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Let Mm>n denote the vector space of all m x n matrices over the
complex numbers. A general problem that has been considered in many
forms is the following: suppose SI is a subset (usually subspace) of Mm>n

and let / be a scalar valued function defined on 21. Determine the
structure of the set 2ί/ of all linear transformations T that satisfy

(1) f(T(A)) = f(A) for all A e 21 .

The most interesting choices for / are the classical invariants such as
rank [3, 4, 7] determinant [1, 2, 3, 5, 10] and more general symmetric
functions of the characteristic roots [6,8], In case 21 is the set of
^-square real skew-symmetric matrices (m = n) and f(A) is the Hubert
norm of A then Morita [9] proved the following interesting result: SIr

consists of transformations T of the form

T(A) = UΆU for nΦi ,

T{A) = UΆU or T(A) = UΆ+U for n = 4

where U is a fixed real orthogonal matrix and A+ is the matrix
obtained from A by interchanging its (1, 4) and (2, 3) elements.

Recall that the Hubert norm of A is just the largest singular value
of A (i.e., the largest characteristic root of the nonnegative Hermitian
square root of A*A).

In the present paper we determine 21, when 21 is all of Mmtn and
/ is some particular elementary symmetric function of the squares of
the singular values. We first introduce a bit of notation to make this
statement precise. If A e Mn>n then λ(A) = (λx(A), , Xn(A)) will denote
the w-tuple of characteristic roots of A in some order. The rth ele-
mentary symmetric function of the numbers X(A) will be denoted by
Er[X(A)]; this is, of course, the same as the sum of all r-square principal
subdeterminants of A. We also denote by p(A) the rank of A.

THEOREM. A linear transformation T of the space Mm>n leaves
invariant the rth elementary symmetric function of the squares of the
singular values of each A e Mm,n9 for some fixed r, 1 < r ^ n, if and
only if there exist unitary matrices U and V in Mm>m and Mn<n re-
spectively such that
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(2) T(A) = UAV if mΦn and

(3) T(A) = UAV or T(A) = UA'V if m = n .

The sufficiency of (2) and (3) is clear and we prove the necessity
in a sequence of lemmas some of which may be of interest in themselves.
Assume without loss of generality that m ^ n.

LEMMA 1. Let A, B e I M and let φB{x) = Er[\((xA + B)* (xA + B))]
where x is a real indeterminate. Then

(4) deg φB(x) rg 2 for all B e Mm,n

if and only if

(5) p(A) <g 1 .

Proof. We first remark that φ£(x) is actually a polynomial in x
since it is the sum of all (?) r-square principal subdeterminants of
(xA + B)* (xA + B). The matrix A can be written, by a slight extension
of the polar factorization theorem to rectangular matrices, in the form
A = UH where His ^-square hermitian positive semi-definite and Ue Mm<n

satisfies U*U= In, the ^-square identity matrix. Then

φB{x) = Er[X{(xUH + By (xUH + B))]

= Er[\((xH + U*B)* (xH + ί7*JB))] .

Now let H= V*DV where V is unitary and D is diagonal. Then

φB(x) = Er[\(V*(xD + VU*BV*)*VV*(xD + VU*BV*)V)]

= Er[X((xD + B,Y (xD + B,))]

where B, = FC7*JBF*. NOW suppose />(̂ 4) = ^(D) = 1. Then D has
exactly one nonzero entry which we may clearly assume to be in the
(1,1) position. It follows that (xD + J5J* (xD + Bλ) has a quadratic
polynomial in x in the (1,1) position, first degree polynomials in the other
first row and first column positions and constants elsewhere. Therefore,
every principal subdeterminant of this matrix is a polynomial in x of
degree at most 2.

On the other hand, if (4) holds then in particular for B = 0

φo(x) = Er[\(x*D*D)]

and deg φo(x) g 2; this implies that the diagonal matrix D*D can have
at most one nonzero entry. But then 1 ^ ρ(D*D) — p(D) = p(A).

LEMMA 2. Let f(tlf , tn) be a monotone strictly increasing func-
tion of each td for td > 0. If T is a linear map of Mm>n into itself
satisfying
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f(X(A*A)) = f(M(T(AψT(A))), A e Mm,n

then T is nonsingular.

Proof. Suppose T(A) = 0. Then

=f(X((A + X)*(A + X))) .

Let A = UH where U*U = In and H is nonnegative Hermitian. Then
taking JT= V*DV where D is diagonal and V is unitary we find as in
Lemma 1 that

f(X(X*X)) = f(X((D + Y)*(D + Y))) ,

Y — VU*XV*. Now as Xruns over Mm>n Y runs over Mn>n and moreover

Hence

(6) /(λ( Γ* F)) - f(X((D + Γ)*(D + Γ)))

for all YeMntn. Let F be a real diagonal matrix with diagonal elements
l/i, , Vn Then if D has diagonal elements dly , dn we conclude from
(6) that

/ ( » ? , , Vl) = f(dl + Vl ---,dl + y l ) .

Thus D = 0, A = 0 and Γ is nonsingular.
We remark at this point that the elementary symmetric functions

satisfy the conditions of Lemma 2 and hence the T of the theorem is
nonsingular.

LEMMA 3. If ρ(A) = 1 then p(T(A)) = 1.

Proof. If p(A) = 1 then, by Lemma 1, deg φB(x) ^ 2. Now

B)*{xA

- Er[X((T(xA + B))*T(xA + B))]

= Er[\((xT(A) + T{B)Y(xT(A) +

By Lemma 2 T is nonsingular so T(l?) ranges over Mm,n as β does.
Hence, by Lemma 1, p(T(A)) ^ 1. But T(A) Φ 0 since ρ(A) = 1. Thus

At this point we invoke [7: p. 1219] that tells us that a linear
transformation on Mm<n which preserves rank 1 has the desired form:
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T(A) = UAV for all A e Mm>n

T(A) = UA'V for all A e Mm,n ,

where U and V are nonsingular m-square and w-square matrices re-
spectively and the second eventuality occurs only if m = n. The proof
of the theorem will be complete if we show

LEMMA 4. U and V may be chosen to be unitary.

Proof. We show this when T has the form (2); if T has the form
(3) the argument is essentially the same. Let V = HP and U = QK
where H and K are positive definite Hermitian and P and Q are unitary-
Then

Er[\(A*A)] = Er[X((UAV)*(UAV))]

= Er[X(V*A*U*UAV)]

- Er[X(P*HA*K2AHP)]

= Er[X(HA*K2AH)]

= Er[X(H2A*K2A)]

for all A. Let H=XDX*,K= YGY*9 X and Y unitary, D and G
diagonal matrices with main diagonals dlf , dn and glf , fir« re-
spectively. Then

- Er[X(XD2X*A*YG2Y*A)]

where 5 - 7 M I . Now

λ(A*A) - X(XB*Y*YBX*) -

and hence

Er[X(B*B)] = Er]X(D2B*G2B)]

for all B. Choose B as follows:

0

1

•
•

0

1

0

0

0
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in which the upper left block is the indicated r-square permutation
matrix. Then clearly Er[X(B*B)] = 1 and

0

dlgt

Thus

1 = Er[X(B*B)] = Π d)g) .
3=1

Now set D2 = RD2R where R is an ^-square permutation matrix and
Ό\ is a diagonal matrix obtained from D2 by a permutation σ of the
diagonal elements of D2. Then

X(D2B*G2B) - X{RDIR*B*G2B)

- X{Dl{BR)*G\BR))

- X(DIC*G2C) ,

where C = BRy and

λ(£*J3) - X{R*B*BR) = X(C*C) .

Therefore

Er[\(C*C)] - £;r[λ(Z)^C*G2C)]

for all C. It follows that

Π d2

σ{i)g
2 = 1

for any permutation a of 1, •• ,n. From this we conclude that

dl= . . . - dl = d2

and similarly

Q\= = gl = g2.

Then G = gl, D = dl and U = gQ, V— dP, i.e. £7, F are scalar multi-
ples of unitary matrices. Now,
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Er[X(A*A)] = Er[λ((UAV)*(UAV))]

= Er[X(\g\2V*A*AV)]

= Er[X(\9d\2A*A)]

= \gd\»Er[MA*A)] .

Hence \gd}*r = 1 and we can choose U and V to be gdQ and P which
are unitary. This completes the proof.

We remark that in case r = 1 T does not necessarily have the form
indicated in (2) and (3). For

E1[X(A*A)] = tr(A*A) = " Σ |α«l' ,
( i , i ) = ( i . D

and if T is merely a unitary operator on Mm>n

^λ((Γ(A))*Γ(A))] - E1[\(A*A)] .

For example T can be the operator that interchanges the (1, 2) and (2,1)
elements of every A e Mm,n (assume m, n > 2) and this cannot be ac-
complished by any pre- and post-multipliplication as in (2) or (3).
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