
ON FINITE-DIMENSIONAL UNIFORM SPACES, II

J. R. ISBELL

Introduction. The main subject of this paper is the [inductive* di-
mension δ Ind μX of uniform spaces μX. This is defined similarly to
topological dimension Ind, but instead of separation one uses the notion
of a set H, arbitrarily small uniform neighborhoods of which uniformly
separate given sets A, B. For finite dimensional metric spaces M (i.e.
the large dimension Δd M is finite) 8 Ind coincides with the covering
dimensions Ad and δd. For general spaces μX we have 8 Ind μX ^ δd
μX. For all known examples (including the examples for Δd Φ δd and,
in compact spaces, Ind Φ dim) 8 Ind coincides with δd.

The last section of the paper concerns the dimension theory of
uniformisable spaces; it organizes alternative definitions and formulates
problems, giving limited results on some of the problems. Covering
dimension dim has been successfully generalized by Smirnov [17]; here
we add to Smirnov's theory a generalization of Aleksandrov's theorem
characterizing dim by separating ^-tuples of pairs (Ai9 Bi) of disjoint
closed sets by closed sets C; with empty intersection. The notion of
min dim, mentioned in Part I [7], is formally defined: min dim X is the
minimum of Id μX over all compatible uniformities μ. Equivalently, it
is the minimum of dim Y over spaces Y containing X. The question
when min dim X — dim X, i.e. when X cannot be embedded in a space
of lower dimension, is stressed. The Lindelof property implies this, but
the question is open for metrizable spaces and more generally for spaces
admitting a complete uniformity.

It is shown that every completely metrizable space can be homeo-
morphically embedded as a closed set in a countable product of finite-
dimensional polyhedra. Combined with results of [9] this means that
every completely metrizable space is an inverse limit of polyhedra of
the same or lower dimension. The question is still open whether a
1-dimensional completely metrizable space can be an inverse limit of
discrete spaces.

An announcement of the results on 8 Ind appeared in [8],

l Inductive dimension. In a uniform space μX, a set U is said to
δ-separate two sets A, J?, if X — U is the union of two sets Ar, Br>
respectively containing A and B, such that A' is far from Bf. (That
is, X— A' is a uniform neighborhood of B\ Proximity notions are
convenient here, and the prefix 8 is meant to draw attention to the fact
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that the concept is a proximity invariant.) A set W is said to free A
and B if W is far from A U B and every uniform neighborhood of W
which is disjoint from A U B δ-separates A and B.

1.1. A set W frees A and B if and only if the closure of W frees
the closures of A and B.

Since the far sets and the uniform neighborhoods are the same for
the given sets as for their closures, this is obvious.

Inductive dimension δ Ind μX of a uniform space μX is defined as
follows. §lnάμX= —1 means that X is empty. Recursively, δ Ind
μX ^ n if every two far sets in μX are freed by some subspace μ W
such that δ Ind μ W ̂  n — 1. Then δ Ind μX = n means that δ Ind μX ^
n but not δ Ind μX ^ n — 1; and δ Ind μX = oo means that for no n is
δ Ind μX ^ n.

The definition is framed to parallel the definition of topological di-
mension Ind as closely as seems reasonable, taking into account Yu.
Smirnov's observation [17] that the reals cannot be δ-separated by a
zero-dimensional set. It is interesting, but as far as I know not useful,
to note the following equivalence.

A chain of sets from A to B is a sequence Cl9 •••, Cnf such that
A Π Cx Φ 0, B Π Cn φ 0, and d Π Ci+ι Φ 0 for i = 1, , n - 1.

1.2. Suppose that H is far from A [j B. Then H frees A and B
if and only if there are arbitrarily fine uniform coverings *%/ such
that every chain of elements of <%/ from A to B includes an element
which meets H.

Proof. Suppose that H frees A and B, and let 3^ be any uniform
covering fine enough so that the ^-neighborhood U of H is disjoint
from A [J B. Then U δ-separates A and B into far sets A', Bf. These
have uniform neighborhoods A", B", which are still far from each
other and disjoint from H. Let <%/ consist of the collection of all
elements of ψ~ which meet H, a uniform covering of A" finer than 5 "̂,
and a uniform covering of B" finer then y .

Conversely, if the required coverings exist, then for each uniform
neighborhood U of H there is a uniform covering ^/ such that the ^Z-
neighborhood V of H is contained in U and δ-separates the set A' of all
points of X — V which can be joined to A by chains of elements of <?/
avoiding fffrom the remainder B' = X — V — A', which contains B. If
U is disjoint from A U B, this implies that U δ-separates A and B.

1.3. / / μX is a dense subspace of μY, then SlndμX^ δlndμY.
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Proof. Suppose that S Ind μX ^ n, and let A, B, be two far sets
in μY. Let C and D be uniform neighborhoods of A, B, which are still
far from each other. Let E = C f) X, F = D f] X. Let W be a subset
of μX freeing E and F, with 8IndμW^n — l. Then W frees A and
2? in μY. To check this it suffices to consider any closed uniform
neighborhood V of W which is disjoint from C U D. Since V ΓΊ X is a
uniform neighborhood of S in the space μX, μX — V is a sum of far
sets if, if, containing ϋ7 and F respectively. Since μY — V is open, its
intersection with X is dense in it; therefore the relative closures of H
and K have union Y — F, and they are far sets containing the relative
closures of E and F, which in turn contain A and B, respectively.

From 1.1 and 1.3 we see that the function 8 Ind would not be
changed if we changed the definition to refer only to closed sets.

Note also that 8 Ind μX Ξg 8 Ind v Y whenever μX can be mapped
upon a dense subspace of vY by a δ-isomorphism; in particular, for the
Samuel compactification βμX, 8 Ind μX ^ δ Ind βμX.

1.4. THEOREM. For every uniform space μX, 8lnάμX^ 8d μX.

Proof. It suffices to prove this for compact spaces, in view of the
last remark and the theorem 8d βμX — 8d μX [6]. Here 8d becomes
dim (though 8 Ind does not become Ind). Thus we wish to show that
for a compact space Y, if δ Ind Y ^ n then dim Y g n; and we may
suppose this has already been done for n — 1.

Let {Ui} be any finite open covering of Y, and let {FJ be a strict
shrinking of it (i.e. for each ΐ, Vj c U^. For each i, let W{ be an
(n — l)-dimensional closed set freeing Vi from Y— UΪ, that is, δlnd
Wi ^ n — 1, so by the inductive hypothesis dim W{ ̂  n — 1 also. Then
the union W of the W{ has dimension dim W ̂  n ~ 1. Let {Pj} be an
(n — l)-dimensional open covering of a neighborhood N of W which is
finer than {Z7J. Let M be a neighborhood of W whose closure is interior
to N. Now since M is a uniform neighborhood of every Wif Y — M is
a union of open-closed subsets iϊ^ containing V{ — M and contained in
Ui. Let Qx = Hu and define Q̂  recursively as Hi — Uj<:i H3. Then Y —
Af is the union of the discrete collection {ζ)J, which with {Po} forms an
open covering of dimension at most n refining {Z7J, as required.

Next we prove an analogue of the theorem of P. S. Aleksandrov
(see [16]) characterizing the dimension dim of normal spaces in terms
of sets separating several pairs {Aiy Bi) of disjoint closed sets. Note that
it will not be a generalization of the topological theorem, since freeing
is weaker than separating even for closed sets in compact metric spaces.
Nevertheless the proof will be almost the same.

Given a finite family of pairs (Aif B{) of sets, with each A{ far from
Bi? we wish to find sets C{ freeing A{ and Bif such that not only is
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f]Ci empty, but even the complements of the sets C< form a uniform
covering.

If such a family {C<} exists, we shall call the system {(Ai9 B,)}
solvable.

1.5. THEOREM. For a uniform space μX to have dimension 8d
μX fg n, it is necessary and sufficient that every family ofn + 1 pairs
of far sets in μX should be solvable.

Proof. Suppose the pairs (Ai9 B,) for i = 0, , n, form an unsolva-
ble family. Take uniformly continuous functions f{ on μX to [0,1] with
/. = 0 on Ai9 fi = 1 on Bit These are the coordinates of a mapping F
of μX into the (n + l)-dimensional cube Qw+1, which we shall show to
be an essential mapping. Indeed, for the contrary we must have a
mapping G of μX into the boundary Sn of Qn+1 such that G(x) = F(x)
whenever F(x) e Sn. Then let C{ be {x: 1/3 ̂  G(x)i g 2/3}; these sets
free (and even δ-separate) (Aif B{), and their complements form a uniform
covering, contradicting the assumption that {(Ait B{)} is unsolvable.

Conversely, if Sd(μX) > n then there is an essential mapping
F: μX-» Qn+1. Define Ai as {x: Fix), = 0}, and B, = {x: F(x){ = 1}. Now
observe that if {(Aif B,)} were solvable, we could take small uniform
neighborhoods of freeing sets d which would δ-separate (Aif B{) and
leave us a uniform covering {Po, , Pn9 Qo, , Qn}, with each A{ c Pi9

Bi c Qi9 and P< far from Q̂ . The nerve of this covering is dual, and
naturally homeomorphic, to the polyhedron Sn consisting of the proper
faces of Qn+1. Thus a canonical map into this nerve yields a map G': μX~>
Sn which takes each point x in ίτ~1(Sίι) to a point of Sn which is not
diametrally opposite to F(x). Hence on F^S*), G' and F are homotopic;
and Gf is homotopic to a mapping G:μX-*Sn coinciding with F on
F~\Sn). The contradiction completes the proof.

REMARKS. One can similarly prove the analogue of Sklyarenko's
theorem [16]: if Sd μX^ n then μX contains an infinite family of far
pairs any n of which form an unsolvable subfamily (since Qn contains
such a family).

Also, 8 Ind μX = 0 if and only if 8d μX = 0. This is clear from 1.5.
(There is also an easier proof which was indicated by Smirnov [17;
Theorem 6].)

1.6. LEMMA. Suppose μE is a subspace of μX9 8 Ind μE = 0, and
A and B are far sets in μX. Then A and B are 8-separated by some
set far from E.

Proof. Let C and D be far uniform neighborhoods of A and B
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respectively. Decompose E into far sets F Z) C Π E, G 3 D n E. Now
F is disjoint from D, hence far from B; similarly G is far from A. Then
A U Fis far from B U G . Let U and F be far uniform neighborhoods
of these sets; then X — U — F is the set required for the lemma.

1.7. THEOREM, δ IndμX = 0 if and only if δd μX = 0.
1 i/ cmd only if any two far sets Al9 Bλ can be freed by a set Cλ such
that any two far sets A2, B2 can be freed by a set C2 far from CΊ.

The proof is trivial after the preceding remark and lemma. The
theorem suggests a characterization of δ Ind paralleling 1.5. I do not
know if that characterization is valid. I have an example showing that
1.6 does not generalize for δlndμE = 1 (one cannot free A and B by
a closed set H whose intersection with E is zero-dimensional), but it
does not seem worth including here.

Finally, it should be noted that I do not know any example of strict
inequality for either 1.3 or 1.4.

2 Metric spaces.

2.1. LEMMA. Let M be a metric space with subspaces G and H.
Then G contains a set J such that

(1) every subset of J which is far from H is uniformly discrete,
and

(2) every subset of G which is far from J is far from H.

Proof. To construct J, let Un denote the intersection of G with
the \\n neighborhood of H; let Jn be a maximal set of points of Un

distant at least Ijn from each other; let J = U Jn-

2.2. THEOREM.1 Let M be a metric space, H a nonempty subset
of M, and J a subset of M such that every subset of J which is far
from H is zero-dimensional. Then 8 Ind / S δ Ind H.

Proof. Consider the case δ Ind H = 0. Let A and B be far subsets
of J. Let C and D be uniform neighborhoods (in M) of A and B
respectively, far from each other. Then C Π H and D Π H are freed
by the empty set; so H is a union of far sets E z> C Π H, F ZD D Π H.
Now A [j E and B U F are far from each other; let K and L be far
uniform neighborhoods of them, and let P and Q be uniform neighborhoods
of K and L respectively, which are still far from each other. Now
J — K — L is far from H; by the hypothesis, it must be a union of far

1 This is stronger than the corresponding theorem announced in [8]. However, Lemma
3 of [8] asserts a similar result for arbitrary uniform spaces; I cannot prove it except for
dimension zero.
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sets R z> (J Π P) — K and S D ( J Π Q) — L. Then the desired separation
is achieved by (J (Ί P) U (# - Q) and (J Π Q) U (S - P). It is clear
from the construction that the first of these sets contains A (since J
and P contain A), the second contains J3, and the union contains J.
Also P is far from Q and i? is far from S. To see that J Π P is far
from S - P, observe that (J Π P) - K a R, while if is far from S - P
since it is far from M — P. Similarly J" (Ί Q is far from R — Q, and
we have this case. Incidentally, we do not need the metric for this
case.

Suppose the theorem established for δ Ind H ^ n — 1, and consider
next the case δ Ind H ~ n. For any far subsets A and B of J, again
let C and D be far uniform neighborhoods of them, and let E and F be
far uniform neighborhoods of C and D respectively. Then E Π H and
F f] H are freed in if by some subset V with δ Ind F ^ w — 1. Applying
2.1 to Jand F, we obtain a subset K oί J satisfying (1) and (2). Then
W = K — C — D also satisfies (1) and (2) (the first a fortiori; the second
because a set far from K — C — D is the union of a set far from if
and a set contained in any preassigned uniform neighborhood of C U D).
By construction W is far from A and B; by the inductive hypothesis
δ Ind W g n — 1. It remains to show that for any uniform neighborhood
U oί W disjoint from A and B, J — U decomposes into two far sets
respectively containing A and B. Here J — U is far from F; i.e. Fhas
a uniform neighborhood Γ disjoint from J — U, T, of course, δ-separates
E Π if and F n # in if, so that if - Γ = P U Q with P far from Q,
E C\ H a P, j P n i f c Q . Let iϋ and S be far uniform neighborhoods
of P U A and Q u 5 . Then R U S U Γ is a uniform neighborhood of H.
Let i be a uniform neighborhood of H far from J — R — S — T, and
split J — I into far sets Y, Z, containing (J Π R) — i and (J Π S) — i
respectively. One finds that J — U decomposes into its intersections
with R U (Y — S) and S Ό (Z — R), which are far sets containing A
and B respectively. Indeed, just as before, R and S already contain A
and B. Those points of J — U which are not in R U S are in J — I
(since they could not be in T either) and hence in Y or Z; so R U S U (Y —
S) U (Z - R)z> J- U. R is far from S, Yis far from Z. (J- U) n R
is far from J Π (Z - R); for (J - U) Π # Π i c i - S - T (far from
J - R) and ( J n i ? ) - / c 7 (far from Z). Likewise (J - U) Π S is
far from J Π ( F — S). This completes the proof.

2.3. COROLLARY. For any subspace J of a metric space M, 8 Ind
J ^ δ Ind M. If J is dense in M then δ Ind J = δ Ind M.

Proof. Put H = M in 2.2.

Next we prove
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2.4. THEOREM. For any metric space M, 8 Ind M gΞ Ad M.

Here we may suppose Mis complete; for completion does not change
δ Ind (by 2.3) nor Ad [6], Recall that a complete metric space M is
super complete [11]; this means that the space of closed subsets (metrized
by Hausdorίf distance) is complete, and may be restated as follows. A
filter S?~ is stable provided for every uniform covering <?/ there is A e ^
such that for every Be j ^ ~ , St(B, <?/) ID A. Now if S1" is stable in M,
it converges to the set H of all cluster points of j ^ ~ , in the sense that
every uniform neighborhood of H contains a member of ^ .

Recall also, from [7], that Ad M ^ n implies that every uniform
covering of M is refined by some uniform covering <?/ which is a union
of n + 1 uniformly discrete collections ^/0, , ^ V

Proof of 2.4. We may assume that M is complete, that Ad M — n,
and that the theorem is established for spaces of smaller dimension Ad,
Then it will suffice to show that any two far sets A, B, can be freed
by a set H such that Ad H ^ n — 1. We shall construct H as the limit
of a stable filter with basis {So, Sl9 •••}. Let C and D be far uniform
neighborhoods of A and B, and let SQ = M — C — D. Recursively, suppose
Sj-t is a subset of So which δ-separates A and B, its complement being
a union of far sets Cj-19 D1• Λ containing A and B respectively. Let
<f/3 be a uniform covering so fine that each of its elements is either
far from C3.Λ or far from Dj^, and which is the union of uniformly
discrete collections ψ/\, 0 ^ i g n. Also, with respect to some fixed
metric, each W5 must have mesh at most 2~j. Let Ύr5 be a uniform
strict shrinking of ^ ? ; that is, its elements F* are in a one-to-one cor-
respondence with the elements Ua of ^/j so that for some t > 0, each
Ua is a ^-neighborhood of Va. Thus ^ j is naturally expressed as a
union of uniformly discrete collections y\ corresponding to the <%/{.
Let Ej be the union of all these elements Va of 5̂ ~j such that C4 contains
a point of S3-x which belongs to no element of 5^j; let S3- = Ŝ  -i — E5.

Since Sy contains all of S3-λ except for a uniformly discrete collection
of sets none of which reaches from near Cy_i to near D3-ly S3 δ-separates
A and B. Moreover, S3 has an (n — l)-dimensional uniform covering
of mesh at most 2~j. For this, note that S3 is a union of two far sets;
those members of ^ί which meet S3 are distant by at least t from the
rest of S3: Now on one part of S, the trace of ^ j is a 0-dimensiona)
uniform covering; on the rest of S3 the trace of the rest of ψ^f5 is an
(n — l)-dimensional uniform covering. Finally, by construction, St(S3,
^/J) 3 Sj-t. Therefore the sequence {S3} is indeed a basis of a stable
filter. Since M is supercomplete, the limit H frees A and J5; and
Ad H ^ n — 1, as was to be shown.

It is known [7] that for any uniform space μX, if Ad μX is finite



298 J. R. ISBELL

then δd μX — idμX. Combining this with 1.4 and 2.4, we have

2.5. COROLLARY. If M is a metric space and ΔdM < oo, then Δd
M=δdM=δInάM.

Examples are known [7] of uniform spaces for which Δd is infinite
but δ Ind is finite and equal to δd. No metric example is known, and
it seems possible that the three dimension functions coincide for all
metric spaces. We do have the following.

2.6. For a metric space M, if δd M — 0 then Δd M = 0.

Proof. Fix a metric. From δd M = 0 it follows that for every
positive ε there is a positive δ such that any two points distant by ε
are separated by some decomposition of M into two sets at distance δ.
Assuming the contrary, we should have a sequence of pairs (xn, yn)
distant by ε such that no infinite subsequence could be simultaneously
separated by such a decomposition. If some infinite set of x's or y's
has diameter < ε/2, we have a contradiction; otherwise there is an
infinite set of indices n for which the xn and yn form a uniformly discrete
set, and we have another contradiction. But then a routine argument
shows that every covering Lebesgue number ε is refined by a 0-dimensional
covering having Lebesgue number δ.

3 Dimension of uniformisable spaces. I believe that the only
serious investigation of the dimension theory of nonnormal spaces so
far has been the concluding section of Smirnov's paper [17]. There the
dimension function dim is defined, as the covering dimension with respect
to the family of all finite normal coverings, and the decidedly imperfect
analogy with δd is worked out. Of course dim X = δd aX, where a is
the fine uniformity on X. Dowker has given a proof [2] that δd aX =
ΔdaX if X is normal (not using this notation); and I pointed out [7]
that the same proof2 shows that δd μX — Δd μX whenever μ is fine or
even locally fine.

The dimension function ind is of course familiar for more general
spaces; and it is customary to call a uniformisable space X zero-
dimensional if ind X — 0. It is known [3, 6] that ind X = 0 does not
imply dim X = 0 (even for normal X); but if ind X — 0 then X has a
zero-dimensional compactification and with it a zero-dimensional uniformi-
ty. Defining min dim X as the minimum value of Δd μX over all
compatible uniformities μ, we may summarize as follows:

2 In presenting this proof in a coures of lectures I found it necessary to rearrange it
to fill in what seems to be a gap in the reasoning (page 212, line 19 of [2]); but the rear-
rangement, if it is necessary, is not necessitated by the generalization.
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3.1. For any uniformisable space X, min dim X ^ dim X. Examples
of strict inequality are known among normal spaces, but not among
completely uniformisable spaces. If ind X = 0 then min dim X — 0, and
conversely; however, ind I m a y exceed dim X, even for compact X [13].

Let us introduce two more dimension functions:
a Ind X — δ Ind α l , and Ind X, defined as follows. As usual, Ind X =
—1 «-• X is empty. Ind X ^ n if every two completely separated subsets
of X are topologically separated by some subset H such that Ind H ^ n —
1; and finally, Ind X = n means Ind X ^ n but not Ind X ^ w — 1.
With these we have

3.2. For any uniformisable space X, Ind X ^ α Ind X Ξ> dim X ^
min dim X. Inequality may occur anywhere in this chain except perhaps
between a Ind and dim.

For the proof, a Ind ^ dim follows from 1.4. To see that Ind ^ a Ind
it suffices to observe that in a fine space a set which separates two
closed sets also frees them. For the examples of Lokucievski [12], Lunc
[13], and Mardsic [14] having IndX>dimX, a Ind X coincides with the
smaller number dim X.

Note that min dim X could also be defined as the minimum of dim
Y over all spaces Y topologically containing X (since Δd μX Ξg dim/3μX).
Of course min dim is monotonic, for arbitrary subspaces. Smirnov has
shown [17] that dim is not monotonic for closed subspaces; and as it
happens, the same example shows that Ind and a Ind are not monotonic
for closed subspaces. Both dim and Ind are monotonic for C*-embedded
[4] normal subspaces. (For dim, [17]; for Ind, an easy exercise.) For
a Ind this is an open problem.

' The problem is open whether dim is monotonic for topologically
complete subspaces, or in other words whether dim X = min dim X when
X admits a complete uniformity. We have8

3.3. For Lindelof spaces X, dim X — min dim X.

Proof. Suppose X is embedded in Y and dim Y = n. Then X is
embedded in βY and dim βY=n. For any finite open covering {Z7J
of X, there are open sets F* of βX such that Vi Π X = U{. Since each
point of X has a neighborhood in β Y whose closure is contained in some
Vi9 and X is Lindelof, there is a σ-compact set Z containing X and
covered by the V{. Since dim is monotonic for closed sets in compact

3 Aleksandrov in [1; p. 40] credits Morita with (essentially) a stronger result than this: if
X c Y and both X and Y have the star-finite property then dim X 5S dim Y. One can prove
this, without the restriction on Y, by modifying the proof of 3.3 here.

Added in proof. Professor Morita has shown me his proof, which is very direct from
his published results.
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spaces and satisfies the countable sum theorem for closed sets in normal
spaces, dim Z <Ξ n. Then {Vi Π Z} is refined by an w-dimensional open
covering of Z\ so {£/J is refined by an ^-dimensional open covering of X.

Perhaps one could prove that dim is monotonic for closed subspaces
of topologically complete spaces. A stronger proposition (in view of [10;
7.2]) would be that dim is lower semi-continuous on inverse limits. As
noted in the introduction, it is unknown whether an inverse limit X of
discrete spaces can have dim X > 0, even if X is completely metrizable
(even if the discrete spaces are countable).

From 1.5, which is not a generalization of the corresponding theorem
of Aleksandrov, we easily get a generalization of that theorem; for note
that in the proof we constructed sets d which δ-separate (hence separate)
the pairs (Aif B{).

3.4. Aleksandrov's Theorem. A uniformisable space X has dim
X 5g n if and only if any n + 1 pairs of completely separated sets
(Ai9 Bi) can be separated by sets d whose complements form a normal
covering.

Similar remarks apply to Sklyarenko's refinement of the theorem;
but this result is actually stronger when stated in terms of freeing.

For Ind there is a valid analogue of 1.7, and at least for a moder-
ately extensive class of spaces the characterization generalizes to higher
dimensions.

3.5. For any uniformisable space X, Ind X = 0 if and only if
dim X — 0. For normal spaces X, Ind X ^ 1 if and only if any two
disjoint closed sets Au Bλ can be separated by a closed set Cλ such that
any two disjoint closed sets A2, B2 can be separated by a closed set C2

disjoint from Cλ. For completely normal spaces X, Ind X ^ n is equiva-
lent to following: if any n + 1 pairs of disjoint closed sets (Ai9 B%) are
successively presented, one can successively determine closed sets C*
separating A{ and Biy each without knowledge of the later pairs (Ajy Bj)
for j > i9 such that Π C{ = 0.

Proof. Again the zero-dimensional case follows from Aleksandrov's
theorem (here, from 3.4). The 1-dimensional case goes just like 1.6;
since X is normal, the disjoint closed sets F, G of the construction can
be separated. In the ^-dimensional case the subspace Hi =
Πi<i C;(Ind Hi ^ n — i) splits into relatively open sets Fif Gi9 separated
by Hi+1; since X is completely normal, Ai+1 U F{ and Bi+1 U G{ can be
separated.

I do not know a uniformisable space failing to satisfy all of 3.5.
Let us conclude with the theorem
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3.6. THEOREM. Every complete metric space is homeomorphic with
a closed subset of a countable product of finite-dimensional uniform

complexes.

Note that if "countable" is deleted, the remaining result is known;
in fact, "metric" can then be deleted [10]. But countability makes it
possible to represent the given X as an inverse limit of complexes K{

with all the coordinate projections π{: X~>Ki irreducible [9], and this
means, with dim K{ ^ dim X for all X.

3.7. COROLLARY. Every complete metric space X is homeomorphic
with the limit of an inverse mapping system of uniform complexes of
dimension at most dim X.

Proof of 3.6. We are given the space X and a complete metric
uniformity, hence a normal sequence of coverings r2/{ which do two
things:

(a) for any point x and neighborhood U, there is i such that
St(x, cf/%) c U, and

(b) for every nonconvergent filter j ^ there is i such that J^"
contains no element of <?s\ We need a normal sequence of finite-
dimensional coverings W'1 which also does these things. It will suffice
to find finite-dimensional open coverings 5 '̂* satisfying (a) and (b); then
the W~x can be constructed by finite intersection and star-refinement.
(Every finite-dimensional normal covering has a finite-dimensional normal
star-refinement; see e.g. [5j.)

We may assume that each f/1 is a countable union of topologically
discrete collections <%/) [18]. Let A%j denote the union of the elements
of f/} and let s/1 — {Aiά: all j}. Now each countable open covering
S^{ has a countable star-finite open refinement &% [15]; and we may
suppose that & i is a star-refinement of Szf1 (e.g. by [5; 1.2]). Decompose
each &% into its "components" &)\ precisely, let {Bi3} be the finest
O-dimensional covering coarser than &\ and &\ the trace of &l on
Bij. For each i and j , select an element C[ό of 39 \\ define c^[5 as the
unit class {C{j}. Let Cl\ r f̂ j j be empty. Recursively define c^%

k\λ as the
set of all members of 32 \ which meet Clj but do not meet C£ί.i, and
Ciii as the union of ^ T ^ . Let Γι be the 1-dimensional covering con-
sisting of all Cτ

k

j. Let c^1 be a strict shrinking of Γ\ i.e. a similarly
indexed covering {C*jk} with the closure of each C% contained in Cι

k

j.
For each i, j , k, let &ίjΐc be the finite covering consisting of the elements
Bi3kι of ctfi3 and the set X — C*jk. Next, for each i and i, there are
neighborhoods EιJ of the closures of the members UιJ of ?/) which still
form a discrete collection; let £?ίj be the l-dimsnsional covering consisting
of all Eιj and the set X — Ai3.
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Then the family of all intersections <§f * Λ 3tiih Λ ^ satisfies (a)
and (b). For (a), consider any point x and covering ^/\ x lies in some
C*ik and in some Bijkm; and St(Bijkm, &{) is contained in some Au. Then
we need only &i3Ίc A &iι; any member of this covering containing x
must have the form Bijkn Π Eiι. Here Bijkn meets Biάkm, so is contained
in Ailf and Bijkn n E% c ^ n E« = U«. For (b), if the filter ^ meets
every i f \ ^ i j f c , if α then it contains some C*jk, some Bijkm, a fortiori
some Ail9 and finally some C/̂  for each ί.
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