# GENERALIZED TWISTED FIELDS 

## A. A. Albert

1. Introduction. Consider a finite field $\AA$. If $V$ is any automorphism of $\Omega$ we define $\Omega_{V}$ to be the fixed field of $K$ under $V$. Let $S$ and $T$ be any automorphism of $\Omega$ and define $F$ to be the fixed field

$$
\begin{equation*}
\mathfrak{F}=\mathfrak{F}_{q}=\left(\Re_{S}\right)_{T}=\left(\Re_{T}\right)_{S}, \tag{1}
\end{equation*}
$$

under both $S$ and $T$. Then $\mathfrak{F}$ is the field of $q=p^{\alpha}$ elements, where $p$ is the characteristic of $\Re$, and $\Re$ is a field of degree $n$ over $\mathfrak{F}$. We shall assume that

$$
\begin{equation*}
n>2, \quad q>2 \tag{2}
\end{equation*}
$$

Then the period of a primitive element of $\Re$ is $q^{n}-1$ and there always exist elements $c$ in $\Re$ such that $c \neq k^{q-1}$ for any element $k$ of $\Re$. Indeed we could always select $c$ to be a primitive element of $\Omega$.

Define a product $(x, y)$ on the additive abelian group $\mathfrak{R}$, in terms of the product $x y$ of the field $\Re$, by

$$
\begin{equation*}
(x, y)=x A_{y}=y B_{x}=x y-c(x T)(y S) \tag{3}
\end{equation*}
$$

for $c$ in $\Omega$. Then

$$
\begin{equation*}
A_{y}=R_{y}-T R_{c(y S)}, \quad B_{x}=R_{x}-S R_{c(x T)} \tag{4}
\end{equation*}
$$

where the transformation $R_{y}=R[y]$ is defined for all $y$ in $\Re$ by the product $x y=x R_{y}$ of $\Omega$. Then the condition that $(x, y) \neq 0$ for all $x y \neq 0$ is equivalent to the property that

$$
\begin{equation*}
c \neq \frac{x}{x T} \frac{y}{y S} \tag{5}
\end{equation*}
$$

for any nonzero $x$ and $y$ of $\Omega$. But the definition of a generating automorphism $U$ of $\mathfrak{\Omega}$ over $\mathfrak{F}$ by $x U=x^{q}$ implies that

$$
\begin{equation*}
S=U^{\beta}, \quad T=U^{\gamma} \tag{6}
\end{equation*}
$$

We shall assume that $S \neq I, T \neq I$, so that

$$
\begin{equation*}
0<\beta<n, \quad 0<\gamma<n \tag{7}
\end{equation*}
$$

Then $x y[(x S)(y T)]^{-1}=z^{q-1}$, where

$$
\begin{equation*}
1-q^{\beta}=(q-1)^{\delta}, 1-q^{\gamma}=(q-1)^{\varepsilon}, z=x^{\delta} y^{\varepsilon} \tag{8}
\end{equation*}
$$

[^0]Thus the condition that $c \neq k^{q-1}$ is sufficient to insure the property that $(x, y) \neq 0$ whenever $x y \neq 0$.

For every $c$ satisfying (5) we can define a division ring $\mathfrak{D}=$ $\mathfrak{D}(\Re, S, T, c)$, with unity quantity $f=e-c$, where $e$ is the unity quantity of $\Omega$. It is the same additive group as $K$ and we define the product $x \cdot y$ of $D$ by

$$
\begin{equation*}
x A_{e} \cdot y B_{e}=(x, y) \tag{9}
\end{equation*}
$$

These rings may be seen to generalize the twisted fields defined in an earlier paper. ${ }^{1}$

We shall show that $\mathfrak{D}$ is isomorphic to $\mathscr{R}$ if and only if $S=T$. Indeed we shall derive the following result.

Theorem 1. Let $S \neq I, T \neq I, S \neq T$. Then the right nucleus of $\mathfrak{D}(\Re, S, T, c)$ is $f \Re_{S}$ and the left nucleus of $\mathfrak{D}(\Re, S, T, c)$ is $f \Omega_{T}$. If $\mathfrak{Z}$ is the set of all elements $g$ of $\Omega$ such that $g S=g T$ then $g A_{e}=g B_{e}$ and $\mathfrak{R} A_{e}=\mathfrak{Z} B_{e}$ is the middle nucleus of $\mathfrak{D}$.

The result above implies that $f \mathscr{F}$ is the center of $\mathfrak{D}(\Re, S, T, c)$. Since it is known ${ }^{2}$ that isotopic rings have isomorphic right (left and middle) nuclei, our results imply that the (generalized) twisted fields $\mathfrak{D}(\Re, S, T, c)$ are new whenever the group generated by either $S$ or $T$ is not the group generated by $S$ and $T$. In this case our new twisted fields define new finite non-Desarguesian projective planes. ${ }^{3}$

## 2. The fundamental equation. Consider the equation

$$
\begin{equation*}
A_{x} A_{e}^{-1} A_{y}=A_{z} \tag{9}
\end{equation*}
$$

for $x, y$ and $z$ in $\Re$. Assume that the degree of $\Re$ over $\Re_{T}$ is $m$, where we shall now assume that

$$
\begin{equation*}
m>2 \tag{10}
\end{equation*}
$$

[^1]Then the norm in $\mathfrak{\Omega}$ over $\Re_{T}$ of any element $k$ of $\mathfrak{\Re}$ is

$$
\begin{equation*}
\nu(k)=k(k T) \cdots\left(k T^{m-1}\right) \tag{11}
\end{equation*}
$$

and $\nu(k)$ is in $\mathscr{\Omega}_{T}$, that is,

$$
\begin{equation*}
\nu(k)=[\nu(k)] T \tag{12}
\end{equation*}
$$

for every $k$ of $\Re$. Thus

$$
\begin{equation*}
I-\left(T R_{c}\right)^{m}=I-R_{\nu(e)}=R_{a} \tag{13}
\end{equation*}
$$

where

$$
\begin{equation*}
d=e-\nu(c)=d T \tag{14}
\end{equation*}
$$

Now

$$
\begin{equation*}
A_{e}=I-T R_{c}, \quad B_{e}=I-S R_{c}, \tag{15}
\end{equation*}
$$

and we obtain

$$
\begin{equation*}
A_{e}\left[I+T R_{c}+\left(T R_{c}\right)^{2}+\cdots+\left(T R_{c}\right)^{m-1}\right]=R_{a}, \tag{16}
\end{equation*}
$$

so that

$$
\begin{equation*}
I+T R_{c}+\left(T R_{c}\right)^{2}+\cdots+\left(T R_{c}\right)^{m-1}=A_{e}^{-1} R_{a} \tag{17}
\end{equation*}
$$

Our definition (4) implies that

$$
\begin{equation*}
R_{a} A_{y}=A_{y} R_{a}, \quad R_{b} B_{x}=B_{x} R_{b} \tag{18}
\end{equation*}
$$

for every $x$ and $y$ of $K$, providing that

$$
\begin{equation*}
a=a T, \quad b=b S \tag{19}
\end{equation*}
$$

In particular, $R_{d} A_{y}=A_{y} R_{a}$, and so (9) is equivalent to

$$
\begin{equation*}
A_{x}\left[I+\left(T R_{c}\right)+\left(T R_{c}\right)^{2}+\cdots+\left(T R_{c}\right)^{m-1}\right] A_{y}=A_{z} R_{a} \tag{20}
\end{equation*}
$$

It is well known that distinct automorphisms of any field $\Re$ are linearly independent in the field of right multiplications of $\Omega$. Thus we can equate the coefficients of the distinct powers of $T$ in the equation (20). The right member of (20) is $R_{z d}-T R_{c a(z S)}$ and so does not contain the term in $T^{m-1}$ when $m>2$. It follows that

$$
\begin{align*}
R_{x}\left[\left(T R_{c}\right)^{m-1} R_{y}\right. & \left.-\left(T R_{c}\right)^{m-2}\left(T R_{c}\right) R_{y s}\right]  \tag{21}\\
& -T R_{c(x S)}\left[\left(T R_{c}\right)^{m-2} R_{y}-\left(T R_{c}\right)^{m-3}\left(T R_{c}\right) R_{y s}\right]=0 .
\end{align*}
$$

This equation is equivalent to

$$
\begin{equation*}
x T^{m-1}(y-y S)=x S T^{m-2}(y-y S) \tag{22}
\end{equation*}
$$

and so to the relation

$$
\begin{equation*}
\left[\left(x-x S T^{-1}\right) T^{m-1}\right](y-y S)=0 \tag{23}
\end{equation*}
$$

By symmetry we have the following result.

Lemma 1. Let $T$ have period $m>2$. Then the equation $A_{x} A_{e}^{-1} A_{y}=A_{z}$ holds for some $x, y, z$ in $\Re$ only if $y=y S$ or $x=x S T^{-1}$. If $S$ has period $m_{0}>2$ the equation $B_{y} B_{e}^{-1} B_{x}=B_{z}$ holds for some $x, y, z$ in $\Re$ only if $x=x T$ or $y=y S T^{-1}$.
3. The nuclei. The ring $\mathfrak{D}=\mathfrak{I}(\Re, S, T, c)$ has its product defined by

$$
\begin{equation*}
x \cdot y=x R_{y}^{(o)}=y L_{y}^{(c)} \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
R_{y B_{e}}^{(c)}=A_{e}^{-1} A_{y}, \quad L_{x A_{e}}^{(c)}=B_{e}^{-1} B_{x} . \tag{25}
\end{equation*}
$$

When $S=T$ our formula (3) becomes $(x, y)=x y-c[(x y) S]=x y\left(I-S R_{c}\right)$. But then the ring $\mathfrak{D}_{0}$, defined by the product $(x, y)$, is isotopic to the field $\mathfrak{\Re}$. Since $\mathfrak{D}=\mathfrak{D}(\Re, S, S, c)$ is isotopic to $\mathfrak{D}_{0}$ it is isotopic to $\mathfrak{R}$, and it is well known that $\mathfrak{D}$ is then also isomorphic to $\mathscr{R}$. Assume henceforth that

$$
\begin{equation*}
S \neq T \tag{26}
\end{equation*}
$$

The right nucleus of $\mathfrak{D}$ is the set $\mathfrak{R}_{\rho}$ of all elements $z_{\rho}$ in $\mathfrak{R}$ such that

$$
\begin{equation*}
(x \cdot y) \cdot z_{\rho}=x \cdot\left(y \cdot z_{\rho}\right), \tag{27}
\end{equation*}
$$

for every $x$ and $y$ of $\Re$. Suppose that $b=b S$ so that

$$
\begin{equation*}
A_{b}=R_{b}-T R_{c(b S)}=\left(I-T R_{c}\right) R_{b}, A_{e}^{-1} A_{b}=R_{b} \tag{28}
\end{equation*}
$$

By (18) we know that $R_{b} B_{x}=B_{x} R_{b}$, and so $R_{b}\left(B_{e}^{-1} B_{x}\right)=\left(B_{e}^{-1} B_{x}\right) R_{b}$ for every $x$ of $\Omega$. By (25) this implies that the transformation

$$
\begin{equation*}
R_{b}=A_{e}^{-1} A_{b}=R_{b B_{e}}^{(c)} \tag{29}
\end{equation*}
$$

commutes with every $L_{x}^{(e)}$. However, (27) is equivalent to

$$
\begin{equation*}
L_{x}^{(c)} R_{z_{\rho}}^{(c)}=R_{z_{\rho}}^{(c)} L_{x}^{(c)} \tag{30}
\end{equation*}
$$

Thus $b B_{e}=b\left(I-S R_{c}\right)=b(e-c)=b f$ is in $\mathfrak{\Re}_{\rho}$. We have proved that the right nucleus of $\mathfrak{D}=\mathfrak{D}\left(\Re, S, T, c\right.$ ) contains the field $f \Re_{S}$, a subring. of $\mathfrak{D}$ isomorphic to $\Re_{S}$.

The left nucleus $\mathfrak{R}_{\lambda}$ of $\mathfrak{D}$ consists of all $z_{\lambda}$ such that

$$
\begin{equation*}
\left(z_{\lambda} \cdot y\right) \cdot x=z_{\lambda} \cdot(y \cdot x) \tag{31}
\end{equation*}
$$

for all $x$ and $y$ of $\Re$. This equation is equivalent to

$$
\begin{equation*}
L_{z_{\lambda}}^{(c)} R_{x}^{(c)}=R_{x}^{(c)} L_{z_{\lambda}}^{(c)} \tag{32}
\end{equation*}
$$

for every $x$ of $\Omega$. If $a=a T$ then $B_{a}=\left(I-S R_{c}\right) R_{a}, B^{-1} B_{a}=R_{a}=$ $L_{\alpha A_{e}}^{(c)}$ commutes with every $A_{y}$ and every $R_{x}^{(c)}$, and we see that the left nucleus of $\mathfrak{D}(\Re, S, T, c)$ contains the field $f \Re_{T}$ isomorphic to $\Re_{T}$.

The middle nucleus of $\mathfrak{A}=\mathfrak{D}(\mathfrak{R}, S, T, c)$ is the set $\mathfrak{R}_{\mu}$ of all $z_{\mu}$ of $\mathfrak{\Re}$ such that

$$
\begin{equation*}
\left(x \cdot z_{\mu}\right) \cdot y=x \cdot\left(z_{\mu} \cdot y\right) \tag{33}
\end{equation*}
$$

for every $x$ and $y$ of $\Omega$. This equation is equivalent to

$$
\begin{equation*}
R_{z}^{(c)} R_{y}^{(c)}=R_{z \cdot y}^{(c)}, \tag{34}
\end{equation*}
$$

where $z=z_{\mu}$. However, we can observe that the assumption that

$$
\begin{equation*}
R_{z}^{(c)} R_{y}^{(c)}=R_{v}^{(c)} \tag{35}
\end{equation*}
$$

for some $v$ in $\Re$, implies that $(f \cdot z) \cdot y=f \cdot v=v=z \cdot y$, Hence (34) holds for every $y$ in $\Omega$ if and only if

$$
\begin{equation*}
A_{g} A_{e}^{-1} A_{v}=A_{v} \tag{36}
\end{equation*}
$$

for every $y$ of $\Omega$, where $v$ is in $\Omega$ and

$$
\begin{equation*}
g B_{e}=z=z_{\mu} \tag{37}
\end{equation*}
$$

If $g S=g T$ then $A_{g}=R_{g}-T R_{c(g S)}=R_{g}-T R_{c(g T)}=R_{g}-R_{g} T R_{c}=R_{g} A_{e}$. Then (36) becomes

$$
\begin{equation*}
R_{g} A_{y}=R_{g}\left(R_{g}-T R_{c(y S)}\right)=R_{g y}-T R_{c(y S g T)}=A_{g y} \tag{38}
\end{equation*}
$$

Hence $g B_{e}=g\left(I-S R_{c}\right)=g-(g S) c=g-(g T) c=g A_{e}$, and $\mathfrak{R}_{\mu}$ contains the field of all elements $g B_{e}$ for $g S=g T$.

We are now able to derive the converse of these results. We first observe that (27) is equivalent to

$$
\begin{equation*}
R_{y}^{(c)} R_{z}^{(c)}=R_{y \cdot z}^{(c)}, \tag{39}
\end{equation*}
$$

for every $y$ of $\Re$, where $z=z_{\rho}$. This equation is equivalent to

$$
\begin{equation*}
A_{y} A_{e}^{-1} A_{u}=A_{v} \tag{40}
\end{equation*}
$$

where $z=u B_{e}$. If the period of $T$ is $m>2$ we use Lemma 1 to see that, if we take $y \neq y S T^{-1}$, then $u=u S, z=u B_{e}=f u$. The stated choice of $y$ is always possible since we assuming that $S \neq T$ and so some element of $\mathfrak{R}$ is not left fixed by $S T^{-1}$. Thus $\mathfrak{R}=f \Re_{S}$. Similarly, is the period of $S$ is not two then $\mathfrak{R}_{\lambda}=f \mathfrak{\Omega}_{r}$. Assume that one of $S$ and $T$ has period two.

The automorphisms $S$ and $T$ cannot both have period two. For the group $G$ of automorphisms of $\Re$ is a cyclic group and has a unique subgroup $\mathfrak{F}$ of order two. This group contains $I$ and only one other automorphism. If $S$ and $T$ both had period two we would have $S=T$ and so $m=n=2$, contrary to hypothesis. Thus we may assume that one of $S$ and $T$ has period two. There is clearly no loss of generality if we assume that $T$ has period two, so that the period of $S$ is at least three. By the argument already given we have $\mathfrak{R}_{\lambda}=f \mathfrak{\Omega}_{T}$. We are then led to study (40) as holding for all elements $y$ of $\Re$, where $z_{\rho}=$ $u B_{e}$. Now

$$
\begin{equation*}
A_{e}=I-T R_{c}, A_{e}\left(I+T R_{c}\right)=R_{a}, d=e-c(c T)=d T \tag{41}
\end{equation*}
$$

But then (40) becomes

$$
\begin{equation*}
\left[R_{y}-T R_{c(y S)}\right]\left(I+T R_{c}\right)\left[R_{u}-T R_{c(u S)}\right]=R_{v d}-T R_{c a(v S)} \tag{42}
\end{equation*}
$$

This yields the equations

$$
\begin{gather*}
y[u-c(c T)(u S)]-(y S T)[c(c T)](u-u S)=v d  \tag{43}\\
y T(u-u S)-y S[u-(u S) c(c T)]=-d(v S) \tag{44}
\end{gather*}
$$

Hence

$$
\begin{aligned}
d(y S)[u S & \left.-(c S)(c S T)\left(u S^{2}\right)\right]-y S^{2} T(c S)(c S T)\left(u S-u S^{2}\right) d=v S(d S) d \\
& =(d S) y S[u-(u S) c(c T)]-y T(u-u S)(d S)
\end{aligned}
$$

Since this holds for all $y$ we have the transformation equation

$$
\begin{align*}
S R[d(u S) & \left.-d(c S)(c S T) u S^{2}\right]-S^{2} T R\left[d(c S)(c S T)\left(u S-u S^{2}\right)\right]  \tag{45}\\
& =S R[d S u-(d S)(u S) c(c T)]-T R[(u-u S) d S]
\end{align*}
$$

Since $S^{2} \neq I$ and $T \neq S, S^{2} T$ we know that the coefficient of $S^{2} T$ is zero. Thus $(u-u S) d S=0$ and $u=u S$ as desired. This shows that $\mathfrak{R}_{\rho}=f \Omega_{S}$.

The middle nucleus condition (36) implies that $g S=g T$ if $T$ does not have period two. When $T$ does have period two but $S$ does not have period two the analogous property

$$
\begin{equation*}
L_{x \cdot z}^{(c)}=L_{z}^{(c)} L_{x}^{(c)} \tag{46}
\end{equation*}
$$

is equivalent to

$$
\begin{equation*}
B_{g} B_{e}^{-1} B_{x}=B_{v}, \tag{47}
\end{equation*}
$$

and we see again that $g S=g T$. This completes our proof of the theorem stated in the introduction.
4. Commutativity. It is known ${ }^{4}$ that $\mathfrak{D}=\left(\Re, S, S^{-1}, c\right)$ is commutative if and only if $c=-1$. There remains the case where

$$
\begin{equation*}
S \neq I, T \neq I, S T \neq I, S \neq T \tag{48}
\end{equation*}
$$

Any $\mathfrak{D}(\Re, S, T, c)$ is commutative if and only if $R_{x}^{(e)}=L_{x}^{(c)}$ for every $x$ of $\Omega$. Assume first that $\Re_{S} \neq \Omega_{T}$. There is clearly no loss of generality if we assume that there is an element $b$ in $\mathscr{R}_{S}$ and not in $\Re_{T}$, since the roles of $S$ and $T$ can be interchanged when $\mathfrak{D}(\Re, S, T, c)$ is commutative. Thus we have $b=b S \neq b T$. By (28) we know that $A_{b}=A_{e} R_{b}$ and so we have $R_{b f}^{(c)}=R_{b}$. Then $L_{b f}^{(c)}=B_{e}^{-1} B_{y}=R_{b}$, where $y=(b f) A_{e}^{-1}$. It follows that

$$
\begin{equation*}
B_{g}=R_{y}-S R_{c(y T)}=B_{e} R_{b}=\left(I-S R_{c}\right) R_{b} \tag{49}
\end{equation*}
$$

Then $R_{y}=R_{b}, y=b, c(y T)=c(b T)=c b$, and $b=b T$ contrary to hypothesis.

We have shown that if $\mathfrak{D}(\Omega, S, T, c)$ is commutative the automorphisms $S$ and $T$ have the same fixed fields, that is, $b=b S$ if and only if $b=b T, b$ is in $\mathfrak{F}$. Thus $S$ and $T$ both generate the cyclic automorphism group (SS of order $n$ of $\Re$ over $\mathfrak{F}$, and $S$ is a power of $T$. Since $T^{-1}=T^{n-1} \neq S$ there exists an integer $r$ such that

$$
\begin{equation*}
0<r<n-1, S=T^{r} \tag{50}
\end{equation*}
$$

We now use the fact that $R_{x}^{(c)}=L_{x}^{(c)}$ for every $x$ of $K$ to see that $A_{e}^{-1} A_{x}=B_{e}^{-1} B_{y}$ for every $x$ of $\Omega$, where $y=x B_{e} A_{e}^{-1}$. Also $\left(T R_{c}\right)^{n}=$ $\left(S R_{c}\right)^{n}=R_{\nu(c)}$, and our condition becomes

$$
\begin{align*}
& {\left[I+T R_{c}+\left(T R_{c}\right)^{2}+\cdots+\left(T R_{c}\right)^{n-1}\right]\left[R_{x}-T R_{c(x S)}\right]}  \tag{51}\\
& \quad=\left[I+S R_{c}+\left(S R_{c}\right)^{2}+\cdots+\left(S R_{c}\right)^{n-1}\right]\left[R_{y}-S R_{c(y T)}\right]
\end{align*}
$$

where we have used the fact that $d=e-\nu(c)=d T=d S$. Compute the constant term to obtain the equation

$$
\begin{equation*}
R_{x}-\left(T R_{c}\right)^{n} R_{x s}=R_{y}-\left(S R_{c}\right)_{u} R_{y T} \tag{52}
\end{equation*}
$$

This is equivalent to the relation $x-[\nu(c)](x S)=y-[\nu(c)] y T$ for every $x$ of $K$, where $y=x B_{e} A_{e}^{-1}$. Thus (52) is equivalent to

$$
\begin{equation*}
I-S R_{\nu(c)}=B_{e} A_{e}^{-1}\left[I-T R_{\nu(0)}\right] \tag{53}
\end{equation*}
$$

We also compute the term in $T^{r}$ in (51). Since $r<n-1$ the left member of this term is $\left(T R_{c}\right)^{r} R_{x}-\left(T R_{c}\right)^{r} R_{x s}$, which is equal to $R^{r} R_{g c}\left(R_{x}-R_{x s}\right)$, where $g=(c T)(c T)^{2} \cdots(c T)^{r-1}$. The right member is the term in $S$, and this is $S R_{c}\left(R_{y}-R_{y T}\right)$. Hence $(x-x S) g=y-y T$, a result equivalent to

[^2]\[

$$
\begin{equation*}
(I-S) R_{g}=B_{e} A_{e}^{-1}(I-T) \tag{54}
\end{equation*}
$$

\]

Since the transformations $I-T$ and $I-T R_{\nu(c)}$ commute we may use (53) to obtain

$$
\begin{equation*}
(I-S) R_{g}\left[I-T R_{\nu(c)}\right]=\left[I-S R_{\nu(c)}\right](I-T) \tag{55}
\end{equation*}
$$

By (48) we may equate coefficients of $I, S, T$ and $S T$, respectively. The constant term yields $g=e$. The term in $S$ then yields $\nu(c)=e$ which is impossible when $S$ and $T$ generate the same group and $\mathfrak{D}=\mathfrak{D}(\Re, S, T, c)$ is a division algebra.

We have proved the following result.
Theorem 2. Let $\mathfrak{D}=\mathfrak{D}(\Re, S, T, c)$ be a division algebra defined for $S \neq I, \quad T \neq I, S \neq T$. Then $\mathfrak{D}$ is commutative if and only if $S T=I$ and $c=-1$.

The University of Chicago


[^0]:    Received April 25, 1960. This paper was supported in part by an Esso Educational Foundation Grant and by NSF Grant G-9504.

[^1]:    ${ }^{1}$ For earlier definitions of twisted fields see the case $c=-1$ in $O n$ nonassociative division algebras, Trans. Amer. Math. Soc. 72 (1952), 296-309 and the general case in Finite noncommutative division algebras, Proc. Amer. Math. Soc. 9 (1958), 928-932. In those papers we defined a product $[x, y]=x(y T)-c y(x T)$ so that $(x, y)=\left[x, y T^{-1}\right]=$ $x y-c(y S)(x T)$ is the product (3) with $S=T^{-1}$.
    ${ }_{2}$ This result was originally given for loops by R.H. Bruck. It is easy to show that, if $\mathfrak{D}$ and $\mathfrak{D}_{0}$ are isotopic rings with isotopy defined by the relation $Q R_{x P}=R_{x}^{(c)} Q R_{z}$, then the mapping $x \rightarrow(z x) P^{-1}$ induces an isomorphism of the right nucleus $\mathfrak{D}$ onto that of $\mathfrak{D}_{0}$, and the mapping $x \rightarrow(x z) P^{-1}$ induces an isomorphism of the middle nucleus of $\mathfrak{D}$ onto that of $\mathfrak{D}_{0}$.
    ${ }_{3}$ Two finite projective planes $\mathfrak{M}(\mathfrak{D})$ and $\mathfrak{M}\left(\mathfrak{D}_{0}\right)$ coordinatized by division rings $\mathfrak{D}$ and $\mathfrak{D}_{0}$ respectively are known to be isomorphic if and only if $\mathfrak{D}$ and $\mathfrak{D}_{0}$ are isotopic. See the author's Finite division algebras and finite planes, Proceedings of Symposia in Applied Mathematics; vol. 10, pp. 53-70.

[^2]:    ${ }^{4}$ See footnote 1.

