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Introduction. Suppose X and Y are normed linear spaces. Through-
out this paper, T shall be a closed linear operator with domain D(T)
dense in X and range R(T)a Y. For the sake of completeness, we
present the classification scheme devised in [7].

As regards R{T), there are the following three possibilities:
I: R(T) = Y,

II: R(T) Φ Y but R(T) = Y,
III: R(T) Φ Y.

If R(T) = Y, we say that T is in state /, written Tel. Analogous
notation is used regarding II and III.

As regards T"1, there are the following there possibilities:
1: T'1 exists and is continuous,
2: T"1 exists but is not continuous,
3: T'1 does not exist.

Here we say that T is in state 1, written T e l , to indicate that T has
continuous inverse, with analogous usage concerning 2 and 3.

By combining the various possibilities from the two lists, we obtain
nine possible states for T, e.g., Tel3 shall mean that R(T) = Y and
that T has no inverse.

This classification scheme may now be applied to the conjugate T"
of T. A corresponding "state diagram" was constructed in [3] which
exhibits the states which can occur for T together with T".

The purpose of this paper is to give some insight into the reasons
why the state diagram for closed linear operators is the same as that
for continuous linear operators (cf. [3]). It is shown that given T
closed, there corresponds a continuous linear operator T such that T
and T" are in the same states as T and T', respectively.

In the sequel, we shall adopt the following convention: if E is
a linear space and Γ is a set of linear functionals on E, then (E, Γ)
is the set E with the weak topology induced by Γ (cf. [2, p. 419]).
For any set KcE, K{E'Γ) shall denote the closure of K in (E, Γ).
The set Γ will be called total if f(x) = 0 for all fe Γ implies x = 0. If
Γ is a total subspace, then {E, Γ) is a locally convex topological linear
space which is also Hausdorff.

DEFINITION. Let D{T'\ denote the linear space D(T') with norm
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defined by \\y' \\, = \\y'\\ + || Ttf\\. It was noted by Sz.-Nagy [5], that
D(Tf\ is a Banach space. Define T[ as the operator T' mapping D(T')λ

into Xf.
Theorem 1 shows that, with the appropriate identifications, D(Tf)1 is

not only complete, but is in fact a conjugate space. Moreover, the
corresponding operator T[ is the conjugate of a bounded linear operator.

The following lemma is due to I. Singer [6, Theorem 1].

LEMMA. Let E be a normed linear space, V a subspace of Ef and
J^ the "canonical mapping" of E into V defined by

[,J^(x)]v = v(x) for every v e V.

Denote by SE and SF, the closed unit spheres in E and V, respectively.
Then ^SE is dense in Svt with respect to the w* topology, (V', V).

THEOREM 1. Define J\Y-*{D(T')J by (Jy)yr = y'y. Let J?\
Ό{T\-+(JY)' be defined by {^y')Jy = (Jy)v'. Then

( i ) D(Tf\ is linearly isometric to {JY)f under the map ^ and
||2/f IK = mv]]JyU=1\y'y\

(ii) JT is a continuous linear map from normed linear space
D(T) into normed linear space JY. Moreover, T[ = (JT)'^

(iii) The states of T and Tr are the same as those of continuous
linear operators JT and {JT)r respectively.

Proof of ( i ) . For convenience, Let E denote D(T'\ and let V
d e n o t e JY. S i n c e \(Jy)y'\ = \ y ' y \ ^Wv'WiWvW for all y'e E, i t f o l l o w s
that VαE' and || J | | ^ 1. Obviously V is a total subspace of E' and
both ^ and J are one-to-one. We now prove that the image of ^
is V. By [4], the closed unit sphere SE in E is a compact subset of
(Y'f Y), i.e., Y' with the w* topology. Since (E, V) is E with the
relative topology inherited from {Yr, Y), SE is also a compact subset of
(E, V). Thus SE = S{E V) since (E, V) is Hausdorff. It is easy to see
that J ^ is a homeomorphism from (E, V) onto ^E with respect to
the relative topology inherited from (V, V). Hence by the lemma,

SE = ,^S{

E

E'V) = ^S{

E

E'V) Π ^E = Sv, Π

Therefore, Sv> Π ^E is compact and thus closed in Hausdorff space
(V, V). Suppose that ^EΦ V. Then there exists some v'e V such
that \\v'\\ = 1 and vr 0 E, i.e., vf is not a member of the convex set
Sv, Π ^E which we have shown closed in (V, V). By [2, theorem V.
2.10], there exists a linear functional / which is continuous on (V, V)
and a constant c such that

Rf(v') > c ^ Rf(Sr> Π ,
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Thus

(**) c^ sup
'es

for if u e Sv, Π <J*Έ, and f(u) = \f(u) \ eίθ, then e~ίθu e Sv, Π ^ # . Hence
c ^ Rf(e~ίθu) = \f(u) |. Since / is continuous on (V, V), it follows from
[2, Theorem V. 3.9] that there exists some v e V such that f(z') — z'(v)
for all z'e V. Consequently, by (*) and (**) we infer that

)\ = sup \f{^x)\ = sup |φ?) | = IMI ,
χesE χesE

where | |^ | | is the norm of veE'. Hence v'(vj\\v||) > 1. This, however,
is a contradiction since H '̂ll = 1. We have therefore shown that J^
must map E onto V. Now from (*), SE = ̂ ~xSVf. Therefore, given
any y' e E,

which shows that ^ is an isometry and

I = sup | {^y')Jy \ = sup | y'y \ .
\\Jy\\=i \\Jy\\=ι

REMARK. By examining closely [1, Theorem 19], one can conclude
that (i) is valid after observing that SE is compact in (E, V) [4]. The
proof given above, however, is quite different from the proof given by
Dixmier, and indeed, may be used to prove Theorems 19 and 17' of
Dixmer.

Proof of (ii). JT is continuous from D(T) into E' since

\\(JTxW \ = \ y ' T x \ = \ T ' y ' x I <i || T y f \\ \\x\\t* \\ T[ \l \\y' ||, || x \\

implies that \\JT\\ ̂  | |Γ; | | . For x in D(T) and y' in E,

= {JTx)y'

= y'Tx = T[y\x) =

Hence (JT)'(^y') = T[^-\jfy') or (JT)' - T[^~\
From the above result it is obvious that T[ and (JT)f are in the

same state. We assert that T" and T[ are in the same state and
therefore so are T and (JT)'. It suffices to show that T" e 1 if and
only if T[el. If T'el, then T[ has an inverse and R(T[) = R{T) is
closed since T" is closed. However, T[ is a continuous linear operator
on Banach space E. Therefore, as a consequence of the interior map-
ping principle, T[ € 1. Conversely, if T[el, then Γ'has an inverse and
R{Tf) is closed. By the closed graph theorem, it follows that Γ ' e l .
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It is easy to verify that T and JT are in the same "range state".
Finally, to prove that T and JT are in the same state, it remains only
to show that Tel if and only if JTel. By inspecting the state dia-
gram in [3], and recalling that T' and (JT)r are in the same state, we
can conclude that Tel, T'el and JTel are equivalent statements.

2. Let JY be the closure of JY in E'. JY is therefore a Banach
z\

space. Suppose X and Y are Banach spaces. Define JT:X—*JY as
the continuous linear extension of JT. We now compare the states of

/\ /\
T and with those of JT and {JT)r respectively.

/\
Clearly, (JT)' = (JT)'. This implies, by the preceding results, that

T and (JT)9 are in the same state. An inspection of the state diagram
in [3] verifies the following assertions:

( a ) Te I if and only if T'el if and only if JTe I.

(b) Tell if and only if T e II2 or ΠI2 if and only if JTe II.

(c ) Te III if and only if JTe III.

(d) Te 1 if and only if Tel if and only if JTel.

( e ) If X is reflexive, then Te 2 if and only if T e II2 or II, if and

only if JTe 2.

(f ) If X reflexive, then Te 3 if and only if JTe 3.

We thus obtain the following

THEOREM 2. Suppose X and Y are complete. Then
( i ) The states of T and (JT)f are the same.
(ii) T and JT are in the same "range state."
(iii) Tel if and only if JTel.
(iv) If X is reflexive, then the state diagram for T and Tf

is the same as that for JT and (JT)r.
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