
SYMMETRY IN GROUP ALGEBRAS OF DISCRETE GROUPS

ROBERT A. BONIC1

1. Introduction* The Banach algebras 2ί considered here are over
the field of complex numbers, and have isometric involutions *. The
involution is said to be hermίtian if for any x — x* e 21, the spectrum
Sp^x) of x contains only real numbers. The algebra SI is said to be
symmetric if for any y e 21, Sp<%(y*y) contains only nonnegative real
numbers.

A familiar example of a Banach algebra with an involution is the
group algebra over the complex numbers of a locally compact group G.
This is obtained by taking the Banach space L\G) of all complex valued
absolutely integrable functions with respect to the left invariant Haar
measure dx on G. Multiplication is defined as convolution, and the in-
volution by the formula x*(g) — xig'^pig), where x e L\G) and ρ( ) is
the modular function relating the given measure to the right invariant
measure by dx~x = p(x)dx. This involution will be called the natural
involution of the group algebra, and is the only involution on the group
algebra we will consider.

It is known that when the group G is either compact or commuta-
tive, then its group algebra with respect to the natural involution is
symmetric. On the other hand, in 1948 Neumark [6] showed that the
natural involution in the group algebra of the homogeneous Lorentz group
is not hermitian. (This implies that the algebra is not symmetric. See
Theorem A(a).) Later Gelfand and Neumark [3] extended this example
to include all complex unimodular groups. Their proofs are quite
difficult, entailing a knowledge of the irreducible unitary representations
of the groups and considerable computation. Except for finite and com-
mutative groups, the corresponding problems have not been studied for
discrete groups. These problems will be our concern.

The main results will be summarized now. In § 2 several facts
(some of which are well known) are collected to be used later. § 3 is
concerned with the construction of group algebras that are symmetric, or
at least have an hermitian involution. It is shown (Corollary 3.4) that
the group algebra of the direct product of a commutative group and a
group whose group algebra is symmetric, is a symmetric algebra.
Theorem 3.7 shows that the natural involution is hermitian in the group
algebra of a semidirect product of a commutative group by a finite
group.
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In § 4 examples are given of discrete groups for which the natural
involution in the group algebra is not hermitian. The examples include
free groups on two or more generators, and free groups on three or more
generators of order two (Theorem 4.7). It is worth noting that these
examples settle the following matrix problem negatively: suppose T is
a bounded operator on I1 (countable absolutely convergent sequences of
complex numbers), and with respect to the usual basis, suppose that the
matrix (ttJ) of T satisfies ttJ = tJt. Then, is the spectrum of the operator
T a subset of the real axis? In this connection see Remark 4.8.

Finally in § 5 we show that various connections exist between the
above problems and the question of the existence of an invariant mean
on the group. The principal results are Theorem 5.6 and Theorem 5.8.

I wish to express my thanks to Professors C. E. Rickart and S.
Kakutani for the advice, encouragement, and time they have generously
given me.

2* Preliminary theorems*

THEOREM A. Let %be a Banach algebra over the complex numbers
with an isometric involution * and identity e. Then:

(a) if 31 is symmetric, then the involution is hermitian, and the
converse holds whenever 31 is commutative;

(b) the involution is hermitian whenever ie + x is regular for
any x = x*.

A proof of this theorem can be found in Rickart [7]. It is not known
in general if an algebra with an hermitian involution is symmetric, and
it is worth noting that this is exactly the problem in proving that a JB*
algebra is a C* algebra. The essential step in proving this is to show
that the 2?* algebra (whose involution is hermitian) is symmetric.

Let SI be a Banach algebra with an identity e of norm one, and
let <^(3I) denote the set of all bounded linear operators on SI. For
x 6 31, the left multiplication operator Lx is defined by the formula
Lxy = xy.

THEOREM B. (a) The mapping x-*Lx maps 31 isometrically and
isomorphically into ^(21).

(b) Let jδf(SI) denote the image of SI in ^(31). Then for xe%
Sp%(x) = Spg{W(Lx) = Sp(Lx), where Sp(Lx) = {a: Lx — al is a singular
operator on the Banach space}.

Proof, (a) and the first identity in (b) are immediate. If y is
regular in SI, then Ly is a regular operator on 31, since it has as inverse
the operator L _lβ This shows that Sp%(x) ID Sp(Lx). Now if Lv is
regular on ^(31), there exists an element S e ^(31) such that LyS —
SLy = I. It is then easily computed that S = LSe and Se is the inverse
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of y in 2Ϊ.

THEOREM C. Let & be a Banach algebra with an identity over the
complex numbers and suppose C is a maximal left ideal (hence closed)
in (£. Then, with respect to the quotient norm, (£/C is a Banach space.
For x e (£, y + C e (£/C the mapping defined by LfΌ(y + C) = xy + C
gives a bounded algebraically irreducible representation of (£ on E/C.

The above representation x —> Lf/<7 is called the left regular repre-
sentation of © on K/C. A proof of this theorem can also be found in
Rickart [7].

3 Group algebras in which the natural involution is hermitian* It
will be seen shortly that the symmetry problem for the group algebra
of the direct product of two groups is a special case of a more general
problem concerning tensor products of Banach algebras, so the latter
will be taken up first. If 21 and 93 are Banach algebras, then the
algebraic tensor product 210 93 can be normed with the so called greatest
cross norm and then completed to give another Banach algebra called
the protective tensor product 21 0 93 of 21 and 93. The basic results
concerning this can be found in Schatten [9]. We will summarize here
only a few pertinent facts.

Let 21 and 33 be Banach algebras over the complex numbers having
identities of norm one. It will be convenient for us not to distinguish
notationally between the norms or the identities in the two algebras.
Let 21 0 93 denote the usual algebraic tensor product of the vector spaces
21 and 93. An element u e 2ί 0 93 can be represented in many ways
in the form Σ?=i ai ® &* where α4 e 21, bt e 93, i = 1, 2, , n. Whenever
such a representation occurs, it will be denoted by u ~ Σ?=i ^ ® ^. The
set 21 0 93 becomes an algebra by defining, for u, v e 21 0 93, a repre-
sentation of the product uv to be Σ?=i ΣJU α A ® b%d^ where u ~
Σ?=i at ® bif v ~ ΣJNI CJ Θ <̂  It becomes a normed algebra by defin-
ing | | t t | | = GLBΣ?=il|αill H&ill where the GLB is extended overall
Σ?=i ai^bi^u. With this norm, any u e 2t 0 93 that satisfies u~a(&b
has a norm given by || u \\ — \\ a \\ || b ||, and the identity e ~ e 0 e
of 21 0 93 has norm one. The completion 21 0 93 of 21 0 93 is hence a
Banach algebra over the complex numbers with an identity of norm
one. Finally we note that if 21 and 93 each have isometric involutions
*, the definition of w*~Σ?=i α *Θ&* where u ~ Σ?=i aι ® bt gives a
well-defined isometric involution on 2ί 0 93 which can hence be extended
to 21 0 93.

We now restrict ourselves to commutative 2t. Let 0(21) denote the
space of maximal ideals of 2ί, which will we be identify with the corre-
sponding homomorphisms. For h e 0(21), define Th: 21 0 93 —> 93 by the
formula Th(u) = Σ?=i Mα*)&« Now, two formal sums represent the same
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element in 21 (g) S3 if and only if one can be transformed into the other
by successive applications of the distributive law and the commutative
law applied to scalars and ®. It is then clear that Th is well-defined
and a homomorphism. Also if 2t and S3 have involutions, and 21 is sym-
metric, then for u ~ Σ?=i α t (g) biy we have

Th{u*) = Th(± af <g> 5*) - ± h(af)bf = ±
\ί=l / ί=l ί=l i = l

so that TΛ is a *-homomorphism. Finally since

holds for any Σ?=iα* ® δ* ~ >̂ we have || Tft% || ^ || % || for all w, so that
Th can be extended to 21 (g) S3. The extension will also be denoted by ΓΛ.

Except for the notation, the following theorem is essentially the
same as that of Bochner and Phillips [1: Theorem 3], which generalizes
the Wiener-Gelfand theorem on the existence of an inverse.

THEOREM 3.1. An element u e 2ί (§) S3 has a left (right) inverse in
21 (§) S3 if and only if Thu has a left (right) inverse in S3 for every
h e 0(31).

Proof. Only the case of left inverses will be shown. If u e 21 (§) S3
has a left inverse v, then for any h e 0(21), Thv is a left inverse in S3
for Thuf since Th is a homomorphism taking the identity of 21 0 S3 to
the identity of S3.

Conversely assume that u0 e 21 (g) S3 = (£, that Tfo^0 has a left inverse
in S3 for every h e 0(21), and that u0 does not have a left inverse in (£.
Then &u0 is a proper left ideal containing u0 and can be extended to a
maximal left ideal C. Now consider the left regular representation
u —> Lf/cr of © on (£/C (see Theorem C). Since this representation is
algebraically irreducible, it follows from Theorem C that the set of all
bounded operators on (£/C commuting with {L®10 : u e K } consits of just
scalar multiples of the identity operator. Clearly L%G

e commutes with
all L? l 0 so that L%G

e = h{a)I, and since

it follows that h is an element of 0(21). Hence

L%% = (L%°)(L%<1) = h

so that for u ~ Σ?=* a%®^u w e have

r6/5
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Moreover, since the representation is continuous we can extend this to
(£ so that we have Lψ° - L%°TjιΌ for all v e SI 0 S3.

Now by assumption Thu0 has a left inverse δ0 e S3. Hence

/"^ \ // T (£/(? \/ T (S/(7 \\/p /O\ p i Γ* \
vV / — Vx-̂ 'e<S)&n/\ £®ThUn))\y Xjy y ~T ^ /

C) = (L%c

e)(e (g)e + C) = e(g)e + C .

On the other hand, since u0 e C, we have

0 e + C))

and we have obtained a contradiction.
Since an element is regular if and only if it has a right inverse

and a left inverse we have:

COROLLARY 3.2. An element u e SI 0 33 is regular if and only if
Thu is regular in S3 for every h e 0(31). More precisely:

Spφ^(u) = U Sps:s(Thu) .
heΦίyp

COROLLARY 3.3. If SI is symmetric and S3 is symmetric (has an
hermitian involution), then 31 0 S3 is symmetric (has an hermitian in-
volution).

Proof. If S3 has an hermitian involution, then for u = ^ * e 3 I 0 S 3
it follows that (Thu)* = Thu for all h e 0(31). By the preceding corollary,
Spφςβ(u) is a subset of the real axis. The ''symmetry argument'' is
similar.

The following theorem is a special case of a theorem due to Grothen-
dick [4: Theoreme 2], and gives the connection between tensor products
and group algebras.

THEOREM (Grothendieck). If G and H are locally compact groups,
then after a suitable normalization L\G) 0 U(H) is isometrically *
isomorphic to L\G x H). (G x H denotes the direct product of the
groups G and H).

The proof of this theorem is not easy. However our concern in the
following corollary is with discrete groups, and for this special case the
proof is quite direct. In any event, assuming this theorem, Corollary
3.3 gives:

COROLLARY 3.4. If G is a discrete abelian group and H an arbi-
trary discrete group whose group algebra is symmetric (has an hermitian
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involution), then the group algebra of G x H is symmetric (has an hermi-
tian involution).

The case of semi-direct products will now be taken up.

DEFINITION 3.5. Let K and C be groups and suppose that for each
c e C there is an automorphism φc of K such that the mapping c-+φc

is a homomorphism of C onto a group of automorphisms of K. The set
of ordered pairs {(cy ky:ceC,keK} with multiplication defined by
<A> fci><c2, k2y = <CA> k&cjjcjy then forms a group G called the semi-
direct product of K and C by φ and denoted by C XφK.

It is immediately verified that the set {(e, ky : k e K] forms a normal
subgroup of G isomorphic to K, and that <(c, ky~~x = <c~~\ φc^ {k~λ)y.
The generality of semi-direct products is shown by the following theorem.

THEOREM 3.6. If a group G contains subgroups K and C, where
K is normal, K n C = e, and G — KC9 then G is isomorphic to a semi-
direct product of C and K.

Proof. Since K is normal the mapping c —» φc, where <pc(k) = ckc~ι,
is a homomorphism of C onto a group of automorphisms of K. Since
G = iΓC, any # e G can be written in the form g — kgcg where kg e K,
cg e C, and since Kf)C = e this decomposition is unique. Then

gh — ICgCglCfyC^ — κgcgk>hcg cgch = k>gψ^vβg)c^c^

so that cgΊι = c/?Λ, and fc^ = kgφCg{kh). It is now obvious that the corre-
spondence g *-> <cg, kgy is an isomorphism between G and the semi-direct
product C XφK.

Before stating the next theorem, it is convenient to establish some
special conventions. The group algebra of a discrete group G will be
denoted by l\G), and elements of l\G) will be written as sums rather
than functions, i.e. if x e l\G), then x = Σgeσ X{Q)Q, where the x(g) are
complex numbers satisfying Σ êe? \®(θ) I < °° Convolution in l\G) is
then the usual multiplication of these formal sums, and the involution
is given by #* = Σ<;e<? ̂ (g-^g.

Let G = CχφK be a semi-direct product of C and K. We will
abuse notation and consider C and if as subgroups of G. This is justified
by Theorem 3.6. The elements of G can then be uniquely written in the
form g — kc and gg' — kck'c' — kφc(k')cc' where k,k' e K and c, c' e C.
Finally, for x e l\G), we have

A, V* V* svίhsΛhs* V1 ί V w(bn\h \n — V wUsΛn

where x\c) e l\K). Dropping the primes, we will now write any element

x e l\G) in the form x = Σceσ # ( Φ , #(<0 € ί^ίΓ).
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THEOREM 3.7. If C is a finite group and K is a discrete abelian
group, then the natural involution is hermitian in the group algebra
of any semi-direct product G = C XφK.

Proof, Let G = C XφK be a semi-direct product of C and K, and
let x = #* e l\G), x == Σceσ x{c)c. Then

α* = Σ (a(Φ)* - Σ c-^ίc)*) = Σ c-\x{cY)cc-'
ceo ceo ceo

= Σ Φ.-I Wc)*)c-1 = Σ ΦMc~Ύ)c .
ceo ceo

(Φc denotes the extension of φc to l\K) defined by Φc{Στceκ %(k)k) =
x(k)φc(k).) Since x — x* and the decomposition is unique we have

))*) = s(c) for all c e C ,
By Theorem A (b) the involution in V(G) is hermitian if ίe + x is

regular for all x — x*. We will now construct a right inverse for ie + cc.
Indeed ie + a? will have a right inverse if and only if elements y(c) e lλ{K)
can be found for each ceC such that y = Σce<72/(Φ satisfies (ie + x)y = e.
Expressing this condition in terms of the coefficients we have:

e = (ie + Σ x(c)c)(Σ v(d)d) = i Σ y(d)d + Σ x(φy(d)d
\ ceo /\aec J dec c.aeo

= i Σ v(d)d + Σ χ(c)Φc(y(d))cd = i Σ vΦ)b + Σ f Σ
αecf c,aeo υec bee \ceo

Hence our problem is to find y(c)'s satisfying the simultaneous set of
equations:

\e for b =

for b φ e .
iyφ) + Σ χ{c)Φc{y{c-ιb)) = \e

ceo W

Write the elements for the finite group C as {e = c0, clf , cn} so that
we have:

n

ί=o 4

or

Since < ĉ(0) = 0 and Φc(e) = e for any c e C the application of 0c-1 to
the fcth equation gives:

n

k r=o r
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for k = 0,1, •••, n. The matrix of coefficients of these equations is:

"ie + x(c0) xipϊ1) x(c-λ)

Φc-^cό1)) ie + Φc-i{x{cλc^)) Φc-^ic.c

•

Now the elements of this matrix are elements of the commutative algebra
l\K), and hence the determinant A of this matrix is a well defined
element of l\K). Moreover the usual ''Cramer's rule" formula will
furnish a solution of the set of equations (2) if it can be shown that A
is a nonsingular element of l\K). Let al3 denote the element in the ith
row and jth column of the above matrix so that A = det {aί3). Now A
is nonsingular if and only if h(A) is non-zero for any h e Φ(l\K)). Since
fc is a homomorphism h(Δ) = det (h{ai3)), and h(A) will be non-zero if it
can be shown that h(ai3) = h{a^ for i Φ j and h(a33) = i + βsj where
βjj = βjj. Indeed in this case the matrix {h{ai3)) is the matrix corre-
sponding to an operator on a finite dimensional Hubert space of the form
ίl + H where H is an hermitian operator. Hence the operator ίl + H
is nonsingular so that the determinant of any matrix representations of
it must be non-zero.

It remains to verify the above equations. Since Φc(x*) — {Φc{x))*
for any c e C we have

and

What we have shown is that the elements att are of the form au =
ie + 8U where δf4 = δ44 and (<%)* = α:̂  for i Φ j. Finally any h e Φ(l\K))
satisfies Λ(α*) — h(a) so that the matrix (Λ-Ô j)) is in the desired form,
and h(A) is non-zero. Hence we have a solution to the equations (2),
and the application of ΦCjc to the λ th equation of (2) gives the solution
to the equations (1) and therefore the desired right inverse y. A left
inverse for ie + x can be constructed in a similar way.

REMARK 3.8. We do not know in general if the group algebra of
a semi-direct product of a finite group and a discrete abelian group is
symmetric with respect to the natural involution, in spite of the fact
that the above theorem shows the hermitianess of the involution. The
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following theorem describes a special case where this is true.

THEOREM 3.9. If C = {e,a:a2 = e} and K is abelian, then any semi-
direct product G = C XφK has a symmetric group algebra.

Proof, x e lι{G) has the form x = xx + ax2, x19 x2 e l\K), and hence
e + x*x — e + x?x1 + x2x2 + x*ax± + xfax2. Let Φa = Φ, z1 = e + a??^ +
#*#2> and z2 = Φ(α?2*)x1 + Φ(xf)cc2. Then e + x*cc — zλ + az2. Thus e —

(«! + α^Jd/i + ay2) if and only if zλyλ + (P(22)i/2 = e and z ^ + <P(2i)2/2 = 0

so that y2=—Φ(zϊ1)z2y1 and fe—Φ{z2)Φ{z^1)z2)yι=e. Assume Z1—Φ(Z2)Φ(ZΪ1)Z2

and hence Φfe);?! — 0(22)22 is singular. Then there is a homomorphism
h such that h{Φ(z>i)h(z^ = h(Φ(z2))h(z2). But

+ I MxdMΦ&i)) I2 +
+ Ih{xMΦ{^)) I2 = 2\h(

^ 1 hix,) I2 + I h(Φ(x2) |2 + I h(x2) I
< (1 + I h{Xl) |2 + I h(x2) |2)(1 + I hiΦix,)) i2 + I h(Φ(x2)) |2)

and we have obtained a contradiction.
It is known (see Rickart [7]) that the symmetry and hermitianess

properties are preserved in passing from a Banach algebra to a norm
closed * closed subalgebra. In the case of the group algebra of a dis-
crete group, and the group algebra of a subgroup, an elementary proof
of a more general result can be given. Specifically:

THEOREM 3.10. Let G be a discrete group, and H a subgroup of G.
Then the natural imbedding of H in G induces an isometric * isomor-
phic imbedding of l\H) into l\G). With respect to this imbedding,
for x e l\H)

SpιnB)(x) = Spιι{G)(x) .

In particular, if l\G) is symmetric (has an hermitian involution), then
l\H) is symmetric (has an hermitian involution).

Proof. The only non-trivial part of the proof consists in showing
that if x 6 l\H), and x is regular in l\G), then x is already regular in
l\H).

Let {Hga : 0 , α e A, go = e} be a left coset decomposition of G with
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respect to H. Write x = Σ^e^ ooo(k)kgOf and its inverse y e l\G) as
V = ΣaβΛ (Σneπya(h)hga). Then xy = e means

= Σ Σ χ*(k)ya(h)khga) = Σ Σ Σ

For any fixed α ^ 0 and I e H we then have ΣΛ6J? ^ΰ(l^~1)τ/α(^) = 0.
Define j/J, e l\H) by j/£ = ΣjneRya(h)h. Then the above equation gives
that xy'a = 0, so that a? is a divisor of zero in l\H). But then x is a
divisor of zero in l\G). Since x is assumed to be regular in l\G) we
must have that y'a = 0, and hence that ya(h) = 0, for all h i H. As this
is true for all α ^ 0 we have that the inverse y — 'ΣiheπyXfyh is an
element of l\H).

REMARK 3.11. It is easily seen that if the group algebra of G is
symmetric or hermitian, then so is the group algebra of any quotient
group. However we do not know if the symmetry or hermitianess of
the group algebras of both H and GjH imply that of G.

4 Group algebras where the natural involution is not hermitian •
In this section G will be a countable discrete group. The notations
following Theorem 3.5 will be used. The conjugate space of l\G) will
be denoted by c<f{β) (all bounded sequences of complex numbers). Let
Lx be the left multiplication on l\G) defined by x, i.e. Lxy = xy, the
multiplication being convolution. For a given ordering {g19 g2, •••} of all
the elements of G, the matrix of Lx, mat (Lx), is then defined as (ai})
where x = Σ*=i X(QTC)QΊC and aυ = xig^i1). Since

Lxgn = Σ x(ΰτc)9κQn = Σ αίflWί1)*/* = Σ αWΛJ f c = l

we may speak of the nth. row of mat (Lx) as the image of gn under Lx.
An element 9> — (φlf φ2, •••) e ^ ( G ) will be said to be orthogonal to a
row i?ί = (α£1, αi2, •) of mat (LJ if ΣΓ=i α ^ j = 0.

LEMMA 4.1. ( i ) If mat (L^) = (αo), then mat (Lx«) = (δw) where
bi3 — α̂ ί /^ particular if x = x*, then aiό = α^.

(ii) If ίfeere is a non-zero element φ e ^ ( G ) orthogonal to all the
rows of mat(Lx), then Lx is a singular operator.

Proof. ( i ) Since #* = Σjgea y(9)ΰ where y(g) = α ίflf"1) we have that

mat (Lx*) = (&„) with 6ί<? ί Ϊ 1 " "
(ii) If such a φ exists, then φ(Lxgn) = 0 for all n. Hence all finite

linear combinations of the Lxgn's are in the nullspace of φ. From the
continuity of φ and Lx, and the fact that linear combinations of the gn's
are dense in l\G), it follows that Lx maps l\G) into the nullspace of φ.
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Since φ is non-zero, Lx is singular because it is not onto. Note that
from Theorem B(b) we have that x is singular in lι{G).

LEMMA 4.2. Let alf a2, , an, n ^ 3 be complex numbers of absolute

value one, and xlf x2, * ',xr complex numbers of absolute value one or

zero. Then for 2r ^ n there are complex numbers xr+lf xr+2, , xn of

absolute value one or zero, not all of which are zero, such that aλxλ +

a2x2 + + arxr — ar+1xr+1 + ar+2xr+2 + +anxn. Moreover i f n ^ i

and 2r < n, there are at least two linearly independent solutions.

Proof. Suppose first that not all the xt

9s are zero. Let xr+Jc =
α fcxJαr+A; for H ί g r and xr+7c = 0 for k > r. This gives a non-zero
solution. If 2r < n then xn — 0 and some xr+ίo Φ 0. Let xr

n — xr+lQar+ιJan9

x'ίQ+r — 0, and x) — x5 for j Φn, j Φr + i0. Then the primed sequence is
also a solution and is clearly not a scalar multiple of the unprimed
sequence. (In the above case n ^ 3 is all that is required).

Now assume that xλ — x2 — = xr — 0. Since n ^ 3 and 2r ^ n,
ar+1 and ar+2 exist. Letting xr+1 = 1, xr+2 = —ar+Jar+2, and the remain-
ing Xi's zero we have a solution. Finally if 2r < n and n ^ 4, α r + 1, α r + 2,
and α r + 3 exist. In this case pick x'r+1 = 0, ^ + 2 = 1? ^'+s = — ttr+2/αr+3, and
the remaining # 's zero. Again the primed sequence is a solution and
clearly not a scalar multiple of the unprimed sequence.

Let {gu g2, •••} be an ordering έ? of all the elements of G. For a
subset A of G, let | A | denote the number of elements of A, and [A] the
subgroup generated by A. The following definition is pertinent to both
the symmetry of l\G), and the existence of an invariant mean on G.

DEFINITION 4.3. A finite set S of G will be said to be singular with
respect to the ordering έ? if:

( i )

(ii)

(iii) There is an integer n0 such that

2 I Sgn n (Sg, U Sg2 U U S g n ^ ) \ ^ \ S \ f o r a l l n > n Q .

In the following theorem an element φ — (φlf φ2, •) e C^{G) is
going to be constructed with respect to a given matrix. We will start out
with the sequence consisting of all zeros, and then begin replacing the
zeros by other entries. At any given stage in the construction, the fcth
column of the matrix will be termed an old column if <pk has already
replaced a zero (the φ* may itself be zero), and a new column otherwise.

THEOREM 4.4. Let S be a singular set in G with respect to the
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ordering {glf g2, •}. Then the element x = Σs.es cct8i9 \at\ = 1, is sin-

gular in l\G).

Proof. By Theorem B (b) it is enough to show that Lx is a singu-
lar operator, and by Lemma 4.1 (ii) it suffices to find an element φ e r^{G)
orthogonal to all the rows of mat (Lx).

Take mat (Lx). In the columns that contain a non-zero entry from
one of the first nQ rows of mat (Lx), replace the zeros in φ by zeros.
In other words, these columns will now be called old columns. We have
t h a t 2 I S g n n (Sgλ U Sg2 U U S g n ^ ) \ S r f o r n > n 0 w h e r e \ S \ = r .
The (n0 + 1) row of mat (Lx) contains non-zero entries αCl, aH, , aCr in
columns c19 c2, , cr respectively, corresponding to the elements in the
set Sgno+1. Since S is singular, at least half of these columns are new.
Denote the new columns by c[, c2, , c's where 2s ^ r and select, using
Lemma 4.2, φc[,Ψc2j '"yΦc's of absolute value one or zero (but not all
zero) such that Σ«=i Φc'i

aci — 0. At this stage the φ e C^(G) is orthogonal
to the first n0 + 1 rows of mat (Lx). Now take the (n0 + 2) row of
m a t ( L J . The non-zero entries aPl,aP2, -",aPr now occurs in columns
Pii Pi, Pr respectively, and since S is singular at least half of the p^s
are new. Denote the old columns by p[9 p2, •• ,pί, and the new ones
by p'ί,p", •• ,Pr- ί. Again by Lemma 4.2 there are complex numbers
Φp">Φ*ϊ> '"'Φp'r'-t °f absolute value one or zero such that

t r-t

Σ

Replacing the zeros by these new <pt's then gives an element of
orthogonal to the first n0 + 2 rows of mat (Lx).

The proof is completed by induction. For any m Ξ> nQ + 2 assume
that scalars of absolute value one or zero have been selected in columns
where a non-zero entry occurs in one of the first m rows of mat (Lx)r

and that the sequence constructed is orthogonal to these rows. By
again using the definition of singularity and Lemma 4.2, new φt

Js of
absolute value one or zero, in new columns corresponding to the non-
zero entries of the (m + 1) rows of mat (Lx) can be constructed so that
the resulting sequence is orthogonal to the first m + 1 rows of mat (Lx).

COROLLARY 4.5. If \ S \ ^ 4 and 21 Sgn n (Sg, U Sg2 U U Sgn-λ) \ <
I SI for n > nQ, the range of Lx is not of finite deficiency.

Proof. The second part of Lemma 4.2 assures us that at each
stage in the above construction, starting with the (n0 + 1) row, there
are two linearly independent sets of new <pt's to choose from. Therefore
we can construct infinitely many linearly independent elements in
orthogonal to all the rows of mat (Lx).
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COROLLARY 4.6. Suppose the singular set satisfies e e S = S'1. Let
the coefficient of e be i, and the other coefficients be one. Then the
hermitian element Σs.es-{e} s% contains the element —i in its spectrum.

The following theorem gives examples of groups that contain singular
sets S satisfying e e S = S'1. A definition is needed first. Let n ^ 2,
and let F{n) be the free group on generators a19a2, • • ,an. For any
f e F{n), the length of / is:

rnin J V I w(t\ I f — πn{\)πn{2) . . . πn(s) 1

THEOREM 4.7. ( i ) Let Fin) be the free group on generators
au a2, •••, an; w Ξ> 2. Then there is an ordering έ? of F{n) such that
the set S = {e = α0, alf a2, , an, αr\ a2

λ, , a'1} is singular with respect
to it.

(ii) Let G{n) be the free group on generators bif b2, •••, bn; n ^ 3,
βαcΛ o/ order two. Then there is an ordering of G{n) such that the set
S = {e = 60, δi, δ2, , 6W} is singular with respect to it.

Proof, (i) The ordering ^ is started with g% — at, i = 0, 1, 2, , w;
and flrn+i = ay1, j — 1, 2, , w. Since the generators are free, each of
the sets Sglf Sg2, , Sg2n contains 2n — 1 distinct elements of length 2.
It is clear that no element of length 2 in Sgt can equal an element of
length 2 in Sgj9 i Φ j \ and that included in the Sg t's are all elements
of length 2. Now successively adjoin to the set {g0, gly , g2n} the
elements of length 2 from Sglf Sg2, •••, Sgn respectively. This gives
£Wi> 02*+2> '"jQin^ Again since the generators are free, each of the
sets Sg2n+1, Sg2n+2, , Sg4n2 contains 2n — 1 distinct elements of length
3; no element of length 3 in Sgt can equal an element of length 3 in
Sgj9 i Φ j ; and all the elements of length 3 are included in them. As
before successively adjoin the elements of length 3 from Sg2n+1, Sg2n+2, ,
Sg4n*. The ordering ^ constructed in this manner by then adjoining
elements of length 4.5 etc., satisfies the conditions of the theorem. Indeed,
we have for any n, | Sgn Π {SgQ U % U U Sgn^) \ = 2, and since n :> 2,
2-2 ^ 2n + 1 = | S .

(ii) The proof is in the same spirit as that in (i). In this case
start the ordering with S and successively adjoin the elements from

Sg, - (Sg, n S), Sg2 - (Sg2 n (Sg1 U S)), •, Sgn

- {Sgn n (Sg.-x U Sgw_2 U • U S)) , . .

In this case | Sgn Π (Sgn^ U Sgn-2 U U S) \ = 2, and since w ̂  3,
2-2 ^ w + 1.

REMARK 4.8. It is not hard to see that for the case of F{n) an
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element of the form ae + ax + a2 + + an + ar1 + GhΓ1 + + an1 where
\a\ < 2n — 2 is singular in l\F{n)). From this it follows that the her-
mitian element x — aλ + a2 + + an + &Γ1 + ô Γ1 + + aζ1 contains
in its spectrum the closed circle about the origin of radius 2n — 2.

REMARK 4.9. For Gl2) the theorem is false. One way to see this
is to note that G(2) is the semi-direct product of the integers by a group
of order two, where the automorphism sends an element to its inverse.
Hence by Theorem 3.9, l^G™) is symmetric with respect to the natural
involution. Another way of seeing this will be given by Theorem 4.12
(see Remark 4.14).

REMARK 4.10. It is known that the group F{n\ n ^ 2 has a com-
plete set of representations by finite groups, and it follows from this
that F{n) can be algebraically imbedded in the complete direct sum of
these finite groups. By Theorem 3.10 we then have that the natural
involution is not hermitian in the group algebra of this complete direct
sum. However, we do not know the answer to the involution question
for the general case of the restricted direct sum (sequences reducing
to the identity from some point on) of finite groups.

REMARK 4.11. Group algebras are A* algebras in the sense in-
troduced by Rickart [8]. Unfortunately, Hille and Phillips [5: pp 22]
have defined an A* algebra to be a Banach algebra with an hermitian
involution. It follows from the above that these two definitions are not
the same.

Perhaps the simplest example of an hermitian element with non-real
spectrum can be found in the group algebra of the group G — {α, b : α2 = e).
The element x = a + b + b~x is hermitian and with respect to an order-
ing of G constructed in the same fashion as above, the matrix of Lίe+X

is:

"i 1 1 1 0 0 0 0 0 0 0 0
1 i 0 0 1 1 0 0 0 0 0 0
l O i O O O l l O O O O
l O O i O O O O l l O O
O l O O i O O O O O l l
O l O O O ί O O O O O O
O O l O O O i O O O O O
0 0 1 0 0 0 0 i 0 0 0 0

The element (ί, 1, —1, — i, —i, •••) e C^{G) will then be orthogonal to
all the rows of this matrix, and hence — i is in the spectrum of x.
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Theorem 4.12 is quite special, however it does suffice to show that
hermitian elements with finite support in l\Gw) have real spectrum.

Let S = (s4J); i, j = 1,2, be any infinite matrix and define Sin) = (sQ
by the equations Sy = sυ for i,j^n and Sy = 0 otherwise. S ( w ) will be
called the principal n x n section of S. If there is an integer k so that
smn — 0 whenever \m — n\^k, S will be called a corridor matrix of
width k.

THEOREM 4.12. Let T = (αy) be an hermitian corridor matrix of
width k, with sup^lα^l < oo. Then for any real number p, the operator
T + pil defined by this matrix maps I1 onto a dense subset of I1.

Proof. Note first that since the norm of an operator on I1 can be
computed by taking the sup of the I1 norms of the rows of its matrix
with respect to the usual basis, T is a bounded operator (we will not
distinguish between the matrix and the operator it represents) on I1.
Moreover since the matrix of T is hermitian, T can be extended to a
bounded operator on I2. Hence the spectrum of T as an operator on I2

is real.

Assume there is a sequence (<pu<p2, •••) (not necessarily bounded),
that is orthogonal to all the rows of (T + pil). Since T + pil is regular
as an operator on I2, it follows that Σi°=il^l 2 = °° We are going to
show that the sequence (φlfφ29 •••) is in fact unbounded.

Let l\n) denote ^-dimensional Hubert space and φ{n) = (<plf φ21 , φn).
Since T is hermitian, we have for any y e l\n) that || (Γ + pH)ίn)y\\2 έ
PlIl/IU where (T + ρil)[n) denotes the n x n matrix in the upper left
hand portion of the principal n x n section (T + pil){n). Let K be any
large number, and pick n0 > K so that Σ?=i I Ψ% I2 > 4:K2M2ksρ~2 where
J f = s u p 4 i J | t y | and mat (T+jθiI) = (tw). Let (T+piiy^φ^^(a^a,,- - -,an),
a* = Σ P = I a>kp<PP Since ψ — (φu <p2, •) is orthogonal to all the rows of
T + pil we have that ax — a2 = = αMo_fc = 0. From the I2 norm in-
equality above, we have that

n0

or

I at |2 ^ p\±K2M2Vp-2) = AK2M2k3 .

Hence some α io, n0 — k < i0 ^n0 is such that | aiQ |2 > AK2M2k2 or | atQ \ >
2KMk. However ah = Σ?=i ^ 0 ^ ί ^ a n d s i n c e t h e r e a r e a t m o s t 2 f c non-zero
terms, there is a p0 with | tioPQφPo \ > KM and hence | φPo \ > KMj\ tkPo \ ̂  K.
In other words, the sequence (φlfφ29 •••) is unbounded, and it follows
that the range of T + pil is dense in I1.
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For x = Σgea %{Q)Q € l\G), let Go denote the subgroup of G generated
by {g e G : x(g) Ψ 0}. Since this set is countable, Go is countable. We
have:

COROLLARY 4.13. If x = x* e Γ(G), ami wΐ£/ι respect to the basis
in ^(GQ) defined by some ordering of GOf mat (Lx) is a corridor matrix,
then the spectrum of x is real.

Proof. By Theorem 3.10 it sufficies to look at the spectrum of x
as an element of (̂Go). Now the theorem above gives that the ranges
of Lίe+X and L^ie+X are dense in ^(GQ). But these ranges are also ideals
and since they are dense, they must be all of Zi(G0) This means that
there are elements yx,y2e lτ(Go) such that (ie + x)yλ = e and (—ie + x)y2 — e.
Applying the involution to the latter equality gives y2(ie + x) = e. Hence
ie + x has both a right and left inverse, and is hence regular.

REMARK 4.14. Take the ordering (e, α, 6, αδ, ba, aba, •) in the group
G(2) = {α,6 : a2 = b2 — e}. Then it is easily seen that mat (Lx) is a corridor
matrix whenever x e l^G™) has finite support. Hence Theorem 4.7 does
not hold for G(2).

5 The involution and invariant means* The main results in this
section are Theorem 5.6 and Theorem 5.8. The first theorem gives us
some information concerning the involution when the group has an in-
variant mean, and in the second theorem it is shown that a group con-
taining a singular set cannot have an invariant mean.

A continuous linear functional λ on r^{G) is said to be an invariant
mean, if it satisfies:

(i) λ(<p)^0, φ^O, φe^(G);
(ii) X(φx) = \{φx) = X(φ) where φx(y) = φix^y), and ψ\y) = φ(yx);
(iii) λ(7) = 1 where I is the function identically 1 on G.
Whenever the notation λ(A), for A a subset of G, is used, it will

mean the number λ(χj where χA is the characteristic function of A*
For φ, ψ e C^{G) define a pseudo "inner product" (φ,ψ) =

A few simple properties of this inner product are given in:

LEMMA 5.1. ( i) (<p,ψ1 + ψ2) = (<P, ψ1) + (φ, ψ2);
(ii) (φ,φ) = (φ,φ);
(iii) (aφ, ψ) = a(φ, ψ);
(iv) (φ,φ)^0;
(V) I {φ, ψ) I S (φ, Ψ)ll\f ,ψy*;

where φ, ψ, ψ19 ψ2 € ^(G), and a is a complex number.

Proof, (v) will be proved, the other statements following immediately
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from the definitions.

0 ^ (φ — aψ, φ — aψ) = (φ, φ) — a(ψ, φ) — a(φ, ψ) + \ a \2(ψ, ψ) .

If (φ, ψ) = 0, (v) is trivial, so assume that {φ, ψ) Φ 0, and let a =
(φ, φ)l(φ, φ)\ (v) then follows by direct calculation.

Let ST = {φ e ίT(G): λ(| φ\) = 0}, and Sf = {̂  e <if (G): λ(| ?> |2) = 0}.
We have:

LEMMA 5.2. JίΓ is equal to .Sf and is a closed subspace of ^ ( G ) .

Proof. By letting ψ = / and replacing <p by its absolute value in
(v) above, we have that, | (\φ |, I) |2 ^ ( | ^ |, | φ ()(/, I) or ( λ ( | φ | ) 2 g
λ(| φ |2)λ(/2) = λ(| ̂ > |2). Hence λ(| ψ |2) = 0 implies λ(| ̂  |) = 0, and thus

Conversely if φ e 3% then | ^ | 2 ^ K\φ\ where K is a bound for
\φ\, and it follows that 3T c f̂f

Since | αφ + /3ψ | ^ | α | | ψ \ + | β \ \ ψ |, X is a subspace of <έT(G).
Finally for φn e 3Γ and || φn — ̂ > IU —> 0, it follows from the continuity
of λ that λ(| <p I) = 0, and hence 5ίΓ is closed.

Let ^ — ̂ ^ denote the space of cosets of <g*(G) with respect to
r : Forφ e & - 3Γ letWΦlh^XQφl): \\Φ ||2 = (λ(| ^ | 2 )) 1 / 2 , >̂ e Φ; and

9^,f ef Then:

LEMMA 5.3. .For φ, ψ e ^

( i ) || Φ ||i is ?^eϊϊ defined and a norm on c^ —
(ii) (φ, ψ) is well defined and makes ^ — 3ίΓ into a pre-Hilbert

space;

(iii) H Φ H ^ I I f ||2.

Proof. ( i ) Let φlf φ2 e φ so that φ1 = >̂2 + k where k e S>Γ. Then
- I ΨlQ) + fc(flf) I ̂  I 9>a(flr) I + I HO) I so that | φλ I ̂  I φ21 + I fc |.

Hence λ(| ̂  |) ^ λ(| % | + | fc |) ^ λ(| φ21) + λ( & |) = λ(| ̂ >21). Now by revers-
ing the roles of φx and φ2, it follows that | | Φ | | i is well defined. Also
IIΦ + f Ik = M l φ + ψ I) ^ x(\φ\ + 111) = H\<p\) + M l ψ I ) = IIΦ Ik + || ψ ||lf
and HαΦllx = IKά^lk = λ ( | α ^ | ) = | a\\{\φ\) = | α | | | φ || for φeφ,ψe f,
and a complex. Finally || Φ |U = 0 implies that λ ( | ^ | ) = 0, and hence
that Φ = 0. Thus || φ \\x is a norm on ^ — J^Γ

(ii) If <pi, ̂ 2 e Φ and -^^ ψ2 e ψ, then ^ = φ2 + fc, ψ^ = ψ2 + Z
where fe,ίeX Then (^, ψ2) = (<p2 + k,ψ2 + l) = (<p2, ψ2) + (<p2,1) +
(k, ψ2) + (fc, i). But I (φ2,1) |2 ̂  (^2, φ2) (I, I) = 0, I (fc, ψ2) I2 ̂  (fc, fc) (ψa> ψa) = 0,
and I (fc, ϊ) |2 S (kf k)(l, I) = 0, so that (Φ, ψ) is well defined. If (Φ, Φ) = 0,
then λ(| ψ |2) = 0 for >̂ 6 Φ, and by Lemma 5.2, ̂  e 5ίΓ or Φ = 0. Hence
with respect to (Φ, ψ), ^ — 3T becomes a pre-Hilbert space.
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L\G, λ) will denote the completion of ^ — J%Γ with respect to
HΦIIi; and L\G,X) the completion with respect to | | Φ | | 2 .

LEMMA 5.4.* Let g19 g2, , gn be distinct elements of G. Then there
is a subset A of G satisfying \(A) > 0, and Agt Π Agό = φ, i Φ j .

Proof. Let sf = {JS c G : Bgt Π Bg0 = φ, i = j}. sf is then non-
empty since {e} e Jϊζ and is partially ordered by inclusion. An immediate
application of Zorn's lemma gives a maximal element A. Let C —
AgΎ U Ag2 U U Agn U ( U w Ag^j1). It will be shown that C = G.
Indeed if h e G — C, let A' = 4̂ U {/̂ }. Since A is a maximal element

are indices i0 and j 0 such that k e A'giQ (Ί A'gjo and
Therefore either

Q, k = hgJQ; o r

o> k = h9j0-
But (c) implies that gio=gjo, a contradiction, (a) implies that k — hgiQ9

k = agh where aeA, and hence hgίQ = agJQ or h = α ^ ^ 1 giving fc e Aghg^
which is also a contradiction. The proof that (b) is impossible, is similar
to (a). Hence C — G, and X(A) > 0, since G is then the finite union of
sets, each of measure X(A).

Corresponding to an x e l\G), we are now going to define operators
on U{G, λ) and L\G, λ).

For ψ e & — 3ίΓ and g eG,φg will mean the coset in c^ — ̂ ί contain-
ing <pg. This is well defined since φ,ψ e φ imply φ — ψ = k e J£T Since
φg — ψg = kg is also in J3f it follows that Φg — ψg. For α? = Σ^eβ ^ί^)^ ^ ^(G)
d e f i n e T x φ = Σ ^ e ^ %{9)Φg forφe^ — Jΐ7 F o r <p e φ we h a v e ,

e Σ G

where G2 is some subset of G satisfying Σ^eβ-^ I ̂ (^) I <
Hence

Σ
gSG-G1

1ψ,ύ λ(Σ
\geG1

Σ
* The author is thankful to Professor H. A. Dye who suggested this lemma.
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Since ε was arbitrary we have that || Txφ\\x S \\ % II II ΦJIi
Now let Go be the countable subgroup generated by {g : x(g) Φ 0},

and let {gί9 g2, •••} be an ordering of Go. Let x{n) = Σ?=i»(Λ)ff* β y
Lemma 5.4 there is a subset A of G with λ(A) = c£>0, and Agt Π Agό = φ
for i ^ j" and 1 <L i, j ^ ti. Then

= λ(J Σ

Since || x(w) — α? || —> 0 as n —> oo we have that || Tx 1̂  = || a? ||. Finally
since Γ̂ . is bounded on W — 3ίΓ with respect to | |Φ | | i , it can be ex-
tended to the completion L\G, λ) without increasing its norm. The
extension will be denoted by Γx

(1).
The operator Tx on <Sf - ^T will now be extended to L2(G, λ). For

Φ e ctf — J%Γ, and φ e ψ we have

Σ χ{g)φg I2) ^ λ(( Σ

But {| a (g) |1/2 : g e G } e l\G), and so for any he G the sequence

{I α(0) Γ/2 \φg\(h):geG}e l\G). N o w

and

Σ
,geG

so that

and hence

λ((Σ
WgeG

1121 1 ' 2 1 Σ
g€G

Σ

Σ
Q6G

Σ
geσ

2 ) ^

J
λ ( Σ I χ(s) 1

\gβG

Ml ?>, I2)

II2 f

SO

or

We can therefore extend Tx to a bounded operator on L\G, λ) with-
out increasing its norm. These results are summarized in the following
theorem.
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THEOREM 5.5. The operator Tx on ί r — ^f defined by Txφ =
Σugeσ %(9)Φg> where x = Σpe<? %(9)9 e l1(G)f can be uniquely extended to
a bounded operator T™(T™) on V(G, X)(L\G, λ)), and \\ 2™ ||, ^ || 2™ ||x =

THEOREM 5.6. Lβ£ G Aαve cm invariant mean λ, emd Zeί # = #* e ̂ (G).
J/ ί/^ere is a <p e C^{G) whose nullspace contains the range of il + Lx,
then λ(| ψ I) = 0.

Proof. Since the nullspace of <p contains the range of il + Lx, we
have in particular that 9>((il + Lx)(h)) = 0 for all h e G. Let <?> =
and a; = Σ^e^ oc(g)g. Then

and

(il

Hence

0 = (i

Lxh = Σ χ(a
QβG

+ Lx)(h) = ih+ Σa?(ffA

+ x{e))φ(h) + Σ Hgh'1

Taking complex conjugates and

0 = (-i

= (-<

+ x{e))φ{h) + Y,x{g)φ{(

+ x(e))ψ(h) + Σ t̂o)1/Γfi

)sr^ = Σ χ(
9€G

~λ)g = (i +

M ? ) = ( i "

letting ψ(ί

^ ) = (-*H

Φ))(h) + Σ

- x{e))φ(h) +

0 = ^(ff) we

h a?(e))t(λ) +

gΦe

have,

Σ^to"1)

for all h e G, since a; = aj*.
On the other hand,

Σ

Σ

= ( - i + ί f (e) )#) + Σ %(9)ψ<,(h) = 0

for all he G. This means that {-il + Tx

2))(ψ)e JΓ, and since Tx

2) is
an hermitian operator on L2(G, λ), we must have ψ = 0. Therefore

We now show that the existence of a singular set (not necessarily
inverse closed) in a countable group, implies that the group does not
have an invariant mean. For this purpose we make essential use of a
theorem due to Fφlner [2].

THEOREM (Fφlner). A group G has an invariant mean if and only
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if for any finite set F and e > 0, there exists a finite set A of G such
that I A n xA I/I A \ > 1 - ε for all x e F.

LEMMA 5.7. Let F be a finite subset of a group G such that [F] is
infinite. Then if there is a finite set A with \ A Π %A\j\ A | > 1 — ε
for all x e F, then | A | ^ 1/ε.

Proof. Let F = {flff2, •,/*}> \A\ = r, and assume that r < 1/ε.
Then ε < 1/r, and for any fi e F, \ A n/<A | > (1 - ε)r > (1 - l/r)r =
r — 1, and hence A Π/*A = A or /€A = A (ΐ = 1, 2, , s). It follows
that gA = A for any # e [JF7]. Now since A is finite and [F] infinite,
there must exist elements α0 e A, g19 g2 e F, gλφ g2 such that gxaQ — g2a0.
But this gives gλ = g2, and we have contradicted the assumption that

THEOREM 5.8. If G contains a singular set F with respect to the
ordering {giyg2, •••}, then G does not possess an invariant mean.

Proof. Since F is singular there exists an integer ί0 such that
2 I Fgt n (Fgλ U ^ U U Fgt_λ) | ^ | F\ = s for t > ί0. Assume G does
have an invariant mean, so that Fφlner's condition is satisfied. Let
ε = l/72to(s — 1). Then there exists a finite set A with | A | = r, and

I A Π /«A I > (1 - ε) I A |
72to(s - 1) > 6ί0. Let

for any /, e F. From Lemma 5.7 | A | ^ 1/ε =

Consider the matrix

A = {#Wi, ^ 2 , , gΛr: n, < n2 <

••• \JFgntJ\ ^s for ί > t0.
< nr). Then

fiQn2

f?9nr

± 2 * * * J s9nr

and let B denote the set of distinct elements of this matrix. We are
first going to get an upper bound for \B\ by counting the elements of
the matrix row by row, and then a lower bound for \B\ by counting
them column by column. It will turn out that these bounds are incom-
patible and the proof completed.

The kth row of the matrix is simply fkA, and \f3A — (ftA ΓifjA) | <
3rε. Indeed | A Π /<A) | > (1 - ε)r implies | A - (A Π /*A) | < rε so that

A = (( A - (A n AA)) n (A - (A n f3A))) u ((A - ( A n f<A)) n (A n f3A))

u ((A n/*A) n (A - (A nfjA))) u ((A n/,A) n (A n/,A)) = Λ U A 2 U A 3 U A 4 ,

where the A/s are disjoint. Therefore r = | A | = | Ax | + | A21 + | A31 +
IA41< rε + rε + rε + IA41, and | (f,A nfjA) \ ̂  | A n/*A n/,A | = | A41 >
r — 3rε or |/^A — (/4A ΠfjA) | 3rε. Now the first row of the matrix has
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r elements and, as has just been shown, each additional row adds less
than 3rε additional distinct elements. Adding, we have | B | < r +
(s - l)3re.

The first ί0 columns obviously contain at least s distinct elements,
and from the singularity condition it follows that each additional column
from t0 + 1 through r adds at least s/2 distinct elements to B. Hence
I BI ^ s + (r - ίo)s/2.

Therefore s + (r - to)s/2 < r + (s - l)3rε = r + (s - l)3r/72£0(s -1) =
r + r/24t0. Since r = | A | ^ 1/ε > 6ί0 we have r — £0 > 5r/6. Hence
s + (5r/6)(β/2) < s + (r - to)s/2 < r + r/24ί0. Since s ^ 3, s(l + 5r/12) ^
3 + 5r/4 so that 3+5r/4<r + r/24ί0 or 12 + 5r<4r + r/6ί0=r(4 + l/6ί0)<5r,
and we have obtained the desired contradiction.
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