where H is an hermitian operator. Hence the operator I + H
is nonsingular so that the determinant of any matrix representations of
it must be non-zero.

It remains to verify the above equations. Since @,(x*) = (@,(x))*
for any ¢ € C we have

(D1 (x(@))* = Dp2(x(c))*) = Poz2(2(co))
(Pea(@(ee))* = Pa((c)*) = x(cx?) ,

and

(Der(@(cice)))* = Per(a(eici”)*) = Pogi (Do (w(0ii™)™))
= O (P2 (@((cr0i ) 7)) = Per(w(euei™))

What we have shown is that the elements a;; are of the form «a;; =
ie + 8;; where &; = §;; and («;))* = a; for © # j. Finally any h € O(I*(K))
satisfies h(a*) = h(a) so that the matrix (h(a;;)) is in the desired form,
and h(4) is non-zero. Hence we have a solution to the equations (2),
and the application of @, to the kth equation of (2) gives the solution
to the equations (1) and therefore the desired right inverse y. A left
inverse for ie + x can be constructed in a similar way.

REMARK 3.8. We do not know in general if the group algebra of
a semi-direct product of a finite group and a discrete abelian group is
symmetric with respect to the natural involution, in spite of the fact
that the above theorem shows the hermitianess of the involution. The
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following theorem describes a special case where this is true.

THEOREM 3.9. If C ={e, a:a* = ¢} and K is abelian, then any semi-
direct product G = C X,K has a symmetric group algebra.

Proof. x e I(G) has the form x = x, + ax,, z,, 2, € I*(K), and hence
e+ x*x = e + xfx, + 2}z, + vfax, + xfax,, Let @, = @,z =e + xfx, +
xyx,, and 2, = O(xf)x, + O(xf)x,., Then e + x*x =2, + az,, Thus e =
(2 + az)(y, + ay,) if and only if 2y, + @(z)y. = e and zy, + P(z)y. = 0
so that y,= —0(z1")2.y, and (2,— D(2,)0(2:)2,)y;=e. Assume z,—D(2,)D (277,
and hence @(z)z, — @(2,)2, is singular. Then there is a homomorphism
h such that n(@(z))h(z,) = M(P(z,))M(z,). But

M2 (@)(z,) = (M(@)P(x)) + M@ )P (:))) (U@ (5 )(®,) + M(P () (@.))
= h(@)h(P(2,))h( D () (,) + h(,Y(D(2.)) (@ () h(,)
+ M@ P( )@ (@) () + (@)@ (@) )A(P(,))h(%)
= | h(@)R(@(.) ! + | (@)@ () [F + 2h(2,)(P(2,))(z)h(@(.))
= [ e )(@(.) [P + [ (@) @(x)) [P + | (e )h(D(,)) *
+ [ M) P(2)) [ = 2| @) (D () |* + 2| h(aw) (D))
= [M@) [P+ [W(@@) " + [ 2w) ' + | MO (,) !
< @A+ Th(e) P+ [l YA + | M@(@) ! + | (@(2) )
= I(z)h(@(2.))

and we have obtained a contradiction.

It is known (see Rickart [7]) that the symmetry and hermitianess
properties are preserved in passing from a Banach algebra to a norm
closed * closed subalgebra. In the case of the group algebra of a dis-
crete group, and the group algebra of a subgroup, an elementary proof
of a more general result can be given. Specifically:

THEOREM 3.10. Let G be a discrete group, and H a subgroup of G.
Then the natural imbedding of H in G induces an isometric * isomor-
phic imbedding of MH) into IM(G). With respect to this imbedding,
for x e I'(H)

Spum () = Spue () .

In particular, if MG) is symmetric (has an hermitian involution), then
I'(H) 1s symmetric (has an hermitian involution).

Proof. The only non-trivial part of the proof consists in showing
that if x e I(H), and 2 is regular in I*(G), then « is already regular in
MH).

Let {Hg,:0,a e A, g, =e¢} be a left coset decomposition of G with
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respect to H. Write & = 3 ,eq #(k)kg,, and its inverse y e I'(G) as
Y = 3 ues (Znen Ya(W)hga). Then xy = e means

e = (3 alwihg,) = 3 (3 (S @ umig.)) -

a€EA \k.h€H a€E A \e€EH \heH
For any fixed @ #0 and [ € H we then have > ,en %, (12 Yy (k) = 0.
Define 9, € I(H) by ¥, = Shen Yao(h)h. Then the above equation gives
that zy, = 0, so that = is a divisor of zero in ['(H). But then z is a
divisor of zero in I*(G). Since % is assumed to be regular in *(G) we
must have that y, = 0, and hence that y,(h) = 0, for all » z H. As this
is true for all @ #+ 0 we have that the inverse y = ez ¥.(R)h is an
element of I'(H).

REMARK 8.11. It is easily seen that if the group algebra of G is
symmetric or hermitian, then so is the group algebra of any quotient
group. However we do not know if the symmetry or hermitianess of
the group algebras of both H and G/H imply that of G.

4. Group algebras where the natural involution is not hermitian.
In this section G will be a countable discrete group. The notations
following Theorem 3.5 will be used. The conjugate space of ING) will
be denoted by & (G) (all bounded sequences of complex numbers). Let
L, be the left multiplication on IY(G) defined by x, i.e. L,y = xy, the
multiplication being convolution. For a given ordering {g,, g,, -+ -} of all
the elements of G, the matrix of L,, mat (L,), is then defined as (a;;)
where x = >\, 2(9:)9, and a;; = x(g,97"). Since

L.g, = g.lw(gk)gkgn = ,g.lx(gkg;l)gk = kglamgk ,

we may speak of the nth row of mat (L,) as the image of g, under L,.
An element @ = (@, @,, +++) € Z°(G) will be said to be orthogonal to a
row R, = (@i, @y, +-+) of mat(L,) if 3%, ayp; = 0.

LEMMA 4.1. (i) If mat(L,) = (a;;), then mat (L,) = (b,;) where
b, =a,. In particular if x = x*, then a, = a,,.

(ii) If there is a non-zero element @ ¢ & (@) orthogonal to all the
rows of mat (L,), then L, is a singular operator.

Proof. (i) Since #* = 3,cq¥(9)g Where y(g) = 2(g~) we have that
mat (L) = (biy) with by, = y(g,97) = 2(9.9;") = .

(ii) If such a @ exists, then ¢(L.g,) = 0 for all n. Hence all finite
linear combinations of the L,g,’s are in the nullspace of ®. From the
continuity of @ and L,, and the fact that linear combinations of the g,’s
are dense in IY(G), it follows that L, maps I}(G) into the nullspace of .
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Since @ is non-zero, L, is singular because it is not onto. Note that
from Theorem B(b) we have that x is singular in IX(G).

LemMA 4.2. Let a,, a,, +++, a,, n = 3 be complex numbers of absolute
value one, and x,, &, -+, %, complex numbers of absolute value one or
zero. Then for 2r < n there are complex numbers X,.,, .4y <, %, Of
absolute value one or zero, mot all of which are zero, such that a,x, +
Ay + o0 + QX = Qp Xy + Cpaslpyy + o0 +0,2,. Moreover if n=4
and 2r < n, there are at least two linearly independent solutions.

Proof. Suppose first that not all the x,’s are zero. Let x,., =
a0/, for 1<k <r and «,,, =0 for k> r. This gives a non-zero
solution. If 2r < n then x, =0 and some x,,;, # 0. Let 2}, = .., 0,.,/a,,
@i+ = 0, and @) = @, for j+#mn,j#7r+14. Then the primed sequence is
also a solution and is clearly not a scalar multiple of the unprimed
sequence. (In the above case n = 3 is all that is required).

Now assume that #, =2, = --- =2, =0. Since n =3 and 2r < n,
a,+; and a,,, exist. Letting x.,, =1, ®,,, = —a,/a,,, and the remain-
ing x,’s zero we have a solution. Finally if 2r <% and n = 4, a,,1, Q4
and a,,, exist. In this case pick 2/,, =0, 2., = 1, 2/,;, = —@a,1,/0, 4, and
the remaining «}’s zero. Again the primed sequence is a solution and
clearly not a scalar multiple of the unprimed sequence.

Let {9, 9,, +-+} be an ordering ¢ of all the elements of G. For a
subset A of G, let | A| denote the number of elements of 4, and [A] the
subgroup generated by A. The following definition is pertinent to both
the symmetry of IY(G), and the existence of an invariant mean on G.

DEFINITION 4.3. A finite set S of G will be said to be stngular with
respect to the ordering 7 if:

(i) 181=3;
(if) [S]|= oo
(iii) There is an integer m, such that

2189, N (Sg:USg, U +++ USg,)| =[S] for all n>mn,.

In the following theorem an element @ = (@, @, -++) € &(G) is
going to be constructed with respect to a given matrix. We will start out
with the sequence consisting of all zeros, and then begin replacing the
zeros by other entries. At any given stage in the construction, the kth
column of the matrix will be termed an old column if @, has already
replaced a zero (the ¢, may itself be zero), and a new column otherwise.

THEOREM 4.4. Let S be a singular set in G with respect to the
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ordering {g., g, =++}. Then the element & = X es a8y, || =1, is sin-
gular in ING).

Proof. By Theorem B (b) it is enough to show that L, is a singu-
lar operator, and by Lemma 4.1 (ii) it suffices to find an element ¢ € & (G)
orthogonal to all the rows of mat (L,).

Take mat (L,). In the columns that contain a non-zero entry from
one of the first n, rows of mat (L,), replace the zeros in @ by zeros.
In other words, these columns will now be called old columns. We have
that 2[Sg,N (Sg, U Sg,U -+« USg, )| <r for n>mn, where |S|=r.
The (n, + 1) row of mat (L,) contains non-zero entries Qopy Qoyy * 05 Qg N
columns ¢,, ¢, * -+, ¢, respectively, corresponding to the elements in the
set Sg,,. Since S is singular, at least half of these columns are new.
Denote the new columns by ¢i, ¢}, -+ -, ¢, where 2s = r and select, using
Lemma 4.2, ¢, ¢, +++, P, of absolute value one or zero (but not all
zero) such that 33}, ¢ a,; = 0. At this stage the ¢ € €7(G) is orthogonal
to the first n, + 1 rows of mat (L,). Now take the (n, + 2) row of
mat (L,). The non-zero entries a,, @,, *++, a, now occurs in columns
i, Dy ++ D, respectively, and since S is singular at least half of the p,’s
are new. Denote the old columns by 7p!, p,, -+, p,, and the new ones
by oY, 0y, -+, 9/ ,. Again by Lemma 4.2 there are complex numbers
Poy’s Poy/s *** Py, 0f absolute value one or zero such that

¢ r—t

N ’ 1’ — 7 ’
> (ppl-api - Z 971,_; apj' .
=1 =1

Replacing the zeros by these new ®,’s then gives an element of & (G)
orthogonal to the first n, + 2 rows of mat (L,).

The proof is completed by induction. For any m = n, + 2 assume
that scalars of absolute value one or zero have been selected in columns
where a non-zero entry occurs in one of the first m rows of mat (L,),
and that the sequence constructed is orthogonal to these rows. By
again using the definition of singularity and Lemma 4.2, new @,’s of
absolute value one or zero, in new columns corresponding to the non-
zero entries of the (m + 1) rows of mat (L,) can be constructed so that
the resulting sequence is orthogonal to the first m + 1 rows of mat (L,).

COROLLARY 4.5. If|S| =4 and 2|Sg, N (Sg, U Sg, U -+- U Sg,) | <
| S| for m > n,, the range of L, is not of finite deficiency.

Proof. The second part of Lemma 4.2 assures us that at each
stage in the above construction, starting with the (n, + 1) row, there
are two linearly independent sets of new @,’s to choose from. Therefore
we can construct infinitely many linearly independent elements in & (G)
orthogonal to all the rows of mat (L,).
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COROLLARY 4.6. Suppose the singular set satisfiese € S = S~ Let
the coefficient of e be 1, and the other coefficients be one. Then the
hermitian element 3, .es () 8; contains the element —i in its spectrum.

The following theorem gives examples of groups that contain singular
sets S satisfying e € S = S-1. A definition is needed first. Let n = 2,
and let F™ be the free group on generators a,, a,, +++,a,. For any
fe F™, the length of f is:

S
min {32 n() | :f = aijary -+ et} .

THEOREM 4.7. (i) Let F'™ be the free group on generators
gy Gy ooy @y W= 2. Then there is an ordering & of F'™ such that
the set S={e = a,, a;, @y, -+, ay, a7, 57, -, a,'} is singular with respect
to 1t.

(ii) Let G™ be the free group on generators b, b, +--,b,; n= 3,
each of order two. Then there is an ordering of G™ such that the set
S ={e="0b,b,b, -+, b,} s singular with respect to it.

Proof. (i) The ordering ~ is started with g, =a,,4=0,1,2, .-+, n;
and ¢,.;, =a;*,5=1,2, «.., n. Since the generators are free, each of
the sets Sg., Sg,, + -+, S¢,, contains 2n — 1 distinct elements of length 2.
It is clear that no element of length 2 in Sg, can equal an element of
length 2 in Sg,;, © # 7; and that included in the Sg,’s are all elements
of length 2. Now successively adjoin to the set {g,, g:, ***, 9.} the
elements of length 2 from Sg,, Sg,, ++-, Sg, respectively. This gives
ity Jomszs **°, Jum2.  Again since the generators are free, each of the
sets Sesni1, SOz ***» SPume contains 2n — 1 distinet elements of length
3; no element of length 3 in Sg, can equal an element of length 3 in
Sg;, © #+ j; and all the elements of length 3 are included in them. As
before successively adjoin the elements of length 3 from S¢uui1, S@onrss ** s
S¢..2. The ordering (7 constructed in this manner by then adjoining
elements of length 4.5 etc., satisfies the conditions of the theorem. Indeed,
we have for any », | Sg, N (Sg, U Sg, U ++- U Sg,-,) | = 2, and since n = 2,
2.2<2n+1=18S]|.

(ii) The proof is in the same spirit as that in (i). In this case
start the ordering with S and successively adjoin the elements from

Sgl - (Sg1 N S)r ng - (ng N (Sgl U S)), *t ey Sgn
— (89, N (891U Sgpy U +++ US)), «+-

In this case |Sg,N (Sg._, USGgnU+--US)| =2, and since =n = 3,
2:2<n+1.

REMARK 4.8. It is not hard to see that for the case of F'™ an
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element of the formae + a, + a, + +++ + a, + a;* + a;* + +-+ 4+ a;* where
la| < 2n — 2 is singular in I(F™). From this it follows that the her-
mitian element x =a, +a,+ +++ +a, +ai* +a;* + -+ + a,! contains
in its spectrum the closed circle about the origin of radius 2n — 2.

REMARK 4.9. For G® the theorem is false. One way to see this
is to note that G is the semi-direct product of the integers by a group
of order two, where the automorphism sends an element to its inverse.
Hence by Theorem 8.9, I}(G?) is symmetric with respect to the natural
involution. Another way of seeing this will be given by Theorem 4.12
(see Remark 4.14).

REMARK 4.10. It is known that the group F'™, m = 2 has a com-
plete set of representations by finite groups, and it follows from this
that F'™ can be algebraically imbedded in the complete direct sum of
these finite groups. By Theorem 3.10 we then have that the natural
involution is not hermitian in the group algebra of this complete direct
sum. However, we do not know the answer to the involution question
for the general case of the restricted direct sum (sequences reducing
to the identity from some point on) of finite groups.

REMARK 4.11. Group algebras are A* algebras in the sense in-
troduced by Rickart [8]. Unfortunately, Hille and Phillips [5: pp 22]
have defined an A* algebra to be a Banach algebra with an hermitian
involution. It follows from the above that these two definitions are not
the same.

Perhaps the simplest example of an hermitian element with non-real
spectrum can be found in the group algebra of the group G ={a, b : a*=¢}.
The element ¢ = a + b + b~ is hermitian and with respect to an order-
ing of G constructed in the same fashion as above, the matrix of L.,
is:

1 1100 0 00 O0O0O0 7
1 001100UO0TUO0TO0O0
10 000110000
1002 00001100
060100+ 00O0O0O0T1T1
0100042 00O0O0O0O
001000z 0O0O0TO0O
00100002 00O0O0°0

— LY —

The element (¢, 1, —1, —%, —1, +++) € &°(G) will then be orthogonal to
all the rows of this matrix, and hence —1 is in the spectrum of x.
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Theorem 4.12 is quite special, however it does suffice to show that
hermitian elements with finite support in I*(G®) have real spectrum.

Let S = (s);%,J = 1,2,+ -« be any infinite matrix and define S™ = (s}))
by the equations s}; = s,;, for 7,7 < n and sj, = 0 otherwise. S™ will be
called the principal n x n section of S. If there is an integer k so that
Swn = 0 whenever |m —n| =k, S will be called a corridor matriz of
width k.

THEOREM 4.12. Let T = (a;) be an hermitian corridor matrix of
width k, with sup, ;|a;| < . Then for any real number p, the operator
T + pil defined by this matric maps ' onto a dense subset of I'.

Proof. Note first that since the norm of an operator on I' can be
computed by taking the sup of the I* norms of the rows of its matrix
with respect to the usual basis, T is a bounded operator (we will not
distinguish between the matrix and the operator it represents) on I
Moreover since the matrix of T is hermitian, T can be extended to a
bounded operator on . Hence the spectrum of T as an operator on [*
is real.

Assume there is a sequence (@, @, --+) (not necessarily bounded),
that is orthogonal to all the rows of (7' + piI). Since T + pil is regular
as an operator on [?, it follows that >, |®;|* = . We are going to
show that the sequence (@, ®,, +++) is in fact unbounded.

Let 1%,, denote n-dimensional Hilbert space and @™ = (@, @,, +++, P,).
Since T is hermitian, we have for any y €1}, that ||(T + o:)™y|, =
ollyll, where (T + pil){® denotes the n x m matrix in the upper left
hand portion of the principal n x n section (7 + piI)™. Let K be any
large number, and pick n, > K so that 37, | @, > > 4K*M*k*0~* where
M=sup,;|t;| and mat (T+pil)=(t;). Let (T+poil){"p"™ =(a,,a,,-**,ay),
A = D0, QryPpe  Since @ = (P, Py, +++) is orthogonal to all the rows of
T + pil we have that @, =a,= +++ =a,_, =0. From the !’ norm in-
equality above, we have that

(T + pil){™p™ ||} = 0 :é @, 2

or

i onk la,|* = PAK*MkP07%) = 4K*M*E® .

,=n0— +1

Hence some a,,n, — k < i, < %, is such that |a, * > 4K*M°k’ or |a, | >
2KMk. However a, = >, t;,P, and since there are at most 2k non-zero
terms, there is a p, with |¢, ,®,,| > KM and hence |9, | > KM|| iy | = K.
In other words, the sequence (@,, @, ++-) is unbounded, and it follows
that the range of T + piI is dense in I'.
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For x = 3,eq 2(9)g € IY(G), let G, denote the subgroup of G generated
by {g € G: x(g) # 0}. Since this set is countable, G, is countable. We
have:

COROLLARY 4.13. If x = z* € IMG), and with respect to the basis
in I(G,) defined by some ordering of G, mat (L,) is a corridor matrizx,
then the spectrum of x is real.

Proof. By Theorem 3.10 it sufficies to look at the spectrum of x
as an element of [*(G,). Now the theorem above gives that the ranges
of L., and L_,,, are dense in [Y(G,). But these ranges are also ideals
and since they are dense, they must be all of [,(G,). This means that
there are elements ¥,,y, € I'(G,) such that (te + z)y, = e and (—1ie + x)y. = e.
Applying the involution to the latter equality gives y;(te + x) = e. Hence
3¢ + x has both a right and left inverse, and is hence regular.

REMARK 4.14. Take the ordering (e, @, b, ab, ba, aba, - --) in the group
G?® = {a,b:a* = b* = e}. Then it is easily seen that mat (L,) is a corridor
matrix whenever z € I*(G®) has finite support. Hence Theorem 4.7 does
not hold for G®.

5. The involution and invariant means. The main results in this
section are Theorem 5.6 and Theorem 5.8. The first theorem gives us
some information concerning the involution when the group has an in-
variant mean, and in the second theorem it is shown that a group con-
taining a singular set cannot have an invariant mean.

A continuous linear functional M on Z(G) is said to be an 1nvariant
mean, if it satisfies:

(i) Mp) =0, =0, pe Z(G)

(i) M) = MP®) = M) where ¢.(y) = p(x7'y), and ¢*(y) = P(yx);

(i) M) =1 where I is the function identically 1 on G.

Whenever the notation M(A), for A a subset of G, is used, it will
mean the number My,) where y, is the characteristic function of A.

For @,V € & (G) define a pseudo ‘‘inner product’’ (@, ¥) = MP).
A few simple properties of this inner product are given in:

LEMMA 5.1. (i) (®,Y + ) = (P, 4) + (P, ¥);
(i) (2, ¥) = (¥, 9);
(i) (ap, ) = a(p, ¥);
(iv) (p,2) =0;
(v) (@] = (2, P10, ),

where @, ¥, Yy, P, € £(G), and a is a complex number.

Proof. (v) will be proved, the other statements following immediately
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from the definitions.

0= (p—ay,p—ay)=(p,P) — aly, ) — &P, ¥) + | (¥, V) .

If (p,4) =0, (v) is trivial, so assume that (@,+) # 0, and let a =
(@, P)[(Y, ); (v) then follows by direct calculation.

Let o7 ={peZz (@) : M|9]) =0}, and & ={pe 2 (G) : M| @ [?) = 0.
‘We have:

LEMMA 5.2, 2% 1s equal to & and is a closed subspace of Z(G).

Proof. By letting 4 = I and replacing @ by its absolute value in
(v) above, we have that, |(Ip|,)F=(ol o)1) or (Mo} =
M@ OMIY) = M| ). Hence M|®|)) =0 implies M| @) =0, and thus
w c os

Conversely if @ € 2, then |@[? < K|®| where K is a bound for
|®], and it follows that .27 c &%

Since |ap + By | = |alle| +|8]|¥], 2 is a subspace of Z(G).
Finally for ¢, ¢ % and ||®, — ®|l. — 0, it follows from the continuity
of M that M]®|) =0, and hence .9 is closed.

Let & — 9 denote the space of cosets of z°(G) with respect to
2 Forpew — o let |9l =MD (|21l = NP, »eP; and
(@, %) = MP¥), P € P,y € . Then:

LEMMA 5.83. For ¢,4 € & — 2%

(i) ll@ 1l ts well defined and a norm on & — 5% ;

(i) (@, ) ts well defined and makes = — 27 into a pre-Hilbert
space;

(@) el = [ [l

Proof. (i) Let o, @, € @ sothat @, = @, + k where k € 227 Then
I%(g)l=I(P2(g)+k(g)lél%(g)l—Hk(g)l so that l@ll§l¢2l+]kl'
Hence M| @, ) = Ml 2. | + k) =Ml 2. ]) + ME ) = M| #,]). Now by revers-
ing the roles of ¢, and @,, it follows that ||® |, is well defined. Also
o+ 4 lh=Me+¥) =Ml +1vD)=7Me) +MA D) =[P+ [ ¥ [
and [la ||, = [ (@) [, = Map ) = |a|Ml @) = [a|[|¢ ]| for ¢ e p, ¥ e,
and a complex. Finally ||¢||, =0 implies that ] ®|) =0, and hence
that ® = 0. Thus ||® |, is a norm on & — 9%

(i) If ¢, P, €9 and Y, Y, €+, then ¢, =@, + &k, Y, =4, +1
where k,l e 2 Then (9, ) = (P + k&, Y. + 1) = (9o, Yr) + (P2, 1) +
(k9 ‘I"z) + (kr l)' But l(@zy l) lz = (q)zy ¢2) (l: l) =0, |(k7 qll"z) Iz = (kr k) (‘l’z; “)b2) =0,
and | (k, 1) | £ (k, k)1, 1) = 0, so that (9, 4) is well defined. If (¢, ) =0,
then M@ [*) = 0 for @ € ¢, and by Lemma 5.2, » € .9 or ¢ = 0. Hence
with respect to (¢, v), & — 9%  becomes a pre-Hilbert space.
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G lleli=leh=1leL,DF=(el,leNLI) =Mel) =2l
LG, ) will denote the completion of & — .9 with respect to
[|#1;; and L*G, \) the completion with respect to || 9 [|..

LEMMA 5.4.% Let g, 9., *+*, g, be distinct elements of G. Then there
is a subset A of G satisfying MA) > 0, and Ag;NAg, =, 1+ J.

Proof. Let & ={BcG:Bg;NBg,=¢, ©1 =3}. & is then non-
empty since {e} € &4 and is partially ordered by inclusion. An immediate
application of Zorn’s lemma gives a maximal element A. Let C =
Ag,UAg, U ++- UAg, U (Ui A9:97%). It will be shown that C=G.
Indeed if heG—C, let A’=AU{h}. Since A is a maximal element
of .o there are indices % and j, such that ke A’g, NA'g, and
k¢ Ag, N Ag,. Therefore either

(@) k=hg,, ke Ag,;

(b) ke Ag,, k= hg,,; or

(©) k= hgy, k= hg,.

But (c) implies that g,=g,, a contradiction. (a) implies that k=hg,,
k = ag,, where a € A, and hence hg, = ag, or h = ag,g;" giving h e Ag, g
which is also a contradiction. The proof that (b) is impossible, is similar
to (a). Hence C = G, and MA) > 0, since G is then the finite union of
sets, each of measure M(A).

Corresponding to an z € IY(G), we are now going to define operators
on LG, ») and L¥G, \).

For o e & — % and g € G, ¢, will mean the coset in & — .9 contain-
ing @,. This is well defined since @,y € ¢ imply ¢ — =k € 97 Since
®,— Y, =k, is also in ¢ it follows that ¢, = 4,. Forx =3 ¢, 2(9)g9 € I(G)
define 7,9 = 3,eq 2(9)9, for o€ & — 2 For ¢ e ¢ we have,

17.9 1= M| S =@,

) =M 1e@) 1241
=M 3 1201 + 3, 150 [2])

where G, is some subset of G satisfying > ,es—¢, |2(9) | < €| P]|.
Hence

1751 =35 120 121) + 3 3, 2@ 1,1)

€6-6;

<M 3 =@ 12:1) + 3l 2l 3, 12(0)])

G-a,

<23 12@ 2, + €l 21 12, .

égéllx(g)!)\’(lq)al)+E§H¢0”1Hx” +e.

* The author is thankful to Professor H. A. Dye who suggested this lemma.



SYMMETRY IN GROUP ALGEBRAS OF DISCRETE GROUPS 91

Since ¢ was arbitrary we have that || T.@ ||, < || || || ®, ||.-

Now let G, be the countable subgroup generated by {g : x(g9) # 0},
and let {g,, g,, ---} be an ordering of G,. Let z™ = >, 2(9,)9;. By
Lemma 5.4 there is a subset 4 of G with M(4) = d >0, and Ag, N Ag, = ¢
for 7 and 1 <1,5 <n. Then

I Tyl = )= (3100 11 G )

:é]x(gi)]dzdglx(gi)l=“)'CA”1”xm)” .

NETCATAS

Since [[#™ —x||—0 as m— o we have that || T.], = |/«]|[. Finally
since T, is bounded on = — .2  with respect to ||® ], it can be ex-
tended to the completion LG, \) without increasing its norm. The
extension will be denoted by TV.

The operator T, on & — .2 will now be extended to LG, \). For

$ew — 2, and pe @ we have
1790 = (| S e@. ) 27((S 12@119,1) ) -

But {lxz(9)["*:9e G}e IX(G), and so for any he G the sequence
{lz(@) ["*] 9, (h) : g € G} e I(G). Now

M(Z12@F19,1)) = (S 10) 190> | 241) )

and
(S 120 1 1a) 1 12,1 W) = (S 100)1)( S 2@ |12, 10) .
so that
M(Z 1@ 119,1)) = IS 1201, 1)
and hence

M(Z12@119,1) <121 Z [s@) 12, 7) = 121l 3, 19(0) M2, 1)
e CUENTEATY
SO
1T 18 S Nallle i or Tl < lell.

We can therefore extend T, to a bounded operator on LG, \) with-
out increasing its norm. These results are summarized in the following

theorem.
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THEOREM 5.5. The operator T, on & — % defined by T.p =

Steee ©(9)Py where x = 3 ,eq%(9)9 € I(G), can be uniquely extended to
a bounded operator TP (TP) on LNG, N)(LAG, N), and || T2 |, £ || TP |, =
|l

THEOREM 5.6. Let G have an invariant mean \, and let x=x* € I'(G).
If there is a ¢ € & (G) whose nullspace contains the range of il + L,,
then M|@|) = 0.

Proof. Since the nullspace of ¢ contains the range of <I + L,, we
have in particular that @((¢1 + L,)(k)) = 0 for all h € G. Let @ = {p(g)}
and ¢ = > ,eq 2(9)9. Then

L.h = Py w(g)gh = 2, @(gh™)g ,
and
GI + L)(h) = ih + 3 w(gh™)g = (i + x(e))(h) + S x(gh™)g .

Hence - ”

0= (i + a(e)pt) + 3, 2(gh™)Plg) = (i + z(@)ph) + 5 2(g)P(gh) .
Taking complex conjugates and letting r(g) = ®(g9) we have,
0= (—i + 2(e)p(h) + ;x—@m = (=i + z(e)y(h) + gZ#f(gT)w(g“h)

= (=i + @) + 2 2(ghyy(h)

for all & € G, since x = x*.
On the other hand,

(=2 + T2))(h) = —ir(h) + 3 w(9)1o(h)
= —iy(h) + 2(e)yr(h) + ,,};e 2(9)yro(h)
= (—1 + x(e)yr(h) + g;ex(g)%(h) =0

for all ke G. This means that (—if + T?)(y) e %", and since TY is
an hermitian operator on L*G,)\), we must have 4 = 0. Therefore
M2 ]) = M4 ]) = 0.

We now show that the existence of a singular set (not necessarily
inverse closed) in a countable group, implies that the group does not
have an invariant mean. For this purpose we make essential use of a
theorem due to Fe¢lner [2].

THEOREM (F¢lner). A group G has an invariant mean if and only



SYMMETRY IN GROUP ALGEBRAS OF DISCRETE GROUPS 93

if for any finite set F and ¢ > 0, there exists a finite set A of G such
that |ANxAl|/|A] >1 —¢ for all x e F.

LEMMA 5.7. Let F be a finite subset of a group G such that [F'] is
infinite. Then if there 1s a finite set A with |ANzA|/|A|>1—¢
Jfor all xe F, then |A| = 1/e.

Proof. Let F ={f,,fs *++,fs}, |A|=r, and assume that » < 1/e.
Then ¢ < 1/r, and for any fie F,|ANfiA|> A —¢er >0 —1/r)r =
r—1, and hence ANfLA=Aor A=A (t=1,2,...,5). It follows
that g4 = A for any ge [F]. Now since A is finite and [F'] infinite,
there must exist elements a,e A, ¢,, 9. € F, ¢, # ¢, such that g.a, = g.a,.
But this gives g, = ¢,, and we have contradicted the assumption that
[A] < 1]e.

THEOREM 5.8. If G contains a singular set F with respect to the
ordering {9,, gz, +++}, then G does not possess an invariant mean.

Proof. Since F is singular there exists an integer ¢, such that
2|Fg,N(Fg,U Fg,U «-+- UFg,))| <|F|=s for t >t,. Assume G does
have an invariant mean, so that F¢lner’s condition is satisfied. Let
e = 1/72t(s — 1). Then there exists a finite set A4 with |A|=r, and
[ANfiA| > @1 —¢)|A] for any f,€ F. From Lemma 5.7 |A|=1l/e =
T2t(s — 1) > 6t,. Let A =1{9,,04, ***) gn,: 0 <My < ++» <} Then
2[anﬂn(an1Uan2U et Uanz_l)l s fort > .

Consider the matrix

flgnl flgn2 °r f1gn,,
f2gn1 f2gn2 tre f2gnr

fsgnl fsgn2 e fsgnr

and let B denote the set of distinct elements of this matrix. We are
first going to get an upper bound for | B| by counting the elements of
the matrix row by row, and then a lower bound for |B| by counting
them column by column. It will turn out that these bounds are incom-
patible and the proof completed.

The kth row of the matrix is simply f34, and | f,A — (AN FA) | <
3re. Indeed |A N f,4)] > (1 — e)r implies |A — (AN f,A)| < re so that

A=(A-(ANnfiA)NA—-(ANFA) U (A - (ANfid) N (ANSA)
U(ANfIANA—-ANLANU(ANFAN(ANSA)=AUAUAUA,,

where the A;’s are disjoint. Therefore r» = |A| = | A,| + |A4.| + | 4;] +
|A, [ <re+re+re+ Al and |(FLANSFA) | ZIANFANSAl =] A >
r — 3re or |fA — (f,AN f,;A)|3re. Now the first row of the matrix has
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r elements and, as has just been shown, each additional row adds less
than 3re additional distinct elements. Adding, we have |B|<7r +
(s — 1)3re.

The first ¢, columns obviously contain at least s distinct elements,
and from the singularity condition it follows that each additional column
from ¢, + 1 through » adds at least s/2 distinct elements to B. Hence
|Blz s + (r — to)s2.

Therefore s + (r —t)s/2 < r + (s —1)8re =r + (s — 1)3r[T2t(s — 1) =
r + r/24t,. Since r =|A]| = 1/e > 6t, we have r —t, > 57/6. Hence
s + (5r[6)(s/2) < s + (r — t)s/2 < r + r[24t,. Since s = 3, s(1 + 5r/12) =
3+5r/4 so that 3+5r/4<r+1r/24t, or 12+5r<4r+r/6t,=r(4d-+1/6t,)<5r,
and we have obtained the desired contradiction.
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