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1# Introduction. An orthomodular lattice is a lattice L with 0
and 1 which is equipped with an orthocomplementation ' : L —• L and
which satisfies the orthomodular identity e ^ /=Φ/ = β V (/ Λ e')
Recall that an orthocomplementation ' : L —> L maps each element e e L
onto a complement e' of e in L in such a way that e" = e and e ^ / φ
/ ' ^ e' for β,/e L. The ''logic'' of (non-relativistic) quantum mechanics,
i.e., the lattice of closed subspaces of a separable infinite dimensional
Hubert space [5, p. 49], as well as the "logic" of classical mechanics,
i.e., the Boolean algebra of all Borel subsets of phase space modulo
Borel subsets of measure zero [5, p. 48], are both instances of or-
thomodular lattices.

L. H. Loomis has shown in [4] that orthomodular lattices provide a
natural environment for the abstract study of the dimension theory of
operator algebras. I. Kaplansky [3] has obtained an elegant theorem
to the effect that if an orthomodular lattice is complete and modular,
then it is a continuous geometry.

An involution semigroup is a semigroup S equipped with an in-
volution *, i.e., an antiautomorphism * : S—* S oί period 2. An element
e e S is called a projection in case e — e% — e2. In this paper, we use
the term Baer *-semigroup to refer to an involution semigroup S (with
a two-sided zero element 0) which is equipped with a mapping ' : S—> S
such that

(i) x' is a projection for xeS and
(ii) for x e S, {y\yes and xy = 0} = x'S. A projection e e S is

said to be closed in case e = e", and the collection of all closed pro-
jections in S is denoted by P' = P'(S). The notion of a Baer ^-semigroup
was introduced in [2, § 2] in a slightly more general form.

In [2] it is shown that there is an intimate connection between
orthomodular lattices and Baer ^-semigroups, namely: If S is a Baer
^-semigroup, then P'(S) is an orthomodular lattice with e —* e' as
orthocomplementation and with partial order defined by e ^ / <#=> ef
= e for e> feP'(S). The element 0' = 1 acts as a unit in the semi-
group S. Conversely, every orthomodular lattice L is isomorphic to a
lattice P'(S) for some Bear ^-semigroup S.

In the sequel, the symbol L always denotes an orthomodular lattice
and the symbol S always denotes a Baer *-semigroup. When S and L
are so related that there is an orthocomplementation preserving iso-
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morphism from P'(S) onto L, we follow [2, § 3] by saying that S is a
coordinate Baer *-semigroup for L. We assume the basic facts on
orthomodular lattices and Baer *-semigroups as given in [4, pp. 3-6]
and [2], respectively.

In view of the afore-mentioned result of Kaplansky in [3], and in
view of the important role which questions of modularity seem to play
in investigations of the "logic" of quantum mechanics [1], it is natural
to seek conditions which guarantee that L is modular. The purpose of
this paper is to find conditions on coordinatizing Baer *-semigroups S
for L which are equivalent to the modularity of L. One such condition
will be given in terms of the notion of range-closed elements x e S.

Say that x e S is range-closed in case whenever g e P'(S) with g ^
x" and (gx*)" = (a?*)", then g = x". S itself is said to be range-closed
in case every element x e S is range-closed.

As an illustration of the notion of a range-closed element, consider
the case in which S is the multiplicative semigroup of all bounded
operators on a Hubert space H. Let * :S —>S be taken, as usual, to
mean the passage from an operator T to its adjoint T*. Let the
operators in S be thought of as operating on the right on the vectors
of H; and observe that for A,BeS, AB = 0 if and only if B = EB,
where E is the projection onto the orthogonal complement of the range
of A. Thus, S becomes a Baer *-semigroup if we define ' : S —> S by
A' = the projection onto the orthogonal complement of the range of A,
for every AeS. If E is any projection in S, then (1-2?)' = E, hence,
P'(S) is the lattice of all projections in S. Consequently, P'(S) is iso-
morphic to the lattice of all closed linear subspaces of H.

If T e S and if E e S is the projection onto the closed linear subspace
M of iί, then (ET*)' is the projection onto the closed linear subspace
(ML)T~ι; in particular, (T*)' is the projection onto the null space of
T. Let N be the range of Γ, let B b e a projection in S with E ^ T"
= the projection onto the closure of N, and let M be the range of E.
Suppose that N is closed and that (ET*)" = (Γ*)", so that (M^)T~ι =
the null space of T. It follows that M1 Π JV= 0, i.e., that # = T".

On the other hand, if N is not a closed linear subspace of H, then
NΦ N11, so there exists a vector x which belongs to N11 but not to
N. Let 2?! be the projection onto the orthogonal complement of the
one-dimensional subspace of H spanned by x, and let E — E1 A T".
Then, (ET*)" - (T*)", but E' Λ T" = E[ ψ 0; hence E<Tn.

The above argument shows that an operator T e S is range-closed if
and only if the range of T is a closed linear subspace of H. Conse-
quently, S is range-closed if and only if H is finite dimensional. Since
the lattice of closed linear subspaces of a Hubert space H is modular
if and only if H is finite dimensional, we are led by the above remarks
to conjecture that an orthomodular lattice L is modular if and only if
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it can be coordinatized by a range-closed Baer *-semigroup. This con-
jecture is verified in the sequel.

2. Hemimorphisms of L. In [2, § 3] we defined a hemimorphism
φ of L to be a mapping φ : L —> L such that Oφ = 0 and (e V /)Φ = eφ
V/Φ for e,feL. We also denoted the semigroup (under function
composition) of all monotone maps φ : L —> L by M(L), and decreed that
two monotone maps Φ, ψ e M(L) were to be called mutually adjoint in
case (eφ)fψ ^ e' and (eψ)'φ ̂  e' for all ee L. If Φ e ilί(L) has an adjoint
in M(L), then this adjoint is unique and is denoted by φ*. S(L)
denotes the subset of M(L) consisting of all those monotone maps
φe M(L) which possess ad joints φ* e M{L).

We proved in [2, § 3] that S(L) is a Baer ^-semigroup (under
function composition), and every φ e S(L) is a hemimorphism of L.
Moreover, if for ee L we define a mapping φe\ L —> L by fφe = (/ V e')
Ae for every feL, then φeeS(L) and φe = φe* = φ\ = (φβ)". T&e
mapping e —•* φe is α^ orthocomplement preserving isomorphism of L
onto P'(S(L)), so S(L) coordinatizes L.

In [2, § 4], we exhibited a natural *-preserving semigroup homo-
morphism φ : S -> S(P'(S)) defined by xφ = φxe S(P'(S)) for a eS, where
eφx = (ex)" for all β e P'(£). In case # = / e P ' ( S ) , there is no no-
tational conflict here; indeed, (e/)" = (e V /') Λ / for all β e P'(S).

LEMMA 1. Let φ e S(L), eeL. Then, lφ* = (e A lφ*) V e'φφ*.

Proof. Put ff = e' V (lφ*)', fe = flf Λ (f/ΦΦ*)' Λ lφ*. Since gφφ* g
lφ*, we have (lφ*)' g (gφφ*)'. Combining the latter inequality with
(lφ*)' ^ g, we get (lφ*)' ^ g A (fΦΦ*)'; hence, by the orthomodular
identity, g A (gφφ*)' = (lφ*)' V A. Now, gφφ* = efφφ* V (lφ*)'ΦΦ* =
e'φφ* since (lφ*)'φ = 0. Consequently, g A (e'φφ*)' = (lφ*)' V ft, and the
lemma will be proved as soon as we show that h — 0. But, hφ ^ gφ A
(gφφ*)'φ ^ gφ A (gφY - 0, so ftφ = 0. Thus, lφ* = (hφ)'φ* g h', so ft ^
(lφ*)'. Since also ft g lφ*, it follows that ft = 0, proving the lemma.

THEOREM 2. For φ e S(L), the following conditions are equivalent:
(i) φ is range-closed.
(ii) (fφ*)'φ=f' AlφforfeL.
(iii) For e,/e L, /φ* = eφ* =φ/ V (lφ)' = e V (lφ)'.

Proof. To prove (i) =φ (ii), note that (/φ*)'Φ ύf Λlφ and put ft'
= / ' Λ lφ Λ [(/Φ*)'Φ]' It will suffice to prove ft' = 0. Now, ftφ* = fφ*
V (lφ)'Φ* V (fΦ*YΦΦ* = /Φ* V (fΦ*YΦΦ* = lφ* by Lemma 1. Since (lφ)'
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^h,h = (lφ)' V (h A lφ), so hφ* = (h A lφ)Φ*. Thus, we have (h A
lφ)φ* = lφ*. The hypothesis that φ is range-closed now yields h A lφ
= lφ, so lφ ̂  h. Consequently, l^Lh and /*/ = 0.

To prove (ii)=φ(iii), note that according to (ii), fφ* = eφ* =Φ/' A lφ
= (/Φ*)'Φ = 0*Φ*)'Φ = e' V lφ. Consequently, /φ* - eφ* =φ/ V (lφ)' = e
V (lφ)'.

To prove (iii)=φ(i), suppose g ^ lφ and #φ* = lφ*. Then, by (iii),
g V (lφ)' = 1 V (lφ)' = 1, so lφ - g V (gf A lφ) = g V 0 = g.

THEOREM 3. Let φeS(L) be range-closed and letfeL, e = (lφ)',
/j = β'φr. Then, the necessary and sufficient condition that φφf fails
to be range-closed is the existence of an element g e L such that g < fλ

and g V e = f' V e.

Proof. By definition, φφf fails to be range-closed in S(L) if and
only if there exists g < lφφ r — fx such that gφfφ* — lφ/Φ* — fφ*. Since
g <fi^ff we have gφ/ — g; hence, φφf fails to be range-closed if and
only if there exists g <fλ with gφ* = / φ * Because φ is range-closed,
the condition gφ* = /φ* is equivalent t o g V e = / V e by part (iii) of
Theorem 2.

The hemimorphism φ e S(L) will be called totally range-closed in
case φeφ is range-closed for every e e L. (In the special case in which
L is the lattice of closed subspaces of a Hubert space H, every bounded
operator T on H with the property that it maps closed subspaces of H
onto closed subspaces of H induces a totally range-closed hemimorphism
φτ on L.)

LEMMA 4. φ e S(L) is totally range-closed if and only if [{gφ*)f

A e]φ = g' Aeφ for all g,eeL.

Proof. Let eeL. Then, by part (ii) of Theorem 2, φeφ is range-
closed if and only if (gφ*φe)'ΦeΦ = g' A eφ for every g e L. It is easy
to verify that φe is range-closed, so, again by part (ii) of Theorem 2,
{gφ*Φe)'Φe = (gΦ*Y A e. Hence, φeφ is range-closed if and only if [(0Φ*)'
Λ e]φ = g' A eφ for every g e L.

Denote by STR0(L) the subset of S(L) consisting of those hemi-
morphims φ e S(L) such that both φ and φ* are totally range-closed.
Suppose that φ and ψ are totally range-closed hemimorphisms in S(L).
Then, for g, e e L, [(gψ*Φ*Y A e]φψ = [(gψ*)r A eφ]ψ - g' A eφψ; hence,
by Lemma 4, φψ is totally range-closed. It follows that STR0(L) is a
*-subsemigroup of

3. *'Regular Baer *'semigroups Borrowing some terminology from
[3, p. 525], we say that fe P'(S) is a right projection for ae S in case
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Sf = Sa, and we say that S is ^-regular in case every element ae S
has a right projection. It is plain that ae S has a right projection
fe P'(S) if and only if / = α" and / = ba for some beS.

Now, suppose for a moment that L is complete and modular and
that L contains four or more independent perspective elements. By
the afore-mentioned theorem of Kaplanksy [3], L is a continuous geome-
try, and by the well-known coordinatization theorem for continuous
geometries, L can be coordinatized by a *-regular ring R. If S rep-
resents the multiplicative semigroup of R, then S is a ^-regular Baer
*-semigroup coordinatizing L.

Thus, we are led to a second conjecture: An orthomodular lattice
L is modular if and only if it can be coordinatized by a ^-regular
Baer ^semigroup. This conjecture will also be verified in the sequel.

Slight modifications of the proof of [3, Lemma 4, p. 525] give the
following lemma:

LEMMA 5. Let ae S have a right projection f and let α* have a
right projection e. Then, there is a uniquely determined element a"1

e S such that arxa = / and a~λe — α~\ Moreover, aa~λ — e and fa"1

= α-1.
We will follow Kaplansky in [3, p. 525] by calling the element α"1

of Lemma 5 the relative inverse of a in S. Evidently, (or1)"1 = a and
(α*)-1 = (α-1)*.

THEOREM 6. Let φ e SΓjBί7(L). Then φ and φ* both have right
projections in S(L) and φr1, the relative inverse of φ in S(L), is
given by the prescription gφ'1 = [(gr A lφ)Φ*Y A lφ* for g e L.

Proof. Let e = lφ*, / = lφ, and let φ " 1 : L —• L be the mapping
given by the prescription of the theorem. For g e Lf gφ~τφ = {[(#' Λ
/)Φ*Γ Λ β}φ = [(#' Λ f)Φ*]'φ. Since φ e STBG(L), it is range-closed, so by
part (ii) of Theorem 2, [(#' Λ /)Φ*]'Φ = (a' Λ / ) ' Λ / = gφf. This proves
that φ~xφ — φf = φ". Since, for g e L, gφ~λ ^ e , we have gφ^φe = gφ~u,
hence, φ'^φ*)" = Φ " ^ = Φ"1. It only remains to prove that φ"1 e S(L).

Define (φ-1)* : L -> L by Mφ"1)* - W Λ β)Φ]' Λ / for fceL. It is
plain that φ"1 and (φ"1)* are monotone maps on L. For g e L, {gφ~ι)f

(Φ-T = {[((</' Λ fW A e]φY A f = W A f)' A eφ]' Λ / - [{gf A / ) ' Λ
f]> A f = (gf A f)Φf = gf A f. Similarly, for h e L, [Hφ-ψYφ-1 = h' A e;
hence, φ~x and (Φ"1)* are mutually adjoint and φ"1 e S(L).

THEOREM 7. Let L be modular. Then, φe STR0(L) =ΦΦ-1 e STR0(L).

Proof. Let g,heL and let e = lφ*, / = lφ, k = [(hf A e)φ]'. Since
L is modular, ((k A f) V βf') Λ / = (k A f) V (gf V / ) . Thus, by Theorem
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6, [[h(φ-ψY A g]φ-χ = [[((k Λ /) V g') A /]<£*]' Λ e = [[(k Λ /) V (</' Af)]
φ*]' Λe = [(fcΛ /)Φ* V (g' A f)Φ*]' A e. Since φ* is totally range-closed,
(k A f)φ* = (ft' Λ e)' A fφ* = (ft' A e)f A e. Consequently, [[h(φ~γγ A
g]φ-* = [(ft' A e) V β'] Λ [(gf A f)φ*]' A e = (ft' A e)φe A gφ'1 = h' A e A
gφ-1 = ft' A gφ~ι, so φ""1 is totally range-closed. A dual argument shows
that (Φ"1)* is also totally range-closed, completing the proof.

LEMMA 8. // L is not modular, there exist elements e,f,geL
such that g < e'φf and g V e = f V e.

Proof. If L is not modular, there exist elements a,b,ce L such

t h a t b < c,b V a = c V a and 6 Λ α = c A a. Let h = (6 Λ α)' = (c Λ

α) f , β = αφΛ, / = cφΛ and g = 6φΛ. Since ft' ^ α, &f c, we have e — a Λ ft,

f = c A h and g = b A h. Furthermore, since b V a = c V a, g V e =
bφh V αφΛ = (6 V α)φΛ = (c V α)φΛ = cφΛ V αφΛ = / V e . Also, g = b Ah
^ c Ah = f. lί g — f, then 6φΛ = cφ/t, so by part (iii) of Theorem 2 and
the fact that φh is range-closed we deduce b V ft' = c V ft', i.e., δ = c,
contradicting 6 < c. Thus, we have g < /. Finally, e Af — a A c Ah
= 0, so / = (β Λ / ) ' Λ / =e'φf, completing the proof.

THEOREM 9. L is modular if and only if φf e STR0(L) for every
feL.

Proof. Suppose that L is modular and that f, g, he L. Then,
since / ' ^ (gφf)', [(gφf)' A ft] V / ' - (gφf)' A (ft V / ' ) . Consequently,
KgΦrY A h]φf = {[(gφfγ A ft] V /'} Λ / - (gΦfY A (ft V /') Λ / - (gΦfY A
f A hφf = (gf A f)Φf A hφf = gf Af A hφf = g' A hφf, proving that φf e

Conversely, suppose that ΦfeSTR0(L) for every feL. If L were
not modular, there would exist, according to Lemma 8, elements e,f, g
e L such that g < e'φf and g V e = /' V e. By Theorem 3, this would

imply that φeφf fails to be range-closed, contradicting φf e STR0(L).

4* Conditions for the Modularity of LΦ In this section we prove
our main result, namely:

THEOREM 10. Let L be an orthomodular lattice. Then, the fol-
lowing conditions are mutually equivalent:
( i ) L is modular.
(ii) L can be coordinatized by a ^-regular Baer ^-semigroup.
(iii) L can be coordinatized by a range-closed Baer ^-semigroup.

Proof. If L is modular, then Theorems 7 and 9 imply that STR0(L)
is a *-regular Baer *-semigroup coordinatizing L; hence, (i) =φ (ii).
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In order to prove that (ii) =Φ (iii), we will have to recall that if a
and y are elements of a Baer ^-semigroup S, then {ay)" = {a"y)ff. This
was shown in the course of the proof of [2, Theorem 8, p. 654]. Now,
suppose that S is a *-regular Baer *-semigoup coordinatizing L. For
b e S and g e P'(S); g g b" and (gb*)" = (6*)" =φ 6" - 6*(6*)-1 - [6*(6*)"1]"
- [ ( f e W ) " 1 ] " = [(gbψφ*)-1]" = bδ*(δ*)-1]" = (#&")" = 0" - <7 Thus,
any element b e S is range-closed. This proves (ii) =Φ (iii).

Finally, let S be a range-closed Baer ^-semigroup, and let eyfeL
= P'(S). Then, φeψf = φ e / by [2, Theorem 8, p. 654]. Since S is
range-closed, ef is range-closed in S, so φef = φeφf is range-closed in
S(L). It follows that φfeSTE0(L) for every feL; hence, that L is
modular by Theorem 9. Consequently, (iii) =φ (i).
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