
UNIFORM NEIGHBORHOOD RETRACTS

J . R. ISBELL

Introduction. This paper is a systematic investigation of a part of
the mapping theory of uniform spaces. The central concept through
most of the paper is that of an ANRU as defined in [15]; that is, a
uniform space X which, whenever it is embedded in a uniform space Y,
is a uniformly continuous retract of a uniform neighborhood of itself.
Roughly, the first third of the paper treats the construction of ANRU's;
the middle part treats necessary conditions for ANRU's and the last
part treats some uses of ANRU's.

In compact spaces (and to a great extent in paracompact spaces)
there is a well-developed theory analyzing the general space X in terms
of its mappings into polyhedra; in several strong senses, there are suf-
ficiently many mappings into polyhedra. There are enough mappings
even into a closed interval to determine the topology. There is also
the program proposed by M. H. Stone [29] of analyzing X in terms of
mappings of Boolean spaces onto X; this is sufficient in principle, since
every compact space is a quotient space of a Boolean space, but it seems
to be very difficult to work out and in any case it cannot generalize
much beyond the compact spaces. Note that the polyhedra are suitable
for mapping into; they are ANR's, and a large (sufficiently large) class
of them are AR's or injective objects. Gleason has shown [9] that a
large class of Boolean spaces are protective objects in the category of
compact spaces, but there remains the fundamental difficulty that the
Boolean spaces themselves are not well known.

Among uniform spaces, finite-dimensional polyhedra are known to be
ANRU's [15]; but there are not nearly enough of them. The basic difficulty
here is that there are not enough mappings of uniform space X into
the real line, in the sense that knowing all of them does not suffice to
determine the uniformity of X. The simple observation which generates
Part I of this paper is that if we know which real-valued functions on
X are uniformly continuous, and which families of real-valued functions
on X are equiuniformly continuous, this does suffice to determine the
uniformity of X. Restated: every uniform space can be embedded in a
product of spaces U(Da, R) of all real-valued (uniformly continuous)
functions on discrete spaces Da. As it happens, such a product space
need not be an ANRU; but this can be changed by using a closed inter-
val I in place of R.

Section 1 gives the argument just sketched to prove that every
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uniform space can be embedded in an injective uniform space, and uses
this to deduce simplified proofs of some known results. The other two
sections of Part I pursue the same ideas in two different directions, as
follows.

One can prove that a function space U(D, I) is injective, when D
is discrete and I — [0, 1], by using Katetov's theorem [18] that I is
injective and observing that there is a natural one-to-one correspondence
between mappings X-+ U(D, I) and mappings of the product space X x D
into I. This depends on discreteness of D. In general, mappings
X—> U(Y, Z) correspond to mappings of J * 7 into Z, where X* Y is
a space which we call the semi-uniform product. We find a complicated
description of X* Y, which simplifies considerably in case Y is metric.
The description shows that if Y is metric, and A is a subspace of X,
then A* Y is a subspace of X*Y. It follows that if (further) Z is an
ANRU, then U(Y, Z) is also an ANRU.

Since R is an ANRU, we have so far a large class of spaces of
real-valued functions which are ANRU's. It follows easily that the
Banach space of all bounded uniformly continuous real functions on a
metric space is an ANRU. A quite different argument, depending on
the space of all closed convex subsets, shows that every uniformly convex
Banach space is an ANRU.

This concludes Part I. I do not have any examples to show neces-
sity of the special hypotheses in §§ 2 and 3.

Part II again consists of a first section containing most of the
ideas and two more sections working out some details. The approach is
to deduce consequences from the hypothesis "X is an ANRU" until
enough are in hand to prove a converse. For this I need three conse-
quences: the homotopy extension lemma [15], a strong form of local con-
tractibility, and the following generalization of a lemma of Hahn [11]
for real-valued functions. For each uniform covering <%/ of X there is a
finer uniform covering ^ such that for any uniform space W and any
function / defined on W, with values in X, such tha t / " 1 ^") is a cover-
ing of W, there exists a uniformly continous function g: W—>X within
^ of/.

The strong local contractibility property just mentioned is that every
function space U(W, X) is uniformly locally arc wise connected. It is
cheering that ANRU's have this property; but for the characterization
it would be desirable to make do with a local contractibility property
which refers only to contraction of subsets. (The excuse for using the
term for the stronger property is that it refers to contraction of "singu-
lar" subsets.) I do not know whether this is possible in general. It is
in case every uniform covering of X has a finite-dimensional uniform
refinement.

Section 5 gives some simple consequences of local contractibility
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which lead to the conclusion that a locally compact ANR U must be uni-
formly locally compact, and if it is injective (an ARU) it must be compact.
This improves the known result [15] that an injective uniform space
cannot be homeomorphic with the real line. Assuming the continuum
hypothesis, we can go on to show that an ANRU which is homeomorphic
with the line must be uniformly equivalent with the line in the usual
metric.

What is needed for the last result is not the whole continuum
hypothesis, but the hypothesis that 2*° < ^w . The relevant lemma is
that if X is an ANRU which is topologically separable metrizable, then
the smallest cardinal number of a basis of uniform coverings of X is a
countable sum of smaller cardinals.

The last theorem in Part II is a topological analogue of the preced-
ing: a compact ANR of covering dimension 1 is metrizable. There are
a number of open questions concerning higher-dimensional analogues of
this and of the theorem about the line.

Part III is more mixed. The results of Section 7 concern inverse
limits, ANRU's y and uniform complexes. For example, every complete
space is an inverse limit of ANRU's. Those which are inverse limits
of finite-dimensional complexes are determined. Section 8 is a detailed
study of the known property (in ANR's and injective objects) of the
category of uniformisable spaces and continuous functions. The main
topic is intrinsically extensible mappings / : A —> B in this category,
defined by the condition that whenever A is embedded as a closed sub-
space of Xy B can be embedded in some space Y so that / has a continuous
extension over X with values in Y. (In uniform spaces every uniformly
continuous / : A —> B has the analogous property.) Broadly, there are
two kinds of intrinsically extensible mappings:

(a) the proper mappings and
(b) the mappings converging on the filter of complements of com-

pact subsets of A to a unique limit in B. Not even all the proper
mappings are intrinsically extensible, except in locally compact spaces.
More details are given.

Section 9 gathers up the results on mappings into ANRU's and into
polyhedra, together with the corresponding results for compact spaces,
in the context of the theory of adequacy in general categories. The
general definitions of right and left adequacy [17] will be given in the
body of the paper. The proposition that a class K of objects of a
category is right adequate is a precise way of saying that every object
has sufficiently many mappings into objects of K. It is known [17] that
for compact spaces, a square (2-cell) is right adequate, but a closed
interval is not. ANRU's turn out to be right adequate for complete
nniform spaces; 2-dimensional polyhedra (with uncountably many simplexes)
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are right adequate for a very large category of complete spaces. The
results on left adequancy are much fuller and substantially less interest-
ing.

I am indebted to H. H. Corson and to D. L. Johnson for several
conversations on some of the questions examined here.

I. CONSTRUCTION OF ANRU'S

1. Function spaces* The reader should be acquainted with [15], or
at least acquainted with the description of a uniformity as a family of
coverings (the uniform coverings) and prepared for references to [15]
and related papers. Here the term mapping, unqualified, will mean a
uniformly continous mapping. Subspace means a uniform subspace, not
necessarily closed. Recall that a mapping defined on a subspace with
values in a complete space has a unique extension over the closure of
the subspace. If S is a subspace of X, a neighborhood U of S is a
uniform neighborhood if it contains the star of S with respect to some
uniform covering of X.

We define a space Y to be an extension space (neighborhood extension
space) provided whenever A c X and / : A —> Y is a mapping, / can be
extended to a mapping of X into Y (to a mapping defined on some uni-
form neighborhood of A). It is shown in [15] that these properties are
equivalent to the apparently weaker properties defined by setting A = Y;
the space are called respectively ARU's and ANRU's. We shall use
the new terms only for a few paragraphs, which will include a new
proof of the equivalence. This depends on the known results that a
closed interval I is an extension space [18] and that every uniform space
is a subspace of a product of spaces of functions with values in /. For
the latter, combine the following more familiar results:

(a) every uniform space is a subspace of a product of metric spaces;
(b) a metric space with distance d is uniformly equivalent to the

same space with distance min (d, 1);
(c) a metric space M with bounded distance d is isometrically

embedded in the Banach space of all bounded real functions on the set
M by sending each point x0 to the function d(xQ, x). Observe that the
distance function on the Banach function space, \\f — g\\ = sup\f(x) — g(x)|,
induces the usual uniformity of uniform convergence on the function
space. Also, we shall later want to use the fact that an unbounded
metric space M can still be isometrically embedded in a function space
[20].

A family {/x | X e L] of functions on a set A into a set Y corre-
sponds naturally to either of two single functions: the function / * on
A x L into Y defined by /*(a, X) =/x(a), or the function f on A into
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YL defined by f(a)(X) =fK(a). We note

1.1. If A and Y are uniform spaces, {/A} a family of functions
on A into Y indexed by a discrete uniform space L of indices, then
the following conditions are equivalent.

(a) {f\} is equiuniformly continuous.
(b) The corresponding function /*: A x L—> Y is uniformly con-

tinuous.
(c) The corresponding function f maps A uniformly continuously

into the function space YL.
The proof is immediate from the definitions of product and function

space. We reserve the notation YL for the set of all functions; when
X and Y are uniform spaces, U{X, Y) will denote the function space
of all uniformly continuous functions on X to Y.

1.2. THEOREM. Every equiuniformly continuous family of mappings
of a subspace A of a uniform space X into a [neighborhood] extension
space Y can be extended to an equiuniformly continuous family of
mappings of X [of some fixed uniform neighborhood of A in X] into Y.
If Y is a [neighborhood] extension space then so is the space of all
functions on any index set into Y.

Proof. The family {fk \ X e L}, fK: A —* Y, or the single mapping
/ : A—> U(L, Y), corresponds to /*: A x L—» Y. Since A x L is a sub-
space of X x L, there is a uniformly continuous extension g* of / *
defined o n l x i [defined on a product neighborhood of A x L]. Then
g* induces an equiuniformly continuous family {gK} extending {/J, and
a mapping g extending / .

1.3. COROLLARY. The unit ball of the Banach space of all bounded
real functions on any set is an extension space; every uniform space
can be embedded in an extension space; every ARU is an extension
space.

Proof. The unit ball of the Banach space is the set of all functions
with values in I— [ — 1,1]. Since every product of extension spaces is
an extension space (by extending coordinate wise), the second assertion
follows from the first; and the third follows from the second.

The last part of 1.3 is proved in [15], by different argument We
recover also the following propositions, proved in [15]:

(a) every bounded uniformly continuous pseudometric on a subspace
of a uniform space can be extended;

(b) if the bounded metric space X is a uniformly continuous retract
of every space containing it isometrically, then X is an ARU. Similarly,
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of course, for ANRU's.
The corresponding propositions for unbounded metrics and pseudo-

metrics are usually false, as is shown by the metric | m3 — n3 | on the
subspace of integers in the real line. For neighborhood extension and
retraction, though, boundedness is not needed. This follows from 1.2
and the facts that the real line is an ANRU [15] and that every metric
space can be isometrically embedded in a Banach space of bounded real
functions [20]. It is not stated in [15] that the real line is an ANRU;
what is stated is that any finite-dimensional simplicial complex, metrized
by maximum difference of bary centric coordinates (such a simplicial com-
plex is called a uniform complex), is an ANRU. One easily verifies
that any triangulation of the line yields a uniform complex uniformly
equivalent to the line with the usual metric. But let us note a different
proof, useful also for some other metric spaces.

1.4. The real line is an ANRU. Hence the Banach space of all
bounded real functions on any set is an ANRU; every uniformly con-
tinuous pseudometric on a subspace of a uniform space can be extended
over a uniform neighborhood; and for a metric space to be an ANRU,
it suffices that it be a retract of a uniform neighborhood in every space
containing it isometrically.

Proof. Let the line R, metrized by min (| x — y |, 4), be embedded
in any metric ARU, M. It suffices to show that R is a retract of its
1-neighborhood in M. For each x in M, let X(x) be the distance of x
from R. For each t in (0,1), let f{x, t) = sup {r e R\ d(x, r) ^ (1 + t)X{x)}.
If X(x) ^ 1, then f(x, t) exists for each t < 1, and for all e and t in (0, 1),
3 +/(#, s) > f(xy t). Then f(x, t) is a bounded monotonic function of £,

r

and the Riemann integral r(x) = \f(x, t)dt exists. Evidently the func-
tion r is a retraction upon R. To verify that r is uniformly continuous,
consider any positive 8 such that 88 + 482 < 1, and consider any two
points, x, y, of M, within distance 1 of R and S2 of each other. In case
either x or y is within 8 of Rf then both are within d + S2 of R, and
computaion shows that d(r(x), r(y)) < 48 + 482. In the contrary case,
X(x) < X(y) + 82 < (1 + 8)X(y); then any point of R within (1 + t)X(x) of
x is within (1 + t + S8)X(y) ofy,fovt<l. For t < 1 - 38, f(y, t + 38) ^
f(x, t); since also f(y, t) ^ f(x, s) - 3 - 82 for all s and t in (0,1), we have
r(y) > r(x) - 128. Similarly r(x) > r(y) - 128. Combining the cases,
d(r(x), r(y)) cannot exceed 128, and r is uniformly continuous.

It follows by 1.2 that the function space U(L, R) of all functions
on a set L to R is an ANRU. In U(L, R), the Banach subspace con-
sisting of bounded functions is a uniform neighborhood of itself; hence it
is also an ANRU. Then the remaining assertions are obvious.
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The main purpose of this section, the exhibition of sufficiently many
ARU's and ANRU's for certain uses, is accomplished. We have also
reviewed several of the basis facts from [15]. Let us recall further
that every ANRU is complete. (There are incomplete metric spaces X,
e.g. (0,1), which are retracts of all metric spaces containing X isometrically
as a closed subset.) Finally, for mappings into ANRU's, the homotopy
extension lemma is valid [15], and in particular, every ANRU which is
contractible by a uniformly continuous homotopy (uniformly contractible)
is an ARU.

2. Semi-uniform products. For any two uniform spaces, A, B (in
that order), we define a semi-uniform function h on the Cartesian product
set A x B into a uniform space F a s a function such that the formula
h*(a)(b) = h(a, b) defines a uniformly continuous mapping ft*: A—* U(B, Y).
It is almost obvious that the semi-uniform functions are precisely the
uniformly continuous functions relative to a suitable uniformity on the
product set; but this seems to require proof, and it is convenient to
present the argument as follows. If we identify isometric pairs of metric
spaces, there are only a limited number of functions mapping A x B
onto a metric space. The semi-uniform product A*B is defined as the
set A x B with the weak uniformity induced by all semi-uniform func-
tions onto metric spaces. Observe that A*B is certainly a uniform space
with a uniformity finer than the product uniformity (homeomorphic,
however).

2.1. For any uniform spaces A, B, Y, the uniformly continuous
functions on A*B into Y are precisely the semi-uniform functions on
A x B into Y.

Proof. Suppose h: A x B •—> Y is semi-uniform. Embed 7 in a
product of metric spaces Ma. For h: A*B—* Yto be uniformly continuous,
it sufficies that each coordinate ha: A*B—>M(* is uniformly continuous;
and for this it suffices that ha is semi-uniform. First, for each a in A,
the function ft*(a): B-^Ma is the composition of h*(a): B-^Y with
coordinate projection Y-* Ma; hence ft* (a) e U(B, MJ. Second, for each
£ > 0, there is a uniform covering ^/ of A such that for a and af in
a single element of %S, for all b, ft *(«)(&) and h*(af)(b) are within s of
each other, since the subsets of Y having ath coordinate projections of
diameter < e form a uniform covering and ft* is uniformly continuous.
Thus ft is uniformly continuous.

Conversely, suppose ft is uniformly continuous on A*B into Y. By
definition A*B is a subspace of a product of metric spaces Xp, with the
coordinate projections n^ semi-uniform on A x B\ that is, the projections
correspond to uniformly continuous mappings p^\ A —> U(B, X$). We
wish to prove h is semi-uniform. First, for each a in A, consider
ft*(a): B~> Y. For any uniform covering y of Y, there are finitely many
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indices /319 • • •, /3n and a positive number e such that if d{n^{a9 6), n^(a9 6')) < e
for /3 = j319 •••, /2W, then ft(a, 6) and ft(a, 6') are in a single element of
3T Since each Pp(A) c Z7(j&, -X )̂, it follows that h*(a) is uniformly con-

tinuous. Finally consider ft*: A—> U(B, Y). Again, since ft is uniformly
continuous, for each 5*"" we have A, " # »/3 w and £ such that if
d(7Cfi(a, 6), 7fp(a', &)) < £ for these indices /39 then ft(a, b) and ft(a', 6) are
near within 3*""; since all p^ are uniformly continuous, there is a uniform
covering W of A such that this condition is satisfied when a and a'
are near within <^~; and ft* is uniformly continuous.

2.2. Every uniform covering of A*B has a refinement of the form
{Ua x Wg}9 where {Ua} is a uniform covering of A and for each a,

is a uniform covering of B.

Proof. Every uniform covering has a uniformly continuous pseudo-
metric subordinated to it; in short, there is a semi-uniform mapping ft
into a metric space M such that the given covering is refined by the
inverse images of sets of diameter 1. Now ft* is uniformly continuous
on A into the metric function space U(B, M); thus there is a uniform
covering 5^ of A, the diameters of the ft*-images of whose elements
are at most 1/3. For each a in A, there is a uniform covering {Wg} of
B such that the diameters of the images of its elements under ft*(a)
are at most 1/3. For each a, let Ua be the star of a with respect to
3T Then for any two points (e,x)9 (/, y), of A*B, both in a set Ua x Wg9

d(h(e9x),ft(/,y)) ^d(h(e,x)fh(a,x))+d(h(a9x)9ft(a,y))+d(h(a9y)9h(f9y))^l9

and the proof is complete.
On the other hand, a covering of the form described in 2.2 will be

uniform on A*B if we can subordinate to it a suitable pseudometric.
This requires precisely a descending sequence of coverings of the same
form, with the (n + l)st covering a star-refinement of the nth for all
n. The problem closely resembles the problem of [8, 5.1], and by copy-
ing the arguments indicated there we shall construct such a sequence
in case either A has a basis of (/-discrete uniform coverings or B is
metric. In these cases, if S is a subspace of A,S*U is a subspace of A*J5
(in the induced uniformity), since a covering of S x B of the form
{Ua x Wg} can be extended to {Va x Wg} on A x B by setting V« =
Ua, U (A — S). Whether this is valid for arbitrary A and B remains an
open question.

Recall that a normal sequence of coverings is a sequence of coverings
"?/n such that each ^ + 1 is a star-refinement of ^ . For any normal
sequence there is a pseudometric d such that every element of the wth
covering has d-diameter at most 21~n, and every set of d-diameter 2~n

is contained in some element of the nth covering [14, proof of 1.0].
Then one readily verifies
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2.3. The uniform coverings of A*B are precisely those coverings
which can be refined by normal sequences in which each term has a
refinement of the form {Ua x WJ?}, where {Ua} is uniform on A and
for each a, {Wg} is uniform on B.

Note also

2.4. Any uniform covering which is a countable union of disjoint
collections has a uniform refinement which is a-uniformly discrete.

Proof. Given {£/*}, let {Vp} be a star-refinement and let VI be the
union of those Vp whose stars are contained in Va. Then for any dis-
joint family of E^'s, the corresponding £7<£'s are uniformly discrete.

2.5. THEOREM. Suppose either that B is a metric space or that A
has a basis of a-discrete uniform coverings. Then every covering of
A x B of the form {Ua x Wg}, where {Ua} and each {Wg} are uniform,
has a star-refinement of the same form and is therefore a uniform
covering of A x B. Hence for every subspace S of A, S*B is a subspaoe
of A*B.

Proof. If B is metric, there is a countable basis of uniform cover-
ings ^~; and we may suppose 5̂ f+i is a star-refinment of 5̂ f, for each
n. For each a choose n = n(a) such that 7/^refines {W$\. Let {Vx}
l3e a uniform covering of A the star of whose star refines {Ua}. For
^ach X let p(X) be the least i such that for some Va containing the
second star of VXy n(a) = i. Let q = q(X) = p(X) + 1. Then the cover-
ing consisting of all sets ZX[M = Vx x Y£, where q = q(X) and Y£ e 7/^,
is a star-refinement of the given one. Specifically, the star of ZK[L is
•contained in any Va x Wj? satisfying

(i) Va contains the star of VXi and subject to this condition, n(a)
is a minimum;

(ii) Wg contains the star of Y2 with respect to W^{o0)+1. (Since
n{a) g p(X), (ii) can be satisfied.) For the proof, suppose Vv x Yr

T meets
ZXlx. Vg. meets Vx and is contained in Va. Clearly q = q(X) ̂  n(a) + 1.
As for r, it is n(y) + 1 for some Vy containing the second star of Va;
this contains the star of Vx, so that n(j) ^ n(a). Then YJis contained
in the star of Y£ with respect to 5̂ ao+i> which is contained in Wg, and
the proof for this case is complete.

Now suppose A has a basis of (/-discrete coverings. Suppose in
particular that {Va} is re-indexed as {Vn«}, where for fixed n the different
sets Vncc are disjoint. Again let {Vx} be a uniform covering of A the
star of whose star refines {Vna}. For each X let p(X) be the least n
such that some Vno0 contains the star of the star of Vx. For each n
and a, let 7/^a be a uniform covering of B which is a star-refinement
of {W$*}. For each X, for each i ^ p(X), there is at most one a such
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that Uia contains FA; let ^/k — {Y£} be a uniform covering of B which
is finer than all ^faf for these i and a. Then {Vx x F*} is a star-
refinement of {Una x Wg°}, just as in the preceding case; we omit the
details.

2.6. COROLLARY. If B is a metric space, and Y is an ANRU or
ARU, then so is the function space U(B, Y).

Proof. In this case the problem of extending / : A —» U(B, Y) over
XID A is equivalent to the problem of extending/*: A*B-+ Y over X*B.
The assertion about ARU's follows at once; the assertion about ANRU's
follows in view of 2.2, since a uniform neighborhood of A*B must contain
a product neighborhood.

The (/-discrete case in 2.5 tells us that even if B is not metric,
U(B, Y) admits extensions for suitable XZD A. Note that 2.4 is not a
lemma for the proof of 2.5; it merely shows that whether we say "a-
discrete", "(/-disjoint", or "a-uniformly discrete'\ we have the same
hypothesis.

From 2.5 we can also conclude that if C is metric, B c C, and A
is arbitrary, then A*B is a subspace of A*C. One can deduce that for
any ARU, E, there is a uniformly continuous mapping of U(B, E) to
U(C, E) which takes each function to an extension of itself (taking
A — U(B, E)). However, this does not seem to be the right approach
to such simultaneous extension problems. The result just noted, for
spaces of bounded real functions, follows easily from the arguments of
McShane in [22]; also, for spaces of continuous functions, there are
frequently continuous linear mappings of this sort. The main reference
is Dugundji [5].

3, Banach spaces. It seems likely that every Banach spaces is an
ANRU. The Banach spaces are certainly not ARU's because they are
not uniformly contractible. Evidently when a Banach space E is an
ANRU, every bounded convex body in E is a uniformly contractible
retract of E and thus an ARU. The affirmative results are summarized
in

3.1. THEOREM. The following Banach spaces are ANRU's: the
space U*(B, R) of bounded uniformly continuous real-valued functions
on any metric space B; the injective Banach spaces, i.e., the injective
objects of the category of Banach spaces and bounded linear trans-
formations; and the uniformly convex Banach spaces. Moreover, each
of these spaces is a uniformly continuous retract of any metric space
containing it isometrically.
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Proof. We know immediately from 2.6 that £/*(£, R) is an ANRU;
however, we shall give a direct proof of the stronger result that it is
a retract of any space containing it isometrically. From this the result
on injective Banach spaces E follows at once, for E can be embedded
as a closed linear subspace of U*(K, R), where K is the unit ball of
the conjugate space.

We begin with the observation
(a) The Banach space F of all bounded real-valued functions on

a set B is a uniformly continuous retract of any metric space contain-
ing it isometrically.

This is proved just like 1.4 (we used a bounded metric on R in 1.4
not for the retraction, but in order to appeal to Katetov's extension
theorem for I in completing the proof). If F is contained in a metric
space M with distance d, define X(p) — d(p, F) for p in M; h{py t, b) —
sup {/(&) Ife F, d(p, / ) ^ (1 + t)X(p)} for pe M,t e (0,1), b e B; and r(p)(b) -
I h{p, t, b)dt. Just as before, r is uniformly continuous.
Jo

(b) If the index set B is a metric space, the subspace U*(B, R)
is a uniformly continuous retract of F.

Let d be an equivalent bounded metric on B. For / in F, let X(f)
be the distance of / from the subspace [/*. If X(f) ^ 0 then, since /
is within 3\(/)/2 of a uniformly continuous function, there is e > 0 such
that the diameter in R of the image under / of any set of d-diameter
e is at most 3\(/). Let fjt(f) be the least upper bound of all such s,
the diameter of B where the diameter of f(B) does not exceed 3A,(/),
and 0 precisely on the subspace C7*. For t in [0, 1], x in B, define
h(f, x, t) as the least upper bound of the set of all values g{y) of func-
tions g satisfying \\g — f\\ ^ tX(f) at points y satisfying d(x, y) ^ tft(g).
Observe that g(x) ^ f(x) + tX(f), g(y) g g(x) + 3X(g), and in paticular
f(x) + 7X(f) is an upper bound for h{f, x, t), while f(x) is a lower bound.
If / is in U* then h{f, x, t) = f(x) for all x. In any case i ( / , x) = I h(f, x, t)dt
is uniformly continuous in x; for if / is not in [7*, then fjt(f) > 0, and
for x and y within Sfjt(f) of each other we have | j(f, x) — j(f, y) \ <
S 11/11 + 78X(f). Then a retraction r may be defined by r(f)(x) = j(f, x).

To verify uniform continuity of r, suppose | | / — g \\ < S2 < 1. If
X(f) or X(g) is less than S, we have r(f) within 78 + 782 of / , similarly
for g, and || r(f) — r(g) || < 148 + 15S2. In the remaining case the smaller
of X(f) and X(g) is fcS for some k ^ 1. Then (1 + Slk)X(f) ^ X(g) and
symmetrically. It follows that h(f, x,t + S/k) ^ h(g, x, t) for t < 1 — S/fc
and symmetrically. On the other hand, the difference between h(f9 x, u)
and h(g, x, v) for any u and v in [0,1] does not exceed the supremum
of the expressions f'(y) - g\z) = f\y) - f\x) + f{x) - f(x) + f(x) - g(x) +
g(x) - g\x) + g\x) - g'(z), where | | / ' -f\\ ^ X(f), so that X(f') ^ 2X(f),
and d(x, y) ^ //(/'), so that |/'(i/) - / ' ( » ) I ̂  3M/') ^ 6X(/), and similarly
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for g\ Then || r(f) - r(g) || ^ S/fc (7X(/) + S2 + 7X(ff)) < 29S2 in this case,
and r is uniformly continuous. This proves (b).

From (a) and (b) we obtain the theorem for £/*(£, R) == ?7*; for if
U* is contained isometrically in M, let iV be the quotient space of MliF
obtained by identifying corresponding points of [7* and defining the distance
between a point x of Mand a point y of F as inf {d(x,z) + d(2,?/) | ze U*}.
From (a), this space can be retracted upon F, and if we then retract
F upon U* as in (b) we have in particular a retraction of M upon £7*.

For the rest of the proof, we need

3.2. LEMMA. For every Banach space E, the space H{E) of bounded
closed convex subsets, metrized by Hausdorff distance, is a uniformly
continuous retract of any space containing it isometrically.

In 3.2 the empty set is not meant to be a point of H(E). If it is
adjoined as an isolated point then of course one obtains a disconnected
ANRU. We remark also that the lemma extends to the space of all
bounded closed sets, since taking each set to its convex hull is a uniformly
continuous retraction. We prove next

(c) 3.2 implies 3.1.
We need a retraction r assigning to each closed bounded convex set

S e H(E) a point r(S) e E. Let r(S) be the unique point of S whose
norm is a minimum. From the definition of uniform convexity, for each
positive e there is 8 > 0 such that the midpoint of a segment of length
e joining two points of norm 1 has norm at most 1 — 8. Suppose
p has norm n, q has norm n(l + 8) or less, and || p — q \\ ̂  e + On. By
applying the definition to (1/(1 + 0))q we find on the segment pq a
point of norm at most n(l - S)(2 + 20)1(2 + 6). For sufficiently small 6
(and n =£ 0) this is less than n. Let a be that small, and consider two
sets S, T (elements of H(E)) at distance at most as. If either S or T
has a point of norm e or less, evidently \\r(S) — r(T) \\ ̂  2e + as. In
the contrary case let p denote the one of r(S) and r(T) with larger
norm; if they are equal, choose either, and by relabeling if necessary,
suppose p = r(S), || p || — n. There is a point q of S within as of r(T).
Then \\q\\ ^ n + as — n(l + 6), where 6 = a(efn) is even smaller than
a. Since S contains the segment from p to q and p — r(S), \\ p — q \\ <
e + 0n = s + as, and || r(S) -r(T)\\<e + 2ae. Thus r is uniformly
continuous.

Proof of 3.2. With H(E) isometrically embedded in a metric space
X, we shall define r: X->H(E) by r(x) = ?h(x, t)dt with h(x,t) =
sup {y e H(E) I d(x, y) g (1 + t)d(x, H(E))}, just as before. The integra-
tion involved here is a fairly natural one, but it does not seem to have
been treated in the literature. Perhaps one reason for this is that it is
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simplest to define a Riemann-type integral in this situation.
The order in H(E) is the inclusion ordering.
Let g be a monotonic function on the closed interval [0, 1] into the

.space of bounded closed convex subsets H(E). For any finite partition
it of [0,1] into subintervals with end points (in natural order) p19 • • •, pn+19

with lengths pi+1 — pt = aiy we define the lower sum L(iz) in H(E) to
be the set of all points Iatxt in E with x% e g(p^ for i = 1, • • •, n. The
upper sum U{n) is the set of all Ilaixi with x% e g(pi+1) for all i. Evi-
dently every upper sum contains every lower sum. Further, any y in
E which is in all upper sums can be approximated to within any 8 > 0
by an element of a lower sum. For this let k = d(g(0), g(l)), and let
it be a uniform partition of mesh \\n < 8/h. Express y as I(lln)xi with
.xt in g(pi+iy, then choose x0 in g(0) within k of xn, and observe that
KXMXi-i is an element of L(n) within 8 of y.

Then for any such function g, the least upper bound of the lower
sums coincides with the greatest lower bound of the upper sums, and
will be called \g(t)dt or simply I(g). Next let g and h be two such
functions, let k be a bound for all d(g(s), hit)), and suppose g(t + 8) ^
h(t) for t in [0, 1 — 8], Then the closed /^-neighborhood of I(g) contains
I(h); we omit the routine check. In particular, if also hit + 8) ̂  git),
then d(I(g), I(h)) ^ kS.

But this is all properties of the integral that we need. To get
a function h(x, t) defined for t = 0, take sup {y e H(E) \ d(x, y) ^
(2 + t)d(x,H(E))}, and the proof goes as before.

REMARKS. The injective Banach spaces are a rather narrow class,
including the spaces F of all functions but not the spaces [7* [4].

The problem whether a given Banach space E is an ANRU is equi-
valent to the problem whether it is a uniform neighborhood retract of
H{E).

The simplest Banach space for which the problem is open would
seem to be the space U{W,R), where W is the space of countable
ordinals. The sequence space lx is not covered by 3.1, but it is easy to
construct a retraction of L upon it.

II. RESTRICTIONS ON ANRU'S.

4» General properties* An obvious necessary condition for a space
to be an ANRU is that it is topologically an ANR in some sense. We
, shall give a precise form to this statement at the end of this section,
and follow it up in § § 5 and 6. For the present we are concerned with
broad uniform properties. The notion of an ANRU splits rather neatly
into three parts. One of these, the homotopy extension lemma, will
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not be further examined here. Most of the difficulties seem to lie in
the second ''broad'' property, local contractibility. First we take up
the third property, one which has not attracted much separate attention
in topological spaces but which is frequently used for the special case
of polyhedra. Its first occurrence in the literature seems to be in a
1917 paper of Hahn [11], for real-valued functions on metric spaces; a
generalization to real-valued functions on uniform spaces is given in [3].
We shall use that result: Any real-valued function / on a uniform space
X such that the inverse image of the covering of the real line consisting
of all intervals of length e is a uniform covering of X can be approxi-
mated within a at every point of X by a uniformly continuous function

4.1. (Hahn's lemma). For any ANRUY, for each uniform cover-
ing <%/ of Y, there is a uniform coveriug 5^ of Y such that for any
uniform space X and any function f defined on X with values in Yr

such that the inverse image of 5̂ " under f is a uniform covering of Xr

there exists a uniformly continuous function g: JT—• Y within <%s of /..

Proof. Recall that Y is a subspace, and therefore a uniform
neighborhood retract, of a product P of spaces Fa each of which is the
space of all bounded functions on a set Da to R. We prove first that
the lemma is true if Y = Fa. For each uniform covering <%/ of the
function space F# there is e > 0 such that any two functions in Fa which
are pointwise within s of each other are within %f of each other. Let
2^ be the covering of the metric function space Fa consisting of all
spheres of radius e/2. Let / : X—>Fa be any function under which the,
inverse image of 5̂ ~ is uniform. Then /*: X x Da—>R varies no more-
than s on any set W x {d}, W a member of f~1(7r)f d a point of Da.
Since Da is discrete, these sets form a uniform covering of the product-
space. From [3], there is a uniformly continuous function g* on X x Da

to R within e of / . The corresponding function g: X—>Fa is then a
uniformly continuous function ^/ of / .

Now consider product spaces P of factors Fa. Each uniform cover-
ing ^ of P is refined by a product of uniform coverings ^ of Fa, all
but finitely many of which are the one-element coverings {Fa}. To approx-
imate a function / : X —> P to within <%s it suffices to approximate each
coordinate function fa to within 4̂> which we have just shown to be
possible if the inverse image under fa of a suitable covering %" is uni-
form. Only finitely many coordinates are restricted, and thus the lemma
is true for P. Finally suppose Y is a subspace of P and a retract of
a uniform neighborhood U, by a mapping r: U—*Y. One approximates-
/ : X—> Y by first taking an approximation g with values in P, close
enough so that g(X) c U, and then using rg: X—* Y. To have rg
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within a specified covering <%/ from / , we must have g within r
from / . But r~\<?/) is a uniform covering of U, and since U is a
uniform neighborhood, r~\^/) together with the set P — Y forms a
uniform covering ^/f of P. There is a covering 3^"' of P fine enough
so that any / : X —> P under which the inverse image of 5̂ *' is uniform
•can be approximated to within <%/' by a uniformly continuous mapping g.
If all values of / are in Y, then all values of g must be in U, and the
proof is complete.

The proof of 4.1 shows, of course, that the class of spaces Y for
which Hahn's lemma is valid is closed under the constructions used
there. One can show in a similar manner that the class is closed under
formation of spaces U(B, Y) at least for metric spaces B. The class is
much larger than the class of ANRU's. For example, it is easy to
prove that Hahn's Lemma remains valid for any compact totally dis-
connected space Y.

A uniform space is uniformly locally arcwise connected provided it
lias a basis of uniform coverings each of which consists of arcwise con-
nected sets. The sense of the term "arcwise connected" is topological;
since an arc is compact, there is no question about its uniform structure.
Recall that arcwise connectedness is equivalent to pathwise connectedness.
We define a space Y to be locally contractible in the uniform sense, or
LCU, provided for every uniform space X the function space U(X, Y)
is uniformly locally arcwise connected.

The property just defined is not defined in terms of contractions,
"but it belongs to a family of properties commonly thought of as "LC"
properties. We avoid the term "uniformly locally contractible", which
is already in use for one or more weaker properties. We can deduce
from LCU the existence of local contractions in a very strong sense.
To state this sense, consider a family {/„} of mappings having different
•domains Xa and a common range Y. Relative to a space X containing
all Xa as subspaces, {/„} will be called an equiuniformly continuous
family if for each uniform covering ^ of 7 there is a uniform cover-
ing 5̂ " of X whose restriction to each Xa is a refinement of fa\*Zf).
A space Y will be called LCWU provided for each uniform covering <%s
•of Y there exist a uniform covering 5̂ ~ and an equiuniformly continuous
family of homotopies {hv\ V e 5^}, each hv contracting V to a point
within some Ue ?/. (In particular, 5^ is a refinement of *?/. Equi-
xiniform continuity here is with respect to F x l . )

4.2. Every ANRU is LCU and every LCU space is LCWU. For
finite-dimensional compact metric spaces these concepts are equivalent.

Proof. The real line is obviously LCU; the function spaces U(XrR)
are sums of components which are uniformly equivalent to Banach spaces,
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and two functions / and g at finite distance are joined by a path of
functions tf + (1 — t)g. To prove from this that every ANRU is LCU
is a simple exercise along the lines of 4.1, which we leave to the reader.

Now let Y be an LCU space. For each uniform covering 3^ of
Y let Xty") be the uniform space defined as follows. The points of
X(yr) are the ordered pairs (x, V), where x e V e ^ For each V e ^
let Vr(^), or V for short, denote the subset of Xty") consisting of
all ordered pairs whose second member is V. A covering <?/' of X(5O
is defined to be uniform provided there exists a uniform covering <%/ of
Y such that for each U e f/1 and each V e 3*f {y e Y\ (y, V) e U] is a
subset of some member of "?/. Evidently X(^) is a uniform space, the
subsets V form a uniformly discrete collection and a uniform covering,
and the first coordinate mapping iz\ X(^~) —• Y is uniformly continuous.
Let X denote the sum of all X{^). (In a sum space, a covering is-
uniform if and only if its restriction to each summand is uniform.)

Since Y is LCU, the function space U(X, Y) is uniformly locally
arc wise connected. Thus for each uniform covering ^ of 7 there is-
a uniform covering y of Y such that any two functions h0, h19 in
U(X, Y) within 5^ of each other are joined by a path h: I—> U(X, Y)
lying within some element of ^/. Let h0 be the projection TT; let hx

coincide with hQ except on the subspace X(^), where on each V hx has.
some constant value p(V) e V. The corresponding path h induces in
turn a mapping h*: I*X—* Y. But 7*1 is I x 1 (this is essentially a
well-known fact; at any rate it follows at once from 2.5). Then the
homotopies hv obtained by restricting fe* to the subsets I x V, V in
Xty"), form the required equiuniformly continuous family of contractions..

Next, it is known [6] that for finite-dimensional metric spaces, locally
contractible => ANR for metric spaces. In the compact case, these
properties are equivalent respectively to LCWU and to ANRU. In fact,
LCWU =̂> locally contractible in the (standard) sense of [6] for all uni-
form spaces. Since every compact metric space can be embedded in
the Hilbert cube, a metric space which is an ARU, we conclude
ANR =$ ANRU, as required.

I do not have an example of an LCWU space which is not LCU.
Borsuk has given [2] an example of a locally contractible compact metric
space which is not an ANR. It does not seem likely that there is a
useful characterization of ANRU's in terms of simpler properties. The
following result may be called an instructive characterization.

4.3. Every LCU space satisfying Hahn's lemma and the homotopy
extension lemma is an ANRU. If every uniform covering of Y has
a finite-dimensional uniform refinement, and Y is LCWU and satisfies
the homotopy extension lemma, then Y is an ANRU.

The proof will not be given in detail. For the first assertion, given
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/ : A —•> Y and A c X, use the property LC Z7 first to get a uniform
covering ? / of 7 such that any two mappings which are near of order
W are homotopic. Then take a covering 5^ of Y suitable for Hahn's
lemma, so that a discontinuous function within 5^" of being uniformly
continuous and within y of / can be approximated by a uniformly con-
tinuous function still within ^ of / . Then take a sufficiently fine
uniform covering {Wa} of A, shrink it to {Ra}, and extend this to a
uniform covering {Sa} of a uniform neighborhood N of A so that no two
Sa's meet unless the corresponding Wa's meet. This can be done so
that a function g on N to Y assigning to each p e AT an arbitrary f(x),
x in some Sa containing p, can be approximated by uniformly continuous
h: N—> Y closely enough so that h | A is homotopic to / | A, which will
therefore be extensible over N.

The second part is more complicated. Given / : A—> Y, A c X, take
a uniform covering <f/ of Y whose numbers are equiuniformly continuously
contractible. Take a finer uniform covering which is a finite union of
uniformly discrete subfamilies 5̂ ~* = {Fj}, i = 1, •••, m (see [15, 2.2]).
Then the sets Wi = f~x( Fj) form a uniform covering of A and for fixed
i, {Wi} is uniformly discrete. Construct {Si} = £f covering a uniform
neighborhood N of A in X, as before. Then construct the space Z of
ordered pairs (x, S), & e S e ^ f as in 4.2. By the contractions of sets
containing the sets PFj, the mapping fn: ^(A) —> F is homotopic to a
mapping which is constant on each n~\S£) and therefore extensible over
Z. However, we need an extension h which is of the form gn, where
fir is a uniformly continuous extension of / over N. This is easily con-
structed by means of functions jlfk19j29k2, •••,jm = h, where j \ is an
extension of fn over the subset of Z consisting of n~\A) and all (x, S^),
kx is the unique extension of j \ over the union of TC^A) and all TC'^S^)

which has the form Ijz, and so on.
We conclude with

4.4. Every ARU [ANRU] is a [neighborhood] extension space for
collectionwise normal spaces.

This is a trivial corollary of Dugundji's theorem [5] that every
Banach space is an extension space for collectionwise normal spaces,
since every ANRU is complete and is thus a closed subspace of a product
of Banach spaces.

5. Contractibility, metrizability* For ARU's, uniform contractibility
has some immediate corollaries. These conclusions of course apply uni-
formly locally to ANRU's. A first corollary was noted in [15]: a uni-
formly contractible space X is finitely chainable in the sense of Atsuji
[1], i.e., for every uniform covering f/ of 1 there exist finitely many
elements Ul9 • • •, Um of ^/ and a finite cardinal n such that every
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element of <%/ can be joined to one of U19 •••, Um, by a chain of n or
fewer successively intersecting elements of ^. Note that this property
is preserved under uniformly continuous images and is therefore possessed
"equi-uniformly locally" by LCWU spaces. Since there is already a
concept of chainable involving the existence of a basis of coverings which
are in some sense chains, we suggest the alternative term uniformly
bounded for Atsuji's concept. A good reason for the term was given
already (essentially) by Atsuji.

5.1. (Atsuji). A uniform space is uniformly bounded if and only
if every vniformly continuous pseudometric on it is bounded.

Proof. Atsuji showed [1] that a space is finitely chainable (uniformly
bounded) if and only if every real-valued uniformly continuous function
on it is bounded. Evidently an unbounded pseudometric would yield an
unbounded real function, and conversely.

It was noted in [15] that a uniformly bounded space having a basis
of star-finite uniform coverings is precompact, i.e., has a basis of finite
coverings; more specifically, every star-finite uniform covering of a uni-
formly bounded space is finite. Hence a uniformly locally compact
uniformly bounded space must be compact. We have further

5.2. An LCWU space having a basis of star-finite [star-bounded]
uniform coverings has a basis which is a star-finite [star-bounded]
collection.
and

5.3. A locally compact, uniformly contractible, complete space is
compact.

Proof of 5.2. We need only a single star-finite [star-bounded] uni-
form covering {Ua} whose members admit an equiuniformly continuous
family of contractions ha. Then the sets h#(Ua x / ) z> Ua are uniformly
bounded; moreover, by equiuniform continuity, for each uniform covering
5̂ * of the space there is n such that any two elements of ^ which
have non-empty intersection with a common Ua can be joined by a chain
of n or fewer successively intersecting elements of 3*f Then take a
basis consisting of coverings 5̂ ~A each of which is finer than {Ua} and
star-finite [star-bounded]. For each X, each member of 5 ^ is contained
in some Ua and meets no more other Up 8 than Ua does. On the other
hand, the members of ^K which meet a given U» are all in the wth
iterated star of some one member of 5̂ **; thus they form a finite collec-
tion, and if <^rk is star-bounded then these collections also are of bounded
size.
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Proof of 5.3. Let X be complete and locally compact and let
h: X x I —> X be a uniformly continuous contraction. Then h(X x {1})
is compact, being a single point. Then cannot be a least t in [0,1]
(different from 0) such that h(X x {t}) is precompact; for a precompact
subset of a complete locally compact space has a compact uniform neighbor-
hood. But it is also impossible that there is a greatest t such that
h(X x {t}) is not precompact. For, if S = h(X x {£}) is not precompact,
there is a uniform covering of X containing an infinite uniformly discrete
subcollection {Ut}, each Ut containing at least one point pt of S; if 3^
is a star-refinement of this covering and h(X x {t + a}) is within 5̂ " of
£, then fe(JST x {t + s}) meets every E7i and hence is not precompact.
The only remaining possibility is that all h(X x {t}), including X itself,
are precompact. Since X is complete, it is compact.

In 5.2, evidently, local contractibility is not essential; only a suitable
local boundness condition is needed. In 5.3, "uniformly contractible"
cannot be replaced by "uniformly bounded". An example may be con-
structed as follows. Begin with the half-line (1, oo), with d(x,y) =
min (I x—y\, 1). At each w=3, 4« • •, erect whiskers Wni for i = l,« ••, n—1,
of length 1 — Iji and reaching to within 1/i of the point i. Let the
distances not mentioned be the greatest compatible with the triangle
inequality

Let us stress the following corollary to 5.3.

5.4. A locally compact ARU is compact. A locally compact ANRU
is uniformly locally compact.

The first assertion follows at once from 5.3; the second can clearly
be proved by a similar argument. 5.4 includeds the previous result
that at least one extension space for collectionwise normal spaces (the
real line [15]) cannot be an ARU in any uniformity. There are also
ANR's—indeed, neighborhood extension spaces for normal spaces—which
cannot be ANRU's; for any open subset of a product of closed intervals
is a neighborhood extension space for normal spaces, locally compact,
but not paracompact if the product has uncountably many factors, and
thus not uniformly locally compact in any uniformity. However, 5.4
was not needed for this; these spaces are not even complete in any
uniformity.

5.5. Let X be an ANRU which is homeomorphic with a non-discrete
separable metric space. Then the least cardinal number of a basis of
uniform coverings of X is a countable sum of smaller cardinals. Con-
sequently if the power of the continuum is less than ^w, then X is a
metric uniform space.

Proof. Let & be a basis of uniform coverings of minimum cardinal
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#a; this is an infinite cardinal since X is not discrete. Well-order &
into a sequence {^/K \ X < <*>„}. For each X select a uniformly continuous
mapping fx of X onto a metric space M*. such that every subset of X
whose image under fx has diameter < 1 is a subset of some element of
<?/K. Moreover, let /_x be a uniformly continuous homeomorphism of X
onto a metric space M-±; such a mapping exists, i.e., the given uniformity
contains a metric uniformity, by [15, Lemma 3]. Then let Px be the
product of all the metric spaces M^ — 1 ^ /3 ^ A,, and let hx: X—*PX be
the uniformly continuous homeomorphism whose coordinates are the
mappings f$. Let Xx = hx(X). Observe that hx

u. X A - * X is certainly
not uniformly continuous, for Xx is a subset of a product of fewer than
#a metric spaces and therefore has a basis of uniform coverings whose
cardinal number is less than ^ a (unless a = 0, in which case we have
the result we wish to prove).

For X > fi there is a uniformly continuous projection pXfX: Xx—^XlXy

the restriction of the projection of Px upon the partial product P^;
moreover, pXfl is a homeomorphism. We define a uniform space Y whose
points are the points of X and of all XA, — 1 £̂ X < (*)„, as follows. For
any pt < &>*, for any uniform covering {Up} of XM for any choice of a
uniform covering 5=̂  of XK for each X < ft, the following sets form a
uniform covering of F:

( 1 ) the members of the coverings %,X<fi;
(2 ) the sets Wp consisting of Up c XM h^(Up) c X, and all p^iUp),

X > fjt. The coverings just described clearly form a basis for a uniformity;
by definition, this is the uniformity of Y.

The uniformity induced on X as a subspace of Y coincides with the
given uniformity, since & is a basis. Since X is an ANRU, there is
a uniformly continuous retraction r: U—>X, where U is some uniform
neighborhood of X in Y. But [/ contains all Xx with indices X exceeding
some fixed V For each point p in X, consider the subspace Tp of U
consisting of p and the points hx(p), X > Xo. In Tp, every neighborhood
of p contains all hx(p) for X exceeding some fixed Xx. Now r maps T^
continuously into the metric space X, with r(p) = p. Unless fc^ is a
countable sum of smaller cardinals, r is finally constant on Tp. Apply
this to the points pt of some countable dense set; we find that for some
X* < O)ay for all X > X*, r(feA(p«)) = P* for all i. But r is continuous, so
that r(hx(p)) — p for all p in X, for any X > X*. This contradicts uni-
form continuity of r; thus #a must be a countable sum of smaller
cardinals.

The last assertion follows from the remark that ^ cannot exceed
the power of the continuum; for any uniformity on the topological space
X is induced by a family of continuous mappings of X into a universal
separable metric space (say L), and there are only continuum—many
such mappings.
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We note in conclusion that a discrete topological space obviously is
not an ANRU in any uniformity different from the discrete one, which
is a metric uniformity.

6. Dimension 1. This section is devoted to the proofs of

6.1. THEOREM. Assuming the power of the continuum is less than
5rtw, an ANRU homeomorphic with the real line must be uniformly
equivalent with the real line. More generally, an ANRU homeomorphic
with a 1-dimensional atriodic uniform complex must be a uniform
complex.

and

6.2. THEOREM. A 1-dimensional compact ANR must be metric.

Proof 0/6.I . A space X which is homeomorphic with the line is
uniformly equivalent with the line provided X is metric, complete,
uniformly locally connected, and has a star-bounded basis [14]. If X is
an ANRU it must be complete and uniformly locally connected. By 5.5,
X must be metric. In view of 5.2 it remains only to show that every
uniform covering ^ of J has a star-bounded uniform refinement. Let
y be a uniform star-refinement of ^/ consisting of connected sets, i.e.,
intervals. For each x in X let Wx be the star of x with respect to 5^.
Use some homeomorphism to identify the points of X with real numbers,
and consider Wo. Since X is connected, there exists a point x1 > 0, not
in Wo, such that WXl meets Wo. That is, there exist intervals Io and
I± in C7~ with 0 e I09 xx e Ily and Io n ii not empty. Then Wx = (0, xY) U WXl

is a subset of the star of I± with respect to 5^, and thus of some
element of ^/. In the same manner we obtain W2cz(xlf oo), and so on,
and on the other side W-x c (— oo, 0), and so on, ending with a covering
<W of density 2 which is finer than ^ but coarser than 5^. In par-
ticular, W" is star-bounded and uniform, as required.

The phrase "More generally" in the statement is justified by the
fact that every uniform complex homeomorphic with the line is uniformly
equivalent with the line; we omit the proof of this.

The components Ka of a 1-dimensional atriodic complex may be lines,
half-lines, segments or circles. If the complex X is an ANRU in some
given uniformity, then the subspaces K* are uniform complexes in the
induced uniformity; this follows from compactness for the segments and
circles, from the preceding (with the hypothesis 2^° < Ww) for the
lines, and from virtually the same proof for the half-lines. To show
that X as a whole is a uniform complex is a routine exercise depending
on the fact that X must be LCWU; we omit the details.

For 6.2 we shall need some lemmas. The idea of the proof is simple.
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The ANR's in question are locally trees; from several equivalent defini-
tions we choose to define a tree as a locally arcwise connected compact
space in which every two points are joined by a unique arc. The key
lemma peculiar to trees X is that if X has a dense subset of cardinal
m than X can be embedded in a product of m closed intervals. For
^ = Mi» ^ e product space has a countable dense subset. If X is a
neighborhood retract of the product it too has a countable dense subsets;
then by the lemma, X must be metric.

6.3. A 1-dimensional compact ANR can be covered by open sets
whose closures are trees.

Proof. First, it suffices to show that such a space X can be covered
by open locally arcwise connected sets in which each two points are
joined by a unique arc; for any closed arcwise connected subset of such
a set is locally arcwise connected because of the uniqueness, and the
covering can be shrunk because of compactness. Then, since an ANR
and all its open subsets are locally arcwise connected, it suffices to show
that each point p has a neighborhood U in which any two points are
joined by a unique arc. But each p has an arcwise connected neighbor-
hood U which is contractible in X. If joining arcs in U were not unique,
U would contain a circle S. The identity mapping of S to S could be
extended continuously over the 1-dimensional space X; since S is con-
tractible in X, this is absurd.

6.4. In a tree, every point has a basis of neighborhoods whose
boundaries are finite sets.

Proof. Let p be a point of the tree X and U an arcwise connected
neighborhood of p. Consider the compact boundary B of U. For each
point b of B, there is a unique arc A joining b to p, and a suitable
point c interior to A and U separates 6 from p. For each such c, the
set of all points of X separated from p by c is open, since it is a union
of components of X — c. Then finitely many points clf • • •, cn of U suffice
to separate p from every point of B. The component of p in the com-
plement of {<?!,•••, cn} is then a neighborhood of p contained in U whose
boundary is finite.

In the next lemma, a branch point is a point whose complement has
three or more components, an end point a point whose complement is
connected. The order of a point is the number of components of its
complement. An open arc which contains no branch point, but both of
whose ends are branch or end points, will be called a maximal free arc.
Obviously the maximal free arcs are pairwise disjoint open sets.
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6.5. For a tree X and an infinite cardinal m, the following con-
ditions are equivalent.

(a) X contains no family of more than m disjoint arcs.
(b) X has no more than m branch points and no point of order

greater than m.
(c) X has a dense subset of cardinal m.

Proof. Assume (a). Evidently there is no point of order > m, since
every component of its complement must contain an arc. Also, any one are
A in X contains no more than m branch points; for we can associate to
each branch point x in A a closed arc I(x) whose intersection with A is
exactly x, and these arcs will be disjoint. Moreover, for the same reason,
if S is an arcwise connected subset of X then the closure of S contains
no more than m branch points not in S. Then let J be the set of all
ordinals of cardinality m or less. Let Ao be a closed arc in X. Induc-
tively, for each ordinal a in J, let Sa be the closure of the union of the
arcs Ap9 ft < a. If S» is not all of X, let Aa be a closed arc having
exactly one end point (of the arc) in common with Sa. Inductively, each
So, contains no more than m branch points. But the induction must end
before J is exhausted, for the open arcs obtained from all Aa by remov-
ing the ends form a pair wise disjoint family. Then (b) is proved.

To deduce (c) from (b), observe that if X is not just an arc, then
each maximal free arc has a branch point at least at one end; thus
there are no more than m maximal free arcs. Each has a countable
dense subset, and these together with the branch points make a dense
subset of X.

Finally suppose D is a dense set of cardinal m. Let S be the union
of all closed arcs both of whose ends are in D. Then any arc contain-
ing more than one point of S contains one of the m constituent arcs of
S, and no disjoint family can contain more than m of these. But the
complement of S cannot contain an arc A. For if p> q, r, are three
points of A, q separating p from r, the dense set D contains a point pf

not separated from p by q and a point r' not separated from r by q;
hence q separates pf from r' and the arc joining p' and r' contains the
point q of A n S. This completes the proof of 6.5.

6.6. A tree X having a dense subset of cardinal m is homeomorphic
with a subset of a product of m closed intervals.

Proof. The key conclusion from 6.5 is that there is a subset D of
cardinal m such that every arc in X contains a point of D; for this we
may take the branch points and countable dense subsets of the maximal
free arcs. Now for a homeomorphism into a product of m intervals it
suffices to have a family of m continuous functions fa: X—> [0,1] which
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separate points and closed sets. For each point pQ of D and each finite
subset {plf • • •, pn} of D — p0, there is a continuous function fa: X —> [0,1]
which is 1 at p0 and vanishes outside the component of p0 in X—{p19 • • •, pn};
by 6.4, these functions suffice.

6.7. Every closed connected subset of a tree X is a retract of X.
To retract X upon the closed connected subset S, choose soe S and

define r(x) for each x in X as the first point of S on the unique arc
from x to s0; continuity is obvious.

Proof of 6.2. Suppose X is a compact ANR of dimension 1 which
is not metric. Then X has a finite covering by trees, and not all of
these can be metric. Moreover, if we take a covering {T19 •••, Tn} by
trees which is a shrinking of a covering by open sets whose closures are
trees, then each Tx is a neighborhood retract of X and thus an ANR.
Hence we obtain a tree T which is an ANR and contains at least ^ x

disjoint arcs. Let S be the intersection of the closed connected subsets
of T which contain all the members of a certain family of fc^ disjoint
arcs. Then S is a tree, a retract of T; and the least cardinal of a
dense subset of S is exactly fc^. But by 6.6, S is homeomorphic with
subset of a product P of fc^ closed intervals. It is well known [19;
Problem 3N] that P has a countable dense subset. Since S is an ANR9

it is a retract of an open subset of P, and S itself has a countable
dense subset. The contradiction establishes the theorem.

III. SPECIAL TOPICS

7. Inverse limits •

7.1. Every complete uniform space is an inverse limit of ANRU's.

Proof. Let Y be complete, and consider Y as embedded in a product
P of function spaces Fx = UiD*, 7), where D^ is discrete. We need only
show that Y is the intersection of a directed set of ANRU's containing
it in P; then these spaces with inclusion mappings form an inverse map-
ping system with inverse limit Y. Let us call a canonical neighborhood
of a point pe P the open neighborhood determined by any £ > 0 and
any finite set of indices al9 •••, an, consisting of all those q whose o^th
coordinate projections for i — 1, •••,%, are all at distance < e from the
corresponding projections of p. The complement in P of one canonical
neighborhood determined by p, s, and a19 • • •, an, is a uniformly continuous
retract of the complement of the smaller canonical neighborhood deter-
mined by p, e/2, and the same indices; thus it is an ANRU. Further,
by a finite averaging procedure, one sees at once that the complement
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of a finite union of canonical neighborhoods of various points is also an
ANRU. But the complements of finite unions of canonical neighborhoods
disjoint from Y constitute a directed set whose intersection is Y, as
required.

It was noted in [3] that a uniform space Y cannot be inverse limit
of uniform complexes unless every uniform covering of Y has a finite-
dimensional uniform refinement; and it was shown there that this condi-
tion is necessary and sufficient in the case that Y is complete metric.
If Y is also ^-dimensional, the complexes can be ^-dimensional too.
On the other hand, Mardesic has shown [21] that there exist 1-dimen-
sional compact Hausdorff spaces which are not inverse limits of 1-dimen-
sional complexes. In view of this rather surprising result, it is worth
pointing out that complete ^-dimensional spaces do possess all properties
which are possessed by w-dimensional complexes and preserved under
inverse limits, for such a space is an inverse limit of inverse limits of
^-dimensional complexes. Mardesic has proved this in the compact case
[21, Corollary 1]. More generally, we have

7.2. Let X be a complete uniform space and {^*} a basis of uni-
form coverings of X, each finite-dimensional. Then

( i ) X is an inverse limit of finite-dimensional uniform complexes;
(ii) X is an inverse limit of inverse limits of nerves of coverings

The proof requires two lemmas. For (i), a finite product of finite-
dimensional uniform complexes is a finite-dimensional uniform complex.
The required triangulation may be gotten by constructing the non-simpli-
cial product complex whose cells are products of simplexes, and taking
the first barycentric subdivision. For (ii), Morita's lemma: If Y is
the completion of X, every uniform covering {U^} of X is the trace on
X of a uniform covering {Va} of Y with isomorphic nerve, and with
each Ua dense in Va. This is provided in [25].

Now the proof of (i) is precisely parallel to the proof for the compact
case [7, p. 284]; so we omit it.

Proof of 7.2 (ii). Every normal sequence @ of coverings from
determines a metric quotient space M(@) of X, and a projection
p(@): X-> M(@). Let JV(@) denote the completion of M(@). By Morita's
lemma, JV(@>) has a basis of uniform coverings with nerves isomorphic
with the nerves of the coverings in @. Then by [3, p. 21], each JV(@)
is an inverse limit of these nerves. But obviously the complete space
X is the inverse limit of the spaces N(&) under the natural mappings.

Note that either conclusion of 7.2 implies the hypothesis; specifically,
for (i), X must be complete and have a basis of finite-dimensional cover-
ings, while for (ii), X must be complete and have a basis of coverings
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whose nerves are embeddable in the representing complexes.
A space Z is said to dominate Y if there are mappings p: Y—*Z

and h: Z—• Y such that p: Y —> Y is homotopic to the identity. If ^
is a covering of Y* such that each path in the homotopy just mentioned
is contained in some element of ^< then Z is said to ^-dominate Y.
In analogy with Hanner's theorem for separable metric ANR's [12;
Theorem 6.1], we have

7.3. An ANRU in which every uniform covering has a finite-dimen-
sional uniform refinement is ^-dominated f for each uniform covering
1?/, by some finite-dimensional uniform complex.

We omit the details. The required homotopy will exist if the com-
position hp is sufficiently near the identity mapping. If p is a canonical
mapping into the nerve of a covering, a suitable mapping h can be
obtained by applying Hahn's lemma to a discontinuous function taking
each point p of the nerve to some point in an element of the covering
corresponding to a vertex of the carrier of p.

In separable metric (topological) spaces the converse is true [11];
it seems to be unknown whether the same can be said for finite-dimen-
sional metric spaces. In general, the results of the last ten years on
nonseparable metric spaces seem to depend rather heavily on the exis-
ence of sufficiently many locally finite coverings and canonical mappings
into their nerves. This we have at least in the uniform spaces which
have bases of finite-dimensional uniform coverings; but of course we do
not have the possibility of constructing a mapping by purely local argu-
ments, and it appears that much more technique must be developed
before many questions can be satisfactorily treated.

I should like to repeat the remark from [3] and [15] that the uni-
form complexes are clearly not the right concept for the infinite-dimen-
sional case. The finite-dimensionality in 7.2 and 7.3 may very likely
appear for no better reason than that we do not have the right uni-
formity for the complexes.

Looking beyond simplicial complexes, it is worth noticing that a
space Y which is ^-dominated (for every uniform covering <%/) by a
space satisfying Hahn's lemma will also satisfy Hahn's lemma. The
homotopy is quite irrelevant for this; all that is needed is the possibility
of approximating the identity mapping Y—* Y by mappings Y —> Z—* Yr

where Z is a well-behaved space.

7.4. If X is an inverse limit of spaces Xa, with the projections
X—*Xa onto, and Y satisfies Hahn's lemma, then the mappings from
X to Y which can be expressed as projection upon some X^ followed
by a mapping from Xa to Y form a dense subset of U(X, Y).

Proof. For any mapping / : X—> Y and any uniform covering ^
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of Y let fy' be a uniform star-refinement of *%/ and 5^ a uniform
covering of Y such that any function into Y under which the inverse
image of 5*" is a uniform covering is within ^ / ' of a uniformly continu-
ous function. Then f~\^) is a uniform covering of X; thus for some
projection xa: X—^Xa and some uniform covering "W^ of Xa, n~\c^)
refines f ~ \ ^ ) . Define a function A: Xa —> Y as follows: for each p e l ,
select x e X such that 7za(x) = p, and let fe(p) = /(#). Each element W
of ^ " then goes into f(ic*\W)), which is a subset of an element of 5*"*;
thus there is a mapping g: X«-* Y within <%/' of h. Finally, hx* is
within 5^' of / and gx* is within ^ ' of Jtea; thus #7r* is within fs of
the arbitrary mapping / , as required.

We say that a space Y is an extension space for a class of spaces
Xa provided every mapping of a subspace of any Xa into Y can be ex-
tended to a mapping of Xa into Y.

7.5. If Y is an ANRU and an extension space for certain spaces
X#, then Y is an extension space for all inverse limits of the spaces Xa.

Proof. Observe that if X is the limit space of the inverse mapping
system {X^f^} then any closed subset S of X is the limit of {7r«(S);/aj3}.
Any mapping / : A - > y , A c I , can be extended at least over the closure
S of Af since Y is complete. Then / : S—> Y can by 7.4 be approximated
arbitrarily closely by a mapping giz*, for some g: Tca(S) —> Y. If the
approximation is close enough, g ^ is homotopic to / , since Y is LCZ7.
But g can be extended over Xa, which yields an extension of giz* over
X; by the homotopy extension lemma, / can be extended over X.

REMARKS. (1) 7.4 and 7.5 are done for real-valued functions in
[3].

(2) Smirnov has shown [27] that a space X has S-dimension at
most n if and only if the sphere Sn is an extension space for X. Thus
7.5 yields as a corollary the lower semi-continuity of S-dimension on
inverse limits. However, it is easy to prove this directly.

8, Extensible continuous functions.

8.1. Among continuous functions f: A —» B in uniformisable spaces,
the following conditions are equivalent.

(a) Whenever A is a subspace of X, B can be embedded in some Y
so that f has a continuous extension over X with values in Y.

(b) If A is a closed subspace of X then B can be embedded in some
Y so that f has a continuous extension over X with values in Y.

(c) If A is a closed subspace of X then B can be embedded in some
Y, as a closed subspace, so that f has a continuous extension over X
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with values in Y.
(d) For any uniformity on A there is a uniformity on B making

f uniformly continuous.
(e) For every compactification X of A there is a compactification

Y of B such that f has a continuous extension over X with values in
Y.

Proof. The relations (a) => (b) 4==̂> (c) are trivial. (For
use the uniformisable quotient space of X obtained by collapsing A to
a point.)

Next assume (b), and let p. be a uniformity on A. Let v be a
precompact uniformity coarser than fi; let C be the completion of vA;
and let W be the space of all ordinals less than or equal to some regular
ordinal a larger than the cardinal of A. Let X be the uniformisable
space obtained from C x W by removing the points (c, a), c not in A.
Then the points (a, a) form a closed subspace of X homeomorphic with
A. In view of (b), there exist a space Y containing B and a continuous
mapping g: X—> Y extending / . Then g is uniformly continuous with
respect to the finest uniformities compatible with the topologies of X
and of Y; hense so is / . It remains to verify that the induced uniformity
on A is v, which is coarser than jit. For this it sufficies to show that
every continuous pseudometric d on X, restricted to A, is v — uniformly
continuous. Now for any two points (a, a), (a', a), of A c X, consider
the real-valued function h on W defined by h(/3) = d(a, £), (a', {})). It
is continuous, hence finally constant; then there is an ordinal X < a such
that for X < £ < h(£) = d((a, a), {a', a)). If we select such a X for each
pair (a, a'), we have a bounded set of ordinals less than a; then there
is Xo < a such that d((a, Xo), (a', X,o)) s d((a, a), (a', a)). In particular,
the restriction of d to A is continuously extensible over C and therefore
uniformly continuous on vA.

Next, (d) implies (e), by considering induced uniformities. Finally
(e) implies (a). If A c X, let Z be any compactification of X and C the
closure of A in Z. From (e), there is a compactification K of B such
that / can be extended to a continuous mapping g: C —> K. Let Y be
a cube containing K. Since C is closed in Z, g can be extended to
h: Z—> Y, and h \ X is the required extension of / .

We shall call / : A —> B intrinsically extensible if it satisfies the equi-
valent conditions of 8.1.

The intrinsically extensible mappings fall into two types. We shall
call / : A —• B convergent at infinity, to a value b in B, if for every
neighborhood U oib there is a compact subet Koi A such that f(A—K)d
U. We call / proper if / is closed (i.e., images of closed sets are closed)
and inverse images of points are compact.
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The standard definition of proper mapping assumes both spaces are
locally compact and requires that inverse images of compact sets are
compact. This is weaker than the present definition if local compactness
is not assumed, but equivalent if either A or B is locally compact or
if B is first countable [13]. From [13] we recall the connection between
proper mappings / : A —* B and the Cech extensions ffi: ft A —* /3B over
the Stone-Cech compactifications: / is proper if and only if f${fiA — A) c
fiB — B. This is proved in [13] for onto mappings. To complete the
proof we observe that / : A—* B is proper if and only if / : A—+f(A) is
proper and f(A) is closed in B. By [13, Lemma 1.5]/is proper relative
to f(A) if and only if fp(/3A — A) is disjoint from f(A), and assuming
this, one verifies at once that f(A) is closed in B if and only if fp(/3A — A)
is disjoint from B as well.

It is evident, further, that / : A —> B is convergent at infinity to b
if and only if fp(x) = b for all x in /3A — A.

8.2. THEOREM. Every function convergent at infinity is intrinsi-
cally extensible. An intrinsically extensible function which is not
convergent at infinity is proper. Proper mappings with locally com-
pact domain or range are intrinsically extensible.

Proof. If / : A—+B is convergent at infinity to b, and X is a com-
pactification of A, we obtain a continuous extension of / over X (into
any compactification of B) by defining g(x) = f(x) for x in A, 6 for x
not in A.

Next suppose / is neither convergent at infinity nor proper. Then
fp takes some point xx of /3A — A to b in B, and takes some other x2

in /3A — A to y =£ b in /3B. There is a neighborhood UofbinB whose
closure in /3B does not contain y, and f$ maps a neighborhood V of X2

into the complement of U; thus f(Vf] A) c B — U. Let X be the quo-
tient space of @A obtained by identifying xx and x2. A continuous
•extension of / over X, into any compactification of B, would have to
take the point {x19 x2} to/pO^), which is b. However, every neighborhood
of {xlf x2) meets FflA and therefore its image meets B — U. Thus /
•cannot be extended continuously over X and is not intrinsically extensi-
ble.

Next we show that if / : A —> B is proper and B is locally compact,
A is also locally compact. As remarked above, f(A) is closed in B; thus
f(A) is locally compact. By [13, 2.2], so is A. On the other hand,
assuming A is locally compact, we conclude [13, 2.2] that f{A) is locally
compact. From either hypothesis we now have the conclusion that the
set C in /3B which is the closure of f(A), less f(A), is compact. Let Y
be the compactification of B obtained from ffB by collapsing C to a point.
For any compactification X of A, define g: X—* Y by g(x) — f{x) for x
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in A, g(x) = C for x not in A. Since A is open in Xt g is continuous
at points of A. Since every neighborhood of C contains all of f(A) except
a compact set, whose inverse image is compact, g is continuous at points
not in A. This completes the proof.

In view of 8.2 it is natural to inquire about extension in the category
jSf of locally compact spaces and proper mappings. Defining an AR of
£? as a space of ^ which is a retract by a mapping of S>? whenever
it is embedded as a closed subspace of another space of -Sff and similarly
for other analogous terms, we have

8.3. Relative to J9f every mapping is intrinsically extensible*
(That is, if A, B, X are locally compact, A closed in X,f: A —> B properr

then B can be embedded as a closed subspace of a locally compact space
Y and f extended to a proper mapping g: X—* Y.) Hence every ANR
of J5f is a neighborhood extension space of j£f? Sf has no ARJs. It
does have ANR's, including at least all locally compact o-compact
spaces which are ANR's of the category of locally compact spaces and
continuous functions.

REMARKS. In the last assertion of 8.3, "^-compact" is not necessary;
I do not know whether it can be simply deleted. One can readily con-
struct a special proof for at least the space obtained by deleting one
point from any product of closed intervals. One can also replace "tf-
compact" by "paracompact", but this is not actually a different result,
for it follows easily from arguments in [23] that a paracompact ANR
in locally compact spaces (and continuous functions) must be (j-compact.

Proof of 8.3. Given three locally compact spaces, A a closed sub-
space of X mapped into B by a proper mapping / , consider /3X and the
closure A~ of A in {2X. From 8.2, there is a compactification B~ of B
permitting a continuous extension g: A~ —> B~ of / . The sets g~\p), p-
ranging over g(A~), form an upper semi-continuous decomposition of A~\.
Therefore these sets and the single points of f3X — A~ form an upper
semi-continuous decomposition of /3X, with quotient space Z containing
g(A~) as a closed subset. Let Z' be the compact space obtained from
the sum of Z and B~ by identifying corresponding points of g(A~). The
natural mapping h: {3X—> Z1 takes A~~ — A into B~ — B, since / is proper;
and h takes the rest of fiX — X into Z' — B~. Further, h(X) is disjoint
from both B~ — B and h(/3X — X). These last two sets are compact,,
since B and X are locally compact. Then let Y= Z' — h(/3X — X) —
{B~ — B). Fis locally compact space containing B as a closed subspace,,
and h \ X is a proper mapping into Y. This proves the first assertion,,
and the second follows trivially.

To show that J?f has no AR's it suffices to show that every space.
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B can be embedded in a space Y which has no proper mapping onto B.
For this it suffices to take the sum of B and a discrete space of larger
power, since the inverse image of a point of B must be compact and
thus can contain only finitely many points of the discrete space.

Finally suppose B is locally compact and (/-compact, and whenever
B is embedded as a closed subspace of a locally compact space Y there
is a continuous retraction r of some neighborhood U of B onto B. We
•shall show that U contains a neighborhood V of B such that r | V is
proper. Recall that By being a Lindelof space, has the star-finite cover-
ing property [24], so that there is a star-finite covering {#*} of B
•consisting of open sets with compact closures. The star Sa of each R«
also has compact closure, by finiteness. The set r " 1 ^ ) is a neighbor-
hood of the closure of Jf2a, and contains a compact neighborhood Va.
Let V be the union of all Va. To show that r \ V is proper, it suffices
{since the spaces are locally compact) to show that the invere image of
a compact subset K of B is compact. Since K can meet only finitely
many RJs, it suffices to show that r~\R~) n V is compact. But it is
dosed, and it is contained in a finite union of compact sets, namely
those Vfi for which Rp is in the second iterated star of Ra. This com-
pletes the proof.

Among the intrinsically extensible mappings, the constants of course
permit mapping any space to any other. We note that the non-constant
mappings convergent at infinity are closely related to the proper mappings,
in the sense of

8.4. If f: A—>B is convergent at infinity to 6, then f\A — f~\b)
is proper into B — b, and A — f~\b) is locally compact. The image

/(A) has compact closure.

Proof. A closed subset of the space A — f~\b) is mapped into a
subset of B which contains all its limit points except perhaps 6; for if
c is a point of B — 6, there is a neighborhood U of b which does not
have c in its closure, and f~\U) contains all of A except a compact set.
'This show also that the inverse image of a point c =fc b is compact.
Moreover, for x in A, if f(x) =£ 6, there is a neighborhood of f(x) whose
inverse image is a neighborhood of x contained in a compact set. Finally,
/(A)-= ftfA).

Among the corollaries of 8.4, observe that a nowhere locally compact
space (such as the rational numbers) has no non-constant intrinsically
extensible mapping into a locally compact space. On the other hand,
whenever there is a proper mapping g of a locally compact open subset
U of A into a subset C — b of B, where C is compact and 6 is a point
of C, it is clear that extending g over A with g(A — U) = b yields a
mapping convergent at infinity to b.
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This amounts to a complete description of the intrinsically extensible
mappings except for the additional conditions which must be imposed
on proper mappings in the non-locally compact case. We conclude with
a partial result on those conditions.

Let us call a proper mapping / : A —* B one-to-one at infinity if the
Cech extension fp maps ft A — A into ftB — B in a one-to-one manner (and
hence, since fp \ /3A — A is also a proper mapping, homeomorphically)..
A mapping, of this sort is intrinsically extensible, as will be shown.
However, we know that if A is locally compact, no such condition is
needed. Let R(A) denote (as in [13]) the closed subset of A consisting
of all points at which A is not locally compact. We say / is one-to-one
at infinity near R(A) if the inverse images of points of ftB — B which
are not single points all lie outside some neighborhood of R(A) in /3Af

or in other words they lie in some compact subset of ft A — A.

8.5. For a proper mapping f: A—>B to be intrinsically extensible,
it is sufficient that f should be one-to-one at infinity near R(A); if A
is first countable, the condition is also necessary.

Proof. First suppose A is first countable and / : A —> B is proper
but not one-to-one at infinity near R(A); thus for some x e R(A), every
neighborhood of x in ft A contains points of ft A — A which are not com-
plete inverse images of their images. If {Vt} is a countable basis at x
in A then the sets Ut — (Vf)° form a basis at x in ft A. Choose points.
Xi in Ut — A and yt =£ xt such that fp(yt) = fp(xt). The points yt are in
ft A — Ay since / is proper, and since all their limit points x' satisfy
fp(xf) = f(x), they are in A. Then by choosing a subsequence we may
assume the yt's converge to a limit x\ possibly x itself. Evidently we
may also assume all the points xi9 yjy are distinct from each other. Then
form a compactification X of A by the upper semi-continuous decomposi-
tion of ft A whose non-degenerate elements are certain two-point sets,,
specifically the pairs {x.2n, x2n+1} and the pairs {y2n-u V^- Since the xt

and the y3 form two convergent sequences, the decomposition is upper
semi-continuous and yields a compactification X. If / could be extended
to a mapping g of X into some compactification Y of B, we should have

$) = ff({»2,»3}) since f^(x2) =fp(y2), g({x2fx3}) = g{[y*fy$) since fp(x3) =
and so on. Then g would be constant on all these points, the

value would be g(x) = f(x) e B, and since {y19 y2} is the limit of a net
of points Pa, of A such that f(pa) does not converge to f(x), this is a
contradiction.

The other half of the proof depends on

8.6. If G and H are two upper semi-continuous decompositions of
a normal space and every non-degenerate element of G is disjoint from
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every non-degenerate element of H, then the decomposition whose non-
degenerate elements are the non-degenerate elements of G and of H is
upper semi-continuous.

The proof of this is a routine exercise, and we omit it.
Now suppose / : A —• B is proper and one-to-one at infinity near R{A),

and let X be any compactification of A. There is a compact subset K
of ft A — A which contains all the non-degenerate inverse images of
points of ftB — B under / 3 . Let TZ be the natural mapping of ft A onto
X, and L = Tc~l(n(K)). Let Xo be the quotient space of ft A by the de-
composition whose only non-degenerate element is L, and X1 the quotient
space of X by the decomposition whose only non-degenerate element is
n(K) = 7i(L). Then we have quotient mappings X: ft A —• XOf a: X—* Xu

and g: X0—^Xlf the latter associated with an upper semi-continuous
decomposition G of XQ whose non-degenerate elements are all contained
in Xo — X(A). We obtain another upper semi-continuous decomposition
H of Xo, with all its non-degenerate elements contained in X(A), as
follows. Let Yo = fp(ftA) c {3B. Let Y1 be the quotient space of Yo by
the decomposition whose only non-degenerate element is fp(L). Then
the decomposition of ft A associated with ft A,—* Yo—> Yx is coarser than
the decomposition associated with X: ft A —> Xo, and therefore there is a
quotient mapping h: Xo —> Yx. All the non-degenerate inverse sets under
ftA—> Yo-+ Y1 are contained in A, with the exception of L; therefore
the decomposition H associated with h satisfies 8.6, and there is a
quotient mapping q: Xo—• Y2 whose non-degenerate sets g~\p)fpeXl — gX(A),
and the non-degenerate sets Xf^(b)f b e B. There is also a quotient
mapping Yx—> Y2; Y2 is the quotient space of Yo by an upper semi-
continuous decomposition; and Fo is a closed subspace of /3B. Therefore
the decomposition of ftB whose non-degenerate elements are those sub-
sets of Yo which are inverse sets under Yo —> Yx—> Y2 is upper semi-
continuous and yields a quotient space Y of (3B. Inspection of the
definitions shows that the quotient mapping /32? —> Y embeds B homeomor-
phically, so that Y is compactification of B. Again, Y2 c Y is the
quotient of Xo by a coarser decomposition than G, and therefore there
is a quotient mapping j : Xx -~> Y2 c Y. Then ja maps X continuously
into Y, and ja\n(A) agrees with / , as required.

9. Adequacy* If B is a collection of objects of a category ^ and
X and Y are two objects of ^ a right transformation from X to Y
over B is defined [17] as a function a which takes each mapping / in
<& whose domain W is in B and whose range is X to a mapping
#(/)• W—+Y, satisfying a(fe) = a(f)e for every e in ^ which has
range W and domain an element of B. This rather formidable definition
is really quite natural; any mapping a: X—> F defines a right trans-
formation a by a(f) = a/, and the question whether the converse is
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true is a precise form of the question whether there are enough map-
pings of ''standard objects'' (objects of B) into X to determine X. In
particular, if X itself is in B, then each right transformation a from
X to any Y over B is defined on the identity i: X—+X and is induced
by the mapping a(i): X—*Y. In general, B is said to be left adequate
in %f if for every X and Y, each right transformation from X to Y
over B is induced by a unique mapping in ^ In this paper we shall
use also the localized notion: B is left adequate for X (with respect
to c^) if the right tranformations from X to each Y over B correspond
in a one-to-one onto manner with mappings from X to Y.

The notions of left transformation, right adequate in, and right
adequate for are defined dually. We shall soon see (9.1) that in topology
and in uniform spaces, it is only this half of the idea of adequacy that
really presents new problems. To insure against confusion we describe
a left transformation from X to Y over B more fully; it takes each
mapping 7->Z, Z in 5, to a mapping X—>Z, and commutes with left
multiplication by mappings Z—> A in B.

We shall be considering the category of all uniform spaces with all
uniformly continuous functions, the category of all uniformisable spaces
with all continuous functions, and some full subcategories of these (i.e.,
subcategories which include all mappings between their own objects).
For short, we shall specify the category in each case by specifying its
objects, letting the mappings be understood.

9.1. Among uniformisable spaces or among uniform spaces, a class
B of objects is left adequate for an object X if and only if X is a
quotient of the sum of a family of objects of B. B is right adequate
for X if and only if X is a subspace of a product of spaces in B and
every left transformation from a one-point space P to X over B is
induced by a mapping from P to X. This implies that X is a closed
subspace of a product of spaces in B.

Proof. Suppose X is a quotient of the sum I of a family of objects
Sx of B. For any right transformation a from X to Y over B, in
topological spaces, it is shown in [17, 2.4] that there is a unique function
a from X to Y, not necessarily continuous, such that a(f) — af identically.
This induces a mapping I —> X —> Y, which is in the category since I
is sum and all a(f) are in the category; since X is a quotient, this
implies a is in the category.

Suppose X is not a quotient of the sum of any family of objects
in B. Consider each mapping / of a space W of B into X. There is
a quotient space Q(f) of W by the equivalence relation f(p) = f(q);
moreover, Q(f) has the same cardinal number as f(W), which is at most
the cardinal of X. Then among the class of spaces Q(f) we can find
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a set {Qx} such that every Q(f) is equivalent (topologically/uniformly)
to some Qx. For each QK select some / = fx such that QK = Q(/), and
let Wx denote the domain of this fx. Then let X' be the quotient of
the sum S of all Wx by the equivalence relation R defined as follows:
for p € WxdS and qe W^aS, pRq provided fx(p) = f^q). Now X'
is a quotient of sum of spaces of B, and thus is certainly not equivalent
to X. However, all spaces of B have "the same" mappings into Xf as
into X. More precisely, the right transformation a from Xf to X over
B induced by the natural mapping a has an inverse ft; if B is left
adequate for X, /3 is induced by a mapping b: X~* X'. Then a/3 is
induced by a&; but a/3 is induced by the identity i: X—>X, and hence
a& = i. Similarly &a is an identity, and a is an equivalence; a contra-
diction.

If X is not a closed subspace of a product of spaces in B, a similar
argument applies. Any mapping h: X—• T of X into a product of spaces
in B maps X onto a space A(X) of cardinal number no greater than that
of X; moreover, the closure of h(X) in T has limited size (at most 22™
if m is the cardinal of X), so that there is no more than a set of
essentially different possibilities and there is a mapping k: X—> X' upon
a dense subset of a space X' which is a closed subspace of a product
of spaces in B, inducing a left transformation from X to X' over B
which has an inverse. Again, if X is not equivalent to X', this inverse
is a left transformation which cannot be induced by a mapping.

If B is right adequate for X, then in particular every left trans-
formation from a one-point space to X over B is induced by a mapping.

To conclude we need only show that if X is a subspace of a product
T of spaces Zk in B, and left transformations from a one-point space P
to X over JB are induced by mappings, then each left transformation a
from any space W to X over i? is induced by a unique mapping a: W—>X.
Uniqueness is trivial, for the coordinate projections 7rk: X-+Zx must
satisfy 7iKa = a(7rx), which completely determines a. On the other hand,
a function a on W with values in the product space T is defined by
defining each coordinate 7cka to be a(7c): W-+ZK. To prove that a(W)
is contained in X a T, consider any point p of W. There is a mapping
h: P-* W taking the value p. The left transformation /3 from P to X
defined by /3(g) = a(g)h is by hypothesis induced by a mapping 6: P—>X,
i.e., a(#)fc = #6 for all g: X—> Y, Y in B. In particular each 7rAa/& —
a(7Ux)h = 7TA6, so that every coordinate ir>Sa(p)) is the same as the cor-
responding coordinate of 6(P), which is a point of X. Further, a is a
mapping in the category since all its coordinates are. It remains only
to verify that for every g: X—» Y, Y in B, a(g) is in fact the mapping
ga: W —> Y; but this involves no more than oc(g)(p) = ga(p) for each
point p of W, which is verified at once. This completes 9.1.

It is shown in [17] that a closed interval I is not right adequate
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for a square P; P, however, is right adequate for all compact spaces.
In general, a sequence need not be right adequate even for its closed
subspaces. DeGroot has given an example of a space Y which has no
continuous mappings into itself except the identity and the constant
functions [10]; consequently Y is not even right adequate for a two-
point space.

9.2. A uniform or uniformisable space Y is right adequate for
all its closed subspaces if either Y contains an arc or Y has covering
dimension (S-dimension) zero. The spaces in an inverse mapping system
are right adequate for the inverse limit if either at least one of them
contains an arc or all of them have covering dimension (S-dimension)
zero.

Proof. Let S be a closed subspace of Y, with an embedding
e: S—> Y. By 9.1 we need only consider left transformations a from
a one-point space P to S over Y. The mapping a(e): P—> Y maps P
upon some point p of Y. If p were not in S, either hypothesis (arc or
dimension zero) would imply the existence of a mapping g: Y—+ Y taking
all of £ to one point s and p to another point t. Then a(ge) must map
P to t. But consider the constant function h: Y—> Y with value s;
hge = ge, so that a(hge) maps P to t, unlike ha(ge). The contradiction
shows that p is in S. It remains to verify that for any / : S —> Y, the
point range r of a(f) is f(p). As before, if r and f(p) differed there
would be a mapping g: Y —> Y with g(r) =£ gf(p) but with g(Y) contained
in an arc or in a two-point space, the latter case arising when Y is
zero-dimensional, so that in either case every mapping of a closed sub-
space of Y into g(Y) can be extended. If h: Y—+ g(Y) is an extension
of gf, we have he — gf. Then a(he) must be at once ha(e), mapping P
to gf(p), and ga(f), mapping P to g{r). This proves the assertions about
subspaces. The argument for inverse limits is similar, except that the
determination of a point p in the limit space by its coordinate projec-
tions a(rcx) follows at once from the relations a(fXfl7zx) = fXlla(7zx).

From 9.1 and 9.2 we have at once

9.3. ANRU's (or ARU's) are right adequate for a uniform space
X if and only if X is complete.

As for the arc I, the theorem is

9.4. An arc is right adequate for 1-dimensional compact spaces.
I do not know whether there are any spaces of dimension greater

than 1 for which the arc is right adequate. The proof of 9.4 rests on
the lemma
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9.4. a. An arc is right adequate for 1-dimensional finite complexes.
This is not difficult to prove, using a finite-to-one mapping of the

complex upon I. We omit the details.
Now 9.4 would follow from 9.4. a. and 9.2, by Mardesic's theorem

[21], if we had transitivity of adequacy. It is shown in [17] that rela-
tive adequacy (sf a right adequate subcategory of ^ and & of &)
is not transitive. It is also generally false that in 31, szf being right
adequate for each object of <%? and & for each object of c^ implies
right adequacy of s>f for each object of c^. But we have

9.5. Right adequacy is transitive when it is monotonic, and this
holds for zero-dimensional spaces, and for spaces containing arcs.

To be precise:

9.5. a. In any category <gf suppose that the class of objects B is
right adequate for the object X, and the class A is right adequate for
each object of B. Suppose further that every mapping from X to an
object of A is factorable across an object of B. (This happens in parti-
cular when B contains A.) Then A is right adequate for X.

The proof is a straightforward computation which we omit. Note
that since the category is arbitrary, the corresponding result for left
adequacy follows by duality.

9.5. b. In the category of uniform or of uniformisable spacest

suppose that the class A of spaces is left [right] adequate for X, and
that B is a class of spaces containing A. Then [if every space in B
is zero-dimensional, or if one in A contains an arc] B also is left [right]
adequate for X.

Here the assertion about left adequacy is an immediate consequence
9.1. The result on right adequacy is deduced from 9.1 in the same way
as 9.2. This completes the proof of 9.4.

Next, for the two dimensional spaces. It is clear that in uniform
spaces the 2-dimensional ones cannot be right adequte, since the property
of having a basis of finite-dimensional uniform coverings is preserved
under the formation of products and subspaces. We shall show

9.6. 2-dimensional uniform complexes are right adequate for com-
plete uniform spaces which have bases of finite-dimensional uniform
coverings. In uniformisable spaces, 2-dimensional CW-complexes are
right adequate for topologically complete spaces.

I do not know whether incomplete 2-dimensional spaces are right
adequate even for incomplete 3-dimensional spaces. To conclude, observe
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that O-dimensional spaces are left adequate for all spaces; and one can
easily work out further details on the left.

Proof of 9.6. For the first part, in view of 7.2, it suffices to show
that 2-dimensional complexes are right adequate for finite-dimensional
complexes K. Obviously K can be embedded in a product of 2-dimen-
sional complexes. It remains to consider left transformations a from a
point P to K. We shall associate with a a Cauchy filter, hence a point
in K.

For the rest of the first part, it is not essential that K is a uni-
form complex. What is essential is

(*) In a uniform space having a basis of finite-dimensional uniform
coverings, a filter which includes an element of each 1-dimensional
uniform covering is Cauchy.

For (*), it suffices to show that a finite-dimensional uniform cover-
ing ^ has a refinement which is a finite intersection of 1-dimensional
uniform coverings 5£ It is proved in [14] that <%s has a uniform
refinement which is a finite union of uniformly discrete collections 5̂ £
Evidently we may assume the union of the ^ f is a strict shrinking
of ^< i.e., the stars of the elements of all W% with respect to some
uniform covering % still form a refinement of W, and we may assume
each collection S4 = {St(W9 %T): We 5Tf} is still disjoint. Then let %
consist of <$f and the complement of the union of ^ £

Resuming with the left transformation a, consider the family of all
M c K such that for each mapping f of K into a 1-dimensional complex,
a(f) maps P to a point of f(M). The desired filter ^ will be the family
of all uniform neighborhoods of such sets M. Indeed, trivial arguments
show that ^ is a filter (since a is defined for all mappings of K into
2-dimensional complexes) and that ^~ includes an element of each
1-dimensional uniform covering. Then ^" converges to a unique point p
of K; and further routine arguments show that for each / : K—>T, T
a 2-complex, / converges on ^ to a(f), i.e., a(f) =f(p).

For the second half of 9.6, we need only establish the analogue of
(*): in any uniformisable space, a filter which includes an element of
each 1-dimensional normal covering includes an element of every normal
covering. Shirota has already done this with a possible exception for
cardinal numbers which are measurable in the sense of Ulam (see [26]),
using only countable 1-dim^nsional coverings. In particular, if the filter
j ^ ~ includes an element of each 1-dimensional normal covering then it
includes an element of each countable normal covering. But every normal
covering has a refinement which is a countable union of collections ^ f
each of which is discrete in the finest uniformity on the space; this
result is an easy consequence of A. H. Stone's work [28], but for a
precise statement see [8, Theorem 4.4], Then the sets Uif the unions
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of the collections Wu form a countable normal covering; so j ^ ~ contains
some Ut. Since Jpf is discrete, there is a normal covering % such that
the stars of the elements of ^ f with respect to %* are still discrete.
Then these stars and the complement of Ui form a 1-dimensional normal
covering 3C ^ contains some element of 3 "̂ and j^~ does not contain
the complement of Ut

m, hence _̂ ~ contains some element of ŷ £ as was
to be shown.

9.7. COROLLARY. Every completely uniformisable space is homeo-
morphic with an inverse limit of finite-dimensional uniform complexes.

Proof. By 7.2, we need only show that certain finite-dimensional
coverings form a basis for a complete uniformity on the space; and this
was done in the proof of 9.6.
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