GENERALIZED TWISTED FIELDS

A.A. Albert

1. Introduction. Consider a finite field \Re . If V is any automorphism of \Re we define \Re_r to be the *fixed field* of K under V. Let S and T be any automorphism of \Re and define F to be the fixed field

(1)
$$\mathfrak{F} = \mathfrak{F}_q = (\mathfrak{R}_s)_T = (\mathfrak{R}_T)_s ,$$

under both S and T. Then \mathfrak{F} is the field of $q = p^{\alpha}$ elements, where p is the characteristic of \mathfrak{R} , and \mathfrak{R} is a field of degree n over \mathfrak{F} . We shall assume that

$$(2)$$
 $n>2$, $q>2$.

Then the period of a primitive element of \Re is $q^n - 1$ and there always exist elements c in \Re such that $c \neq k^{q-1}$ for any element k of \Re . Indeed we could always select c to be a primitive element of \Re .

Define a product (x, y) on the additive abelian group \Re , in terms of the product xy of the field \Re , by

(3)
$$(x, y) = xA_y = yB_x = xy - c(xT)(yS)$$
,

for c in \Re . Then

$$(4)$$
 $A_y = R_y - TR_{c(yS)}$, $B_x = R_x - SR_{c(xT)}$,

where the transformation $R_y = R[y]$ is defined for all y in \Re by the product $xy = xR_y$ of \Re . Then the condition that $(x, y) \neq 0$ for all $xy \neq 0$ is equivalent to the property that

$$(5)$$
 $c
eq rac{x}{xT} rac{y}{yS}$,

for any nonzero x and y of \Re . But the definition of a generating automorphism U of \Re over \Im by $xU = x^q$ implies that

$$(6) S = U^{\beta}, T = U^{\gamma}.$$

We shall assume that $S \neq I$, $T \neq I$, so that

$$(7) \qquad \qquad 0 < \beta < n , \qquad 0 < \gamma < n .$$

Then $xy[(xS)(yT)]^{-1} = z^{q-1}$, where

(8)
$$1-q^{\beta}=(q-1)^{\delta}, \ 1-q^{\gamma}=(q-1)^{\varepsilon}, \ z=x^{\delta}y^{\varepsilon}.$$

Received April 25, 1960. This paper was supported in part by an Esso Educational Foundation Grant and by NSF Grant G-9504.

Thus the condition that $c \neq k^{q-1}$ is sufficient to insure the property that $(x, y) \neq 0$ whenever $xy \neq 0$.

For every c satisfying (5) we can define a division ring $\mathfrak{D} = \mathfrak{D}(\mathfrak{R}, S, T, c)$, with unity quantity f = e - c, where e is the unity quantity of \mathfrak{R} . It is the same additive group as K and we define the product $x \cdot y$ of D by

These rings may be seen to generalize the twisted fields defined in an earlier paper.¹

We shall show that \mathfrak{D} is isomorphic to \mathfrak{R} if and only if S = T. Indeed we shall derive the following result.

THEOREM 1. Let $S \neq I$, $T \neq I$, $S \neq T$. Then the right nucleus of $\mathfrak{D}(\mathfrak{R}, S, T, c)$ is $f\mathfrak{R}_s$ and the left nucleus of $\mathfrak{D}(\mathfrak{R}, S, T, c)$ is $f\mathfrak{R}_r$. If \mathfrak{L} is the set of all elements g of \mathfrak{R} such that gS = gT then $gA_e = gB_e$ and $\mathfrak{L}A_e = \mathfrak{L}B_e$ is the middle nucleus of \mathfrak{D} .

The result above implies that $f\mathfrak{F}$ is the center of $\mathfrak{D}(\mathfrak{R}, S, T, c)$. Since it is known² that isotopic rings have isomorphic right (left and middle) nuclei, our results imply that the (generalized) twisted fields $\mathfrak{D}(\mathfrak{R}, S, T, c)$ are new whenever the group generated by either S or T is not the group generated by S and T. In this case our new twisted fields define new finite non-Desarguesian projective planes.³

2. The fundamental equation. Consider the equation

for x, y and z in \Re . Assume that the degree of \Re over \Re_{τ} is m, where we shall now assume that

(10) m > 2.

¹ For earlier definitions of twisted fields see the case c = -1 in On nonassociative division algebras, Trans. Amer. Math. Soc. **72** (1952), 296-309 and the general case in Finite noncommutative division algebras, Proc. Amer. Math. Soc. **9** (1958), 928-932. In those papers we defined a product [x, y] = x(yT) - cy(xT) so that $(x, y) = [x, yT^{-1}] = xy - c(yS)(xT)$ is the product (3) with $S = T^{-1}$.

² This result was originally given for loops by R. H. Bruck. It is easy to show that, if \mathfrak{D} and \mathfrak{D}_0 are isotopic rings with isotopy defined by the relation $QR_{xP} = R_x^{(c)}QR_z$, then the mapping $x \to (zx)P^{-1}$ induces an isomorphism of the right nucleus \mathfrak{D} onto that of \mathfrak{D}_0 , and the mapping $x \to (xz)P^{-1}$ induces an isomorphism of the middle nucleus of \mathfrak{D} onto that of \mathfrak{D}_0 .

³ Two finite projective planes $\mathfrak{M}(\mathfrak{D})$ and $\mathfrak{M}(\mathfrak{D}_0)$ coordinatized by division rings \mathfrak{D} and \mathfrak{D}_0 respectively are known to be isomorphic if and only if \mathfrak{D} and \mathfrak{D}_0 are isotopic. See the author's *Finite division algebras and finite planes*, Proceedings of Symposia in Applied Mathematics; vol. 10, pp. 53-70.

Then the *norm* in \Re over \Re_r of any element k of \Re is $\nu(k) = k(kT) \cdots (kT^{m-1}),$ (11)and $\nu(k)$ is in \Re_T , that is, $\nu(k) = [\nu(k)]T$ (12)for every k of \Re . Thus $I - (TR_c)^m = I - R_{\nu(e)} = R_d$, (13)where $d = e - \nu(c) = dT.$ (14)Now $A_e = I - TR_c$, $B_e = I - SR_c$, (15)and we obtain $A_{e}[I + TR_{c} + (TR_{c})^{2} + \cdots + (TR_{c})^{m-1}] = R_{a}$ (16)so that $I + TR_c + (TR_c)^2 + \cdots + (TR_c)^{m-1} = A_e^{-1}R_d$. (17)Our definition (4) implies that $R_a A_v = A_v R_a$, $R_b B_r = B_r R_b$ (18)

for every x and y of K, providing that

$$(19) a = aT, b = bS.$$

In particular, $R_a A_y = A_y R_a$, and so (9) is equivalent to

(20)
$$A_x[I + (TR_c) + (TR_c)^2 + \cdots + (TR_c)^{m-1}]A_y = A_z R_a.$$

It is well known that distinct automorphisms of any field \Re are linearly independent in the field of right multiplications of \Re . Thus we can equate the coefficients of the distinct powers of T in the equation (20). The right member of (20) is $R_{zd} - TR_{cd(zS)}$ and so does not contain the term in T^{m-1} when m > 2. It follows that

(21)
$$R_x[(TR_c)^{m-1}R_y - (TR_c)^{m-2}(TR_c)R_{yS}] - TR_{c(xS)}[(TR_c)^{m-2}R_y - (TR_c)^{m-3}(TR_c)R_{yS}] = 0$$
.

This equation is equivalent to

(22)
$$xT^{m-1}(y-yS) = xST^{m-2}(y-yS)$$
,

and so to the relation

(23)
$$[(x - xST^{-1})T^{m-1}](y - yS) = 0.$$

By symmetry we have the following result.

LEMMA 1. Let T have period m > 2. Then the equation $A_x A_e^{-1} A_y = A_x$ holds for some x, y, z in \Re only if y = yS or $x = xST^{-1}$. If S has period $m_0 > 2$ the equation $B_y B_e^{-1} B_x = B_x$ holds for some x, y, z in \Re only if x = xT or $y = yST^{-1}$.

3. The nuclei. The ring $\mathfrak{D} = \mathfrak{D}(\mathfrak{R}, S, T, c)$ has its product defined by

(24)
$$x \cdot y = x R_y^{(o)} = y L_y^{(c)},$$

where

(25)
$$R_{yB_e}^{(c)} = A_e^{-1}A_y$$
, $L_{xA_e}^{(c)} = B_e^{-1}B_x$.

When S = T our formula (3) becomes $(x, y) = xy - c[(xy)S] = xy(I-SR_c)$. But then the ring \mathfrak{D}_0 , defined by the product (x, y), is isotopic to the field \mathfrak{R} . Since $\mathfrak{D} = \mathfrak{D}(\mathfrak{R}, S, S, c)$ is isotopic to \mathfrak{D}_0 it is isotopic to \mathfrak{R} , and it is well known that \mathfrak{D} is then also isomorphic to \mathfrak{R} . Assume henceforth that

$$(26) S \neq T$$

The right nucleus of \mathfrak{D} is the set \mathfrak{N}_{ρ} of all elements z_{ρ} in \mathfrak{R} such that

(27)
$$(x \cdot y) \cdot z_{\rho} = x \cdot (y \cdot z_{\rho}) ,$$

for every x and y of \Re . Suppose that b = bS so that

(28)
$$A_b = R_b - TR_{c(bS)} = (I - TR_c)R_b, \ A_e^{-1}A_b = R_b$$

By (18) we know that $R_b B_x = B_x R_b$, and so $R_b (B_e^{-1} B_x) = (B_e^{-1} B_x) R_b$ for every x of \Re . By (25) this implies that the transformation

(29)
$$R_b = A_e^{-1} A_b = R_{bB_e}^{(c)}$$

commutes with every $L_x^{(e)}$. However, (27) is equivalent to

(30)
$$L_x^{(c)} R_{z_{\rho}}^{(c)} = R_{z_{\rho}}^{(c)} L_x^{(c)} .$$

Thus $bB_e = b(I - SR_c) = b(e - c) = bf$ is in \mathfrak{N}_{ρ} . We have proved that the right nucleus of $\mathfrak{D} = \mathfrak{D}(\mathfrak{R}, S, T, c)$ contains the field $f\mathfrak{R}_s$, a subring of \mathfrak{D} isomorphic to \mathfrak{R}_s .

The left nucleus \mathfrak{N}_{λ} of \mathfrak{D} consists of all z_{λ} such that

$$(31) (z_{\lambda} \cdot y) \cdot x = z_{\lambda} \cdot (y \cdot x)$$

for all x and y of \Re . This equation is equivalent to

(32)
$$L_{z_{\lambda}}^{(c)}R_{x}^{(c)} = R_{x}^{(c)}L_{z_{\lambda}}^{(c)}$$

for every x of \Re . If a = aT then $B_a = (I - SR_c)R_a$, $B^{-1}B_a = R_a = L_{aA_e}^{(c)}$ commutes with every A_y and every $R_x^{(c)}$, and we see that the left nucleus of $\mathfrak{D}(\Re, S, T, c)$ contains the field $f \mathfrak{R}_T$ isomorphic to \mathfrak{R}_T .

The middle nucleus of $\mathfrak{D} = \mathfrak{D}(\mathfrak{R}, S, T, c)$ is the set \mathfrak{N}_{μ} of all z_{μ} of \mathfrak{R} such that

$$(33) (x \cdot z_{\mu}) \cdot y = x \cdot (z_{\mu} \cdot y)$$

for every x and y of \Re . This equation is equivalent to

(34)
$$R_z^{(c)} R_y^{(c)} = R_{z,y}^{(c)}$$

where $z = z_{\mu}$. However, we can observe that the assumption that

(35)
$$R_z^{(c)} R_y^{(c)} = R_v^{(c)}$$
,

for some v in \Re , implies that $(f \cdot z) \cdot y = f \cdot v = v = z \cdot y$, Hence (34) holds for every y in \Re if and only if

$$A_g A_e^{-1} A_y = A_v ,$$

for every y of \Re , where v is in \Re and

$$(37) gB_e = z = z_\mu$$

If gS = gT then $A_g = R_g - TR_{c(gS)} = R_g - TR_{c(gT)} = R_g - R_g TR_c = R_g A_e$. Then (36) becomes

(38)
$$R_g A_y = R_g (R_g - T R_{c(yS)}) = R_{gy} - T R_{c(ySgT)} = A_{gy}.$$

Hence $gB_e = g(I - SR_c) = g - (gS)c = g - (gT)c = gA_e$, and \mathfrak{N}_{μ} contains the field of all elements gB_e for gS = gT.

We are now able to derive the converse of these results. We first observe that (27) is equivalent to

(39)
$$R_{y}^{(c)}R_{z}^{(c)} = R_{y \cdot z}^{(c)}$$

for every y of \Re , where $z = z_{\rho}$. This equation is equivalent to

where $z = uB_e$. If the period of T is m > 2 we use Lemma 1 to see that, if we take $y \neq yST^{-1}$, then u = uS, $z = uB_e = fu$. The stated choice of y is always possible since we assuming that $S \neq T$ and so some element of \Re is not left fixed by ST^{-1} . Thus $\Re = f\Re_s$. Similarly, is the period of S is not two then $\Re_{\lambda} = f\Re_T$. Assume that one of S and T has period two. The automorphisms S and T cannot both have period two. For the group G of automorphisms of \Re is a cyclic group and has a unique subgroup \Im of order two. This group contains I and only one other automorphism. If S and T both had period two we would have S = Tand so m = n = 2, contrary to hypothesis. Thus we may assume that one of S and T has period two. There is clearly no loss of generality if we assume that T has period two, so that the period of S is at least three. By the argument already given we have $\Re_{\lambda} = f \Re_T$. We are then led to study (40) as holding for all elements y of \Re , where $z_{\rho} = uB_{e}$. Now

(41)
$$A_e = I - TR_c, \ A_e(I + TR_c) = R_d, \ d = e - c(cT) = dT$$

But then (40) becomes

(42)
$$[R_y - TR_{c(yS)}](I + TR_c)[R_u - TR_{c(uS)}] = R_{vd} - TR_{cd(vS)}.$$

This yields the equations

(43)
$$y[u - c(cT)(uS)] - (yST)[c(cT)](u - uS) = vd$$

(44)
$$yT(u-uS) - yS[u-(uS)c(cT)] = -d(vS)$$
.

Hence

$$\begin{aligned} d(yS)[uS - (cS)(cST)(uS^2)] &- yS^2T(cS)(cST)(uS - uS^2)d = vS(dS)d \\ &= (dS)yS[u - (uS)c(cT)] - yT(u - uS)(dS) . \end{aligned}$$

Since this holds for all y we have the transformation equation

(45)
$$SR[d(uS) - d(cS)(cST)uS^2] - S^2TR[d(cS)(cST)(uS - uS^2)]$$

= $SR[dSu - (dS)(uS)c(cT)] - TR[(u - uS)dS]$.

Since $S^2 \neq I$ and $T \neq S$, S^2T we know that the coefficient of S^2T is zero. Thus (u - uS)dS = 0 and u = uS as desired. This shows that $\mathfrak{N}_{\rho} = f\mathfrak{N}_{S}$.

The middle nucleus condition (36) implies that gS = gT if T does not have period two. When T does have period two but S does not have period two the analogous property

(46)
$$L_{x\cdot z}^{(c)} = L_z^{(c)} L_x^{(c)}$$

is equivalent to

(47)
$$B_{g}B_{e}^{-1}B_{x} = B_{v}$$
,

and we see again that gS = gT. This completes our proof of the theorem stated in the introduction.

4. Commutativity. It is known⁴ that $\mathfrak{D} = (\mathfrak{R}, S, S^{-1}, c)$ is commutative if and only if c = -1. There remains the case where

(48)
$$S \neq I, T \neq I, ST \neq I, S \neq T$$
.

Any $\mathfrak{D}(\mathfrak{R}, S, T, c)$ is commutative if and only if $R_x^{(e)} = L_x^{(c)}$ for every x of \mathfrak{R} . Assume first that $\mathfrak{R}_s \neq \mathfrak{R}_T$. There is clearly no loss of generality if we assume that there is an element b in \mathfrak{R}_s and not in \mathfrak{R}_T , since the roles of S and T can be interchanged when $\mathfrak{D}(\mathfrak{R}, S, T, c)$ is commutative. Thus we have $b = bS \neq bT$. By (28) we know that $A_b = A_e R_b$ and so we have $R_{bf}^{(c)} = R_b$. Then $L_{bf}^{(c)} = B_e^{-1}B_y = R_b$, where $y = (bf)A_e^{-1}$. It follows that

(49)
$$B_g = R_y - SR_{c(yT)} = B_e R_b = (I - SR_c)R_b$$

Then $R_y = R_b$, y = b, c(yT) = c(bT) = cb, and b = bT contrary to hypothesis.

We have shown that if $\mathfrak{D}(\mathfrak{R}, S, T, c)$ is commutative the automorphisms S and T have the same fixed fields, that is, b = bS if and only if b = bT, b is in \mathfrak{F} . Thus S and T both generate the cyclic automorphism group \mathfrak{G} of order n of \mathfrak{R} over \mathfrak{F} , and S is a power of T. Since $T^{-1} = T^{n-1} \neq S$ there exists an integer r such that

(50)
$$0 < r < n-1, S = T^r$$
.

We now use the fact that $R_x^{(c)} = L_x^{(c)}$ for every x of K to see that $A_e^{-1}A_x = B_e^{-1}B_y$ for every x of \Re , where $y = xB_eA_e^{-1}$. Also $(TR_e)^n = (SR_e)^n = R_{\nu(c)}$, and our condition becomes

(51)
$$[I + TR_c + (TR_c)^2 + \cdots + (TR_c)^{n-1}][R_x - TR_{c(xS)}]$$
$$= [I + SR_c + (SR_c)^2 + \cdots + (SR_c)^{n-1}][R_y - SR_{c(yT)}],$$

where we have used the fact that $d = e - \nu(c) = dT = dS$. Compute the constant term to obtain the equation

(52)
$$R_x - (TR_c)^n R_{xS} = R_y - (SR_c)_u R_{yT}.$$

This is equivalent to the relation $x - [\nu(c)](xS) = y - [\nu(c)]yT$ for every x of K, where $y = xB_eA_e^{-1}$. Thus (52) is equivalent to

(53)
$$I - SR_{\nu(c)} = B_e A_e^{-1} [I - TR_{\nu(c)}] .$$

We also compute the term in T^r in (51). Since r < n-1 the left member of this term is $(TR_c)^r R_x - (TR_c)^r R_{xs}$, which is equal to $R^r R_{gc}(R_x - R_{xs})$, where $g = (cT)(cT)^2 \cdots (cT)^{r-1}$. The right member is the term in S, and this is $SR_c(R_y - R_{yT})$. Hence (x - xS)g = y - yT, a result equivalent to

⁴ See footnote 1.

(54)
$$(I-S)R_g = B_e A_e^{-1} (I-T) .$$

Since the transformations I - T and $I - TR_{\nu(c)}$ commute we may use (53) to obtain

(55)
$$(I-S)R_{g}[I-TR_{\nu(c)}] = [I-SR_{\nu(c)}](I-T) .$$

By (48) we may equate coefficients of I, S, T and ST, respectively. The constant term yields g = e. The term in S then yields $\nu(c) = e$ which is impossible when S and T generate the same group and $\mathfrak{D} = \mathfrak{D}(\mathfrak{R}, S, T, c)$ is a division algebra.

We have proved the following result.

THEOREM 2. Let $\mathfrak{D} = \mathfrak{D}(\mathfrak{R}, S, T, c)$ be a division algebra defined for $S \neq I$, $T \neq I$, $S \neq T$. Then \mathfrak{D} is commutative if and only if ST = I and c = -1.

THE UNIVERSITY OF CHICAGO