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In the first part of this note we discuss a group of theorems dealing
with geometric configurations arising when we assign in continuous way
compact, acyclic sets to /b-planes in the Euclidean ^-dimensional space
En. A fairly representative example of those theorems is as follows:

Suppose that to every (unoriented) A -plane H through a point a of
En there is upper semi-continuously assigned a compact and acyclic set
Φ(H) c H. Then for some plane HQ, a e Φ(H0).

In fact, we will prove a much more general theorem of which the
above is one of the consequences.

In the second part of this note we give various applications of the
above theorems. They are related to the theory of convex sets (§ 2.1-2.4),
mappings of manifolds (§ 2.6), and to some relations between vector fields
and involutions on Sn (§2.5).

The author wishes to acknowledge his indebtedness to Dr. M. Hirsch for
valuable suggestions and to Dr. J. W. Jaworowski whose generalization of
the author's previous results was the starting point for the present paper.

l Families of compact sets over Grassmannians.

1.1 Hn(X) will denote the nth. Cech homology group of the space
X with the group Z2 of integers mod 2 as the group of coefficients. We
will say that Xis acyclic if X is connected and Hn(X) = 0, w = 1, 2, •••,.

Let X be a compact metric space and let Φ : X —• 2 r be an upper
semi-continuous mapping of X into the space 2Y of all nonempty com-
pact subsets of a space Y. The triple J^ = {X, Y, Φ) will be called a
family [3]. The set X will be called the basis of J^"", the sets Φ(x)—
the elements of ^ the set \J*eχ Φ(x) c Y- the field of j r . The field
will be also denoted Φ(X). A family jβ?~ is said to be acyclic if all its
elements are acyclic.

I f ^r = {χf γf φ) i s a f a m i l y t h e n t h e s u b s e t M = {(x, y)\ye Φ(x)}

of the cartesian product X x Y is called the graph of ^ .
M i s a closed subset of X x Y (and, hence, compact) because of the

upper semi-continuity of Φ, and this is the only reason for requiring the
upper semi-continuity of Φ.

Gv>q will denote the Grassmannian of (unoriented) g-planes through
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the origin of the p-dimensional Euclidean space Ep.
Let T be a fixed ά-plane in En and let r > k. Let En-k be the

Euclidean space orthogonal to T in En and for x e Gn-k>r-k let £Γ(x) be
the r-plane in En spanned by x and T. The correspondence x —> iϊ(#)
is obviously one-to-one correspondence between Gn-k>r-k and the set of
all r-planes in En containing T. Henceforth we will say that H(x) is
the r-plane corresponding to x.

1.2. THEOREM. Let T he a fixed k-plane in En. For every
x e Gn-ktT-k let H(x) be the r-plane in En containing T and corresponding
to x.

If J^ — {Gn-k,r-.k, En, Φ) is an acyclic family then there exists an
xeGn-ktr-k such that H(x) Π Φ(x) Φ 0.

Proof. Let us remark first that it is enough to prove the theorem
in case r —k + 1. For in a general case we may always choose an
(r — l)-plane To containing T and the Grassmannian of all r-planes con-
taining To is a subset of Gn-k>r-k.

Therefore we will assume that r = k + 1, i.e., the basis of j ^ ~ is
the set of all (fc + l)-planes containing a given &-plane T. Then

and we may write j ^ ~ — {Pn-k-lf En1 Φ}, where Pn-k~i denotes the (n —
k — l)-dimensional projective space.

Let S be an (n — l)-sphere in En with center o in T and containing
the field of j ^ ~ in the interior. Since the field of ^ is compact such
a sphere exists. Let Φx(x) = H[x) Π S for every x e Pn_Λ-i Thus Φx{x)
is a Λ-dimensional great circle in S and ̂ — {PΛ_Jb_1, En, <PX} is a family.

Let J c P^-A;-! x En x I x En, 1= <0,1>, be the union of all
sets of the form

* (x) x Φ(x) x I x Φ1(x)9 x e Pn-^

i.e., (x, y, ί, i/j) e J if and only if 2/ e (P(aj), ^ e Φλ(x)9 t e < 0 , 1 > .
We shall identify in J

(α, 1/, 1, l/i) with (α, ̂ , 1, y,) if x = x,y = y

and

(α, y, 0, I/O with (x, y, 0, ^ ) if χ=χ9y1=:y1.

Denote the set obtained from J by these identifications by M. Then
M is the union of sets of the form (x) x Φ{x)*Φλ{x) where x e Pn-k-x



A THEOREM ON FAMILIES OF ACYCLIC SETS AND ITS APPLICATIONS 319

and A*B is the notation for the join1 of A with B. It is easy to see
that because of the upper semi-continuity of Φ M is compact.

Let Mo c M be composed of points with t = 0; more precisely, Mo

is the image under the identification mapping J—>Mof the subset of J
composed of points of the form (x, y, 0, yλ). Let q: Mo~> S and p: Mo —•
Pn~k-1 be defined by q(x, y, 0, yλ) = y19 p(x, y, 0, yx) = a?. Then

( i ) Mo is an (n — ϊ)-manifold, and q is a mapping of degree 1. //
k = 0 then p is a covering map. In particular, for every Jc ̂  0

= 0

For let MΊ be the graph of Φlf i.e. the set of points (x, z) e Pn-h-λ x En

satisfying zeΦx{x). Let px\ M1—> Pn..k.λ and q1:M1-^S be defined by
^(sc, 2;) = a?, gx(oj, 2;) = £ and let fe: Mn -> Mx be defined by h(x, y, 0, ^/J =

(x, 7/χ). Then the diagram

M p v p
0 * Γn~h-l

is commutative. Moreover, because of identifications, h is a homeomor-
phism. But it is easy to see that Mx is a fibre space over Pn-k-i with
the fibre Sk and p : as the fibering map. This proves that Mo is an
(n — l)-manifold. Now, since

Φi(χ) n Φ1(y) c m s

if α; =5̂= 2/ it follows that gx maps gr^S — T) homeomorphically onto S — T.
This proves that q is of degree 1. If k — 0 then gx is a homeomorphism
and Pi is a covering map. This proves (i).

Now, let us consider the diagram

S — G

where i and i are inclusion maps, p: M—> Pn-k.λ is defined by p(x, y, t, yj —

x and flf(a?, yftfy1) = point in £?„ dividing the segment yλy in the ratio

tl(l-t);G = g(M). Since

, 0, yx) = y1 = q(x, y, 0,

the diagram is commutative.

1 i.e., the set obtained from A X I X B by identifying i x < 0 > x ΰ with A and A X

< 1 > X B with B by means of the mappings (x, 0, y)-* x and (x, 1, y) = y.
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Observe that

(ii) p~ι(x) is acyclic and nonempty for every xePn_k_lt

For p~\x) is homeomorphic with Φ(x)*Φλ(x) and join of an acyclic
set with a compact set is acyclic.2

Therefore it follows from the Vietoris Mapping Theorem [2] that in
the diagram

q*

—^H
3*

p* is an isomorphism onto. But pi — p and it follows from (i) that p*
•s trivial for every k ^ 0. Therefore
(iii) i* is trivial .
Now, again by (i), q* is onto Thus (iii) implies that j * is trivial, i.e.,
that S bounds in G. Therefore G must contain the ball bounded by S
and we conclude that the center o of S is in G. This means that for
some x e Pn_A-i there exist points y e Φ{x), yλ e Φx(x) such that the segment
joining yλ with y contains o. Since yλ e H(x) and o e H(x) it follows
that yeH(x), i.e., yeΦ(x) Π H{x). This proves the theorem.

1.3. COROLLARY. Let Gn-kιn-r be the Grassmannian of all (n — r)-
planes contained in an (n — k)-plane T. For every x e Gn-kιn-r let
H*(x) be the orthogonal complement in En of the plane representing x.
Let J?~ = {Gn-k,n-r, En, Φ) be an acyclic family. Then there exists an
x e Gn-k,n-r such that

Φ(x) Π H*(x) Φ 0 .

Proof. Let T* be the orthogonal complement of T in En and
Gn-kιr-k the Grassmannian of all r-planes in En containing Γ*. For
every yeGn-k,r-k let G(y) be the plane representing y and G*(y) its
orthogonal complement. Then G*(y) Π T represents an element x = f(y)
of Gn-k>n-r. Moreover it is easily seen that

( i ) G(y) - H*(f(y)) .

Let j ς = {Gn-k,r-ki En, Φ(f(y))}. Then ^ is an acyclic family and
by Theorem 1.2 there exists an j/e Gn-k,r-k such that Φ(f(y)) Π G(y) Φ 0.
Compared with (i) this gives

2 Short proof. Let A*B be the join of A with B. Suppose that A is acyclic and let
/ : A*B -> A*B be defined by /(#, ί, y) = (xo, t, y) where %0 is a fixed point of A. Then
/~"1(α5o, ί, y) is homeomorphic with A if t Φ 1 and is a point if ί = 1. In both cases /"K^o,
ί, i/) is acyclic and, by Vietoris mapping theorem [2], / induces an isomorphism of Hjc(A*B)
onto Hk(f(A*B)), k = 0,1, 2, •,. But f(A*B) = (α;o)*5 is acyclic, therefore A*B is also.
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Φ(x) (Ί H*(x) Φ 0 Q.E.D.

In the following two corollaries we suppose that a point peEn is
given and a natural one-to-one correspondence x —> H(x) between the
set of all fc-planes H(x) through p is fixed once and for all.

1.4. COROLLARY. Let j ^ ~ — {Gn,k, En, Φ) be an acyclic family.
Then for some xoeGn>k, Φ(x0) Π H(x0) Φ 0 and for some a?! e GΛ,*, Φ{x^) Π

Φ 0.

Proof. (The second part of this corollary was first proved in an-
other way by Dr. J.W. Jaworowski.) Existence of x0 follows from the
Theorem 1.2 with k = 0; existence of xx follows from the Corollary 1.3
with r = n — k.

1.5. COROLLARY. Let Jr = {Gnιk, Eny Φ) be an acyclic family satis-
fying the condition Φ(x) c H(x) where H(x) is the plane through p
representing x. Then for some x, p e Φ(x).

Proof. By Corollary 1.4, for some x Φ(x) Π H*(x) Φ 0. Since
Φ(x) c H{x) this implies Φ(x) (Ί H(x) Π H*(x) Φ 0 and in view of p =
H(x) n H*(x) this proves the corollary.

2 Applications*

2.1. We start with a simple application of 1.5. Let A c En be a
compact subset of En and k a fixed integer, 1 ^ k ^ n — 1. Let Ak

be the set of such points peEn that every &-plane H through p inter-
sects A in an nonempty acyclic set. Applying 1.5 to the family ^~ =•
{Gn>k, En, H Π A) we infer that peA, i.e. Ak c A.

In a subsequent paper we will prove that A is star-shaped with
respect to every point of Ak, i.e. if x e A and p e Ak then the segment
xp a A. In particular, it follows Ak — Ak+1, k = 1, , n — 2.

2.2. The following is a generalization of a theorem of H. Steinhaus
[8] (see also S.K. Stein [71).

THEOREM. Let A be a convex subset of En and p e Int A. Then
there exists a sequence of planes Hlf H2, , Hn-λ such that H{ is an
i-plane, Hi c Hi+1 i — 1, , n — 2, and p is the center of gravity of

Proof. For every fc-plane H through p let x(H) be the center of
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gravity of H Π A. Then our assumptions about A insure that
{Gntk, EnJ x(H)} is a family. Therefore it follows from 1.5 that x(H) = p
for some H. Thus to prove the theorem we start with k = n — 1 and
find the (n — l)-plane Hn-Y such that x{Hn-τ) = p. Then in i f ] Hn-lf

which is again convex and p e Int A Π Hn-19 we find Hn-2i and so we
continue until the sequence is complete.

We may remark that the assumption that A is convex and p e Int A
are needed only to insure that x(H) is a continuous function of H.
Also we may suppose that a continuous positive density is given on A.
The theorem may be correspondingly generalized without a change in
proof.

2.3. The following theorem, first proved by G. Aumann [1], is an
easy consequence of 1.5.

THEOREM. Let M be a compact subset of En and suppose that for
some k^l intersection of every k-plane with M is either empty or
acyclic. Then M is convex.

This is a consequence of the following lemma which we will prove
first:

LEMMA. Let M be a compact subset of En and suppose that some
k-plane H intersects the convex hull of M but does not intersect M.
Then there exists a k-plane Ho such that M Π Ho is not connected.

Proof. Let p, q e M, let r be a point of the segment pq and let H
be a /c-plane in En such that H Π pq — r and H Π M — 0. Let H' be
the (k + l)-dimensional plane in En containing H and the line through
p, q. Then H disconnects H' between p and q. Thus if Ho is a &-plane
in Hf containing p and q then Ho (Ί M is not connected. This proves
the lemma.

Proof of the theorem. Let M satisfy the conditions of the theorem
and let C{M) denote the convex hull of M. Let p e C(M). By the
lemma every fc-plane through p intersects M. Since the intersection is
acyclic it follows from Corollary 1.5 that p e M, i.e. M= C(M). This
proves the theorem.

2.4. The following theorem gives homological conditions insuring
that a set M c En shall be a convex sphere SΛ_i. (For the case n = 3
see J. Schreier [6]).

THEOREM. Let M be a compact subset of En. We suppose that
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(a) Hn-λ{M) = Z2 and M is an irreducible carrier of the nonzero
element a of H^M).*

(b) There exists an integer k, 0 < k < n — 1, such that for every
k-plane T intersecting M

10 or Z2for i = fc-l .

Then M is a convex Sn-τ.

Proof. It is well known that (a) implies that M disconnects En

into two sets and is the boundary of each. Let G be the bounded
component of En — M and let I * = I U G . Then
( i ) ilf * is compact and M = Fr M *

Let peG and let T be a fc-plane through p. We will prove
(ii) T Π ikf* is acyclic.

Since Γ Π M* = (T Π Λί) U (T Π G) and T Π G Φ 0 it follows that
T D M disconnects T. Therefore by (b)

f '<*-;
for i = fc — 1 .

It follows that T ~ M has exactly two components; let the bounded
component be H. Then pe H and we have T Π G = H. Thus we have
proved
'(iv) T [} M* is the union ofTpM and the bounded component H of
T - T Π M.
Now, this implies that Fr(T Π M*) d T Π M and we may consider the
sequence

H%(Fr(T Π M*)) — HZ(T n Λf) — ^ ( ϊ 7 Π Jlf*)

where i*,j* are induced by inclusions. By [4] j*i* is onto, thus such
is also j \ and by (iii) this implies H^T Π M*) = 0 for ϊ < A; — 1. Since
(iv) implies that Γ f l l * does not disconnect Γ, also Hk^{T Π Λf *) = 0,
which completes the proof of (ii).
Now, by the theorem mentioned in 2.1, (ii) implies that M* is star-
shaped with respect to every point of G. Let now peM and α eilf*.
Let pn e G, pn—> p, by the remark above segments p~x are in Jkf *. Since
ίVE —• px it follows that px c ilf* and thus Λf* is star-shaped with
respect to every point. Thus ikf* is convex. Together with (i) this
proves the theorem.

3 i.e., for every proper compact subset AaM a is not in the image Hn-i(A)-*Hn-i(M)
/inclusion homomorphism).
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2.5. It is interesting to note that the following theorems, connected
with the Borsuk-Ulam theorem (see e.g. [5]), follow easily from the
results in § 1.

Sn will stand for the unit w-sphere in En±ua:Sn—> Sn will denote
the antipodal involution on Sn.

2.51. THEOREM. Let f:Sn-^Sn be a continuous mapping and
suppose that f(x) Φ a(x) for every xeSn. Then for some xQ e Sn af(x0) =

/Φo).

Proof. For every x e Sn let a(x) — x + f(x) and let H(x, a{x)) be
the w-plane through 0 and perpendicular to the line through x and a(x).
Then a(x) lies on a sphere of radius 1 and with center at x and it fol-
lows from the assumption f(x) φ a(x) that the points a(x) and a(a(x))>
are distinct and lie in distinct components of En+1 — H(x, a(x)). There-
fore the intersection Φ(x, a(x)) of the segment a(x)a(a(x)) with H(x, a(x))>
is nonempty and ̂  = {Pn, En, Φ) is an acyclic family. Thus, by 1.3,
for some x Φ(x, a(x)) intersects also the orthogonal complement of
H(x, a(x)). It follows that for some x, Φ(x, a(x)) = 0. Then 0, a(x),
a(a(x)) are distinct and collinear. It is easy to see that this implies
aa(x) = a(a(x)), i.e., af(x) = fa(x). Q.E.D.

By similar method one can obtain the following generalizations of
2.51 (proofs are omitted):

2.52. THEOREM. Let F: Sn —> Sn be an acyclic upper semicontinuous
map and suppose that F(x) Π (cx(x)) = 0. Then for some xQf a(F(x0)) Π
F(a(x0)) Φ 0.

2.53. THEOREM. Let β be the antipodal involution in the bundle
B of unit vectors tangent to Sn. Let F: Sn —+ B be a multivalent acyclic
cross-section. Then for some x0 e Sn, βF(x0) Π F(a(x0)) Φ 0.

2.6. In the following two theorems M will denote a differentiate
(n — l)-manifold in En. If peM then T(p) will denote the tangent
plane to M at p. T\\T will mean that T is parallel to T.

2.61. THEOREM. Let f: M—> En be a continuous mapping such that

if T(p) is parallel to T{p') then the vector pf(p) is not zero and parallel

to p'f{p'). Then for some poe M pof(po) is perpendicular to T(p0).

Proof. It is known that for every (n — l)-plane H through the origin
there exists ape Msuch that H\\ T(p). Let then Φ(H) be the endpoint

of the unit vector parallel to pf(p). By our assumption about /, the.
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family j ^ — {Pn~19 En, Φ) is well-defined and, obviously, acyclic. The
theorem follows then from 1.4.

Theorem 2.61 can be again generalized to acyclic multivalent maps
f:M-*En. Instead, we prove:

2.62. THEOREM. Let f:M~>En be an immersion such that if
T(p)\\ T(pf) then T(f(p))\\ T(f(p')). Then for some p0 e M, T(po)\\ T(f(p0)).

Proof. We suppose M oriented and a field of normal unit vectors
given on M. This defines a field of unit vectors normal to f(M) and
we define the family J^ = {Pn, En, Φ) as follows: Let H(x) represent
a point x e Pn, there exists a point p e M such that T(p) \\ H{%). We
define Φ(x) = the endpoint of the unit vector normal to f(M) at f(p).
By our assumption about / the family J^ is well-defined. Then the
theorem follows from 1.4.
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